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Abstract—In this paper, we propose a new methodology for anal-

ysis of microarray images. First, a new gridding algorithm is pro-

posed for determining the individual spots and their borders. Then,

a Gaussian mixture model (GMM) approach is presented for the

analysis of the individual spot images. The main advantages of the

proposed methodology are modeling flexibility and adaptability

to the data, which are well-known strengths of GMM. The max-

imum likelihood and maximum a posteriori approaches are used

to estimate the GMM parameters via the expectation maximiza-

tion algorithm. The proposed approach has the ability to detect

and compensate for artifacts that might occur in microarray im-

ages. This is accomplished by a model-based criterion that selects

the number of the mixture components. We present numerical ex-

periments with artificial and real data where we compare the pro-

posed approach with previous ones and existing software tools for

microarray image analysis and demonstrate its advantages.

Index Terms—Cross-validated likelihood, DNA microarray
image analysis, expectation-maximization algorithm, Gaussian
mixture models, Markov random fields, maximum a posteriori,
maximum likelihood, microarray gridding.

I. INTRODUCTION

D
NA microarrays [1] are used to measure the expression

levels of thousands of genes simultaneously over different

time points and different experiments. In microarray experi-

ments, the two mRNA samples to be compared are reverse tran-

scripted into cDNA and then hybridized simultaneously to a

glass slide. The end product of a comparative hybridization ex-

periment is a scanned array image, where the measured inten-

sities from the two fluorescent reporters have been colored red

(R) and green (G) and overlaid. This array image is structured

with intensity spots located on a grid and must be scanned to de-

termine how much each probe is bound to the spots when stim-

ulated by a laser. Yellow spots have roughly equal amounts of

bound cDNA from each sample and so have equal intensity in

the R and G channels (red green yellow). Gene expression

data derived from arrays measure spots quantitatively and can

be used further for several analyses [2], [3].

It has been shown [1] that background correction is an im-

portant task in the analysis of microarray images. This is nec-

essary in order to remove the contribution in intensity which is

not due to the hybridization of the cDNA samples to the spotted

DNA. The R and G intensities of a perfect microarray image
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depend only on the dye of interest. However, due to system im-

perfections and the microarray image generation process, the

resulting images, in addition to background fluorescence, con-

tain other types of undesired signals which are termed in the rest

of this paper as artifacts. The correction of such artifacts is cru-

cial to making accurate expression measurements because, un-

like background fluorescence, their spatial location is unknown

and can lead to errors propagated to all subsequent stages of the

analysis [4].

Processing microarrays images requires two tasks. First, the

individual spots and their borders are determined. This process

is also known as gridding. Second, each spot is analyzed to

determine the corresponding gene expression level. A number

of software tools have been introduced that are available ei-

ther commercially or for research-only purposes for the analysis

of the microarray images [1], [5]–[7]. These tools use simple

gridding methods, which are based either on a grid with uni-

form cells or on manual specifications of the spot borders. For

spot analysis some existing tools assume circular spots—for ex-

ample, ScanAlyze [6] and the GenePix [7]. Others use simplistic

local thresholding based techniques—for example, Spotfinder

[5].

Histogram-based clustering methods have been also proposed

for spot segmentation [8]–[10]. However, these methods use the

well-known -means and the -medoids algorithms that do

not adapt well to irregularly based clusters and do not utilize all

the available prior knowledge about the data. Furthermore, all

previous proposed methods correct only for background fluo-

rescence and ignore the presence of artifacts.

The main contributions of this paper are two: first, a new

automatic gridding scheme, and second, the application of

Gaussian mixture models (GMMs) for analyzing microarray

spot images [4]. This allows us to bring to bear on this problem

all the known advantages and powerful features of the GMM

methodology, such as adaptability to the data, modeling flexi-

bility, and robustness, that make it attractive for a wide range of

applications [11]. The proposed methodology consists of three

main steps. First, the new scheme for determing the individual

spot borders in a microarray image is presented. This method

does not require any human intervention and is very simple

and fast. It is hierarchical in nature since it first uses the global

and then the local properties of the microarray image; thus, it

is also very robust.

Second, after determing the spot boundaries, the probability

density of each spot pixels is modeled using a GMM with

components. Two scenarios are possible. First, , in which

case two components are used corresponding to pixels labeled

as background and foreground. Second, , when in ad-

dition to background and foreground we have pixels which are

labeled as artifacts. The identification of the appropriate value
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of is accomplished using the cross-validated likelihood crite-

rion [12]. This can be considered as artifact detection and cor-

rection mechanism, since when , an artifact is identified

which is ignored in the subsequent analysis of this spot. Two

approaches are proposed for estimating the GMM parameters.

The first one is based on the expectation-maximization (EM) al-

gorithm [11] for maximum likelihood (ML) estimation of the

parameters, while the second is based on a maximum a poste-

riori (MAP) formulation. The latter takes also into account prior

knowledge about the spatial assignment of the pixel labels using

a Markov random field (MRF) model [13].

Finally, based on the clustering results, the means of the back-

ground and foreground Gaussian components are used to cal-

culate the normalized log-ratio for the fluorescence intensities

. This task constitutes the reduction step of our ap-

proach and characterizes qualitatively each spot by finding its

corresponding gene expression value.

The rest of this paper is organized as follows. In Section II,

we present the proposed technique for automatic gridding.

Section III describes the two GMM approaches for spot image

segmentation and the model-based criterion for estimating

the number of mixture components. In Section IV, we present

numerical experiments that test the proposed gridding and clus-

tering methodologies and compare them to existing software

packages for microarray image analysis, as well as to recently

published methods. For this purpose we used both artificial

data, where the “ground truth” is known, together with real

data. We present our conclusions in Section V.

II. AUTOMATIC MICROARRAY GRIDDING

The process of determining the spot boundaries is frequently

refered to as gridding. A variety of microarray gridding methods

have been previously suggested in the literature. They deter-

mine individual spot boundaries either with user-defined an-

chor points [6] and semiautomated geometric techniques [10],

or with complex methods that are computationally expensive

[14]. Since typical microarray images contain hundreds or thou-

sands of spots, a practical gridding method must be fully auto-

matic, fast, and simple.

The proposed gridding method uses a scheme that combines

global and local segmentation mechanisms for defining the

boundaries of each microarray spot. It initially creates global

boundaries, which are horizontal and vertical straight lines

spanning the entire image. To define the global boundaries, we

add the sums of the R and G intensities along the rows and

columns of the microarray image. The resulting signals have

multiple peaks each corresponding to the coordinates of a spot

center. We use the midpoint of two successive peaks of the row

and column sums to define the global horizontal and vertical

boundaries, respectively. Fig. 1(a) illustrates this process for a

5 5 grid.

In the next step, the global boundaries are refined. The

horizontal boundary between spots and 1

is refined by locating the minimum of the sum of the rows

(within the global boundary) of the R and G intensities of these

spots. In the same spirit, the vertical boundary between spots

and 1 is refined by locating the minimum of

Fig. 1. (a) These signals are obtained by summing up the rows and columns
of both R and G channels for a 5� 5 grid structure. Midpoints of successive
peaks define the horizontal and vertical global borders, respectively. (b) The
global borders (dotted lines) are refined (solid lines) based on the local sums.
The signals on the left and above the microarray image are the local row and
column sums, respectively.

the columns (within the global boundary) sums of the R and

G intensities of these spots. This procedure is repeated in a

row-by-row or column-by-column fashion, scanning the entire

microarray image. Fig. 1(b) illustrates an example of the global

border refinement process.

It must also be noted that, in many cases, the color chan-

nels are not aligned with each other. In such cases one can use

image alignment algorithms prior to the gridding task; see, for

example, [15]–[17].

III. MIXTURE MODELS FOR SPOT ANALYSIS

Spot analysis refers to the task of labeling each pixel of a spot

as background (B), foreground (F), and artifact (A). This can be

viewed as a clustering problem, which is tackled using GMM.

Let denote the th pixel value

in a spot area, where and correspond to the red and green

intensities, respectively. In other words, the segmentation is ap-

plied to the color image and not to each color seperately. GMMs

[11] represent density functions as a convex combination of

Gaussian component densities , where

is the mean and the covariance matrix of the th Gaussian,

according to the formula

(1)

The parameters represent the mixing weights satis-

fying that , while is the vector of all unknown

parameters of the model, i.e., ,

with .

Having found the parameters of the GMM, the posterior prob-

abilities that the th pixel is assigned to the component are

given by

(2)

Therefore, the th pixel is assigned to the label with the largest

posterior probability .
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A. Maximum Likelihood Estimation of GMM Parameters

A common approach for estimating the model parameters of

the GMM (1) is based on maximization of the likelihood (ML)

(3)

The EM algorithm is a popular method for ML estimation since

it is simple to implement and guarantees convergence to a local

maximum of the likelihood function [11].

Starting from an initial guess of the model parameters , at

each iteration the EM algorithm proceeds in two steps: the

-step, where the posterior probabilities are computed

(4)

and the -step, where the model parameters are updated

(5)

(6)

In image segmentation the spatial adjacency of pixels with the

same label is an important prior information that could also be

taken into account [18], [19]. Since the ML approach does not

provide this capability, an alternative method for MAP estima-

tion of GMM parameters will be described next. However, be-

fore we address this problem, we will elaborate on the problem

of selecting the number of the mixture components and see

how it fits in the proposed microarray image analysis method-

ology.

B. Cross-Validated Likelihood for Artifact Identification

The application of the EM algorithm to GMM requires

knowledge of the number of the mixture components used

in the model. Since previous approaches for microarray spot

analysis assume two labels—background (B) and foreground

(F)—it is reasonable to consider GMMs with . However,

this assumption cannot handle the existence of artifacts which

must also be taken into account; see spots in Fig. 7. In this

case an additional cluster appears in the data; therefore, they

are better modeled by a GMM with . This effect can

be visualized by comparing the scatter plots in the Fig. 6 with

those in Fig. 8. Thus, the artifact detection problem corresponds

to a model order selection problem between a two-component

or a three-component GMM.

Cross-validated likelihood [12] provides an efficient model

order selection framework for GMMs. Following this scheme,

a -component model is evaluated by splitting the data in

disjoint partitions (folds) , (of approximately

equal size). For each fold we estimate the parameters of a

GMM with components using the dataset . Then,

we calculate the likelihood of this model using

as a test set. Next is averaged over the folds in

order to obtain the cross-validated evaluation for the -compo-

nent model

(7)

The value is computed for the two candidate values

and we select the model order with the largest . It

must be noted that in our experiments we have selected

for the number of folds. When (existence of artifacts),

the criterion used to determine which one of the three is the

artifact cluster is the aggregate variance in all dimensions. In

other words, the cluster with the largest is considered

as artifact.

C. MAP Estimation of GMM Parameters

According to this approach [13], the probabilities

position that the pixel located at the th posi-

tion is assigned to the th label are considered as additional

model parameters that satisfy the constraints and

. By denoting as the set of

probability vectors and the set of Gaussian

component parameters, the density function is given by

(8)

Spatial adjacency of pixel labels is taken into account by

using a suitable prior density function for the parameter set .

This is given by the MRF model [13], [18], [19]

and (9)

where is a normalizing constant and is a regularization pa-

rameter. The function is the clique potential function of

the pixel label vectors within the neighborhood (hor-

izontally, vertically, and diagonally adjacent pixels) to the th

pixel and is computed as follows:

(10)

The function must be nonnegative and monotonically in-

creasing [18] and we used .

Given the above prior density (9), a posteriori log-density

function can be formed as follows:

(11)
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and maximized for the MAP estimation of the model parameters

, . The EM algorithm can also be used for this case [13]. The

-step is given by

(12)

while the -step requires the maximization of the following

log-likelihood [13]:

(13)

This gives update equations for the parameters of the component

densities and similar to those of (6) of the ML approach

of the GMM.

However, the maximization of the function with re-

spect to the label parameters does not lead to closed-

form update equations, since we must take into account the con-

straints and . Due to this difficulty, a

generalized EM scheme was adopted in [13] based on an itera-

tive gradient projection method. For this approach, the gradient

of the MAP function is first projected onto the hyperplane of the

constraints, and then a line search is performed along the direc-

tion of the projected gradient to find the parameters that

maximize the function.

Here we use an improved -step in order to maximize

with respect to by formulating the problem as a constrained

convex quadratic programming (QP) problem. We found that

this is advantageous, since it provides a better and faster up-

date rule for estimating label parameters that meets all the

available constraints [20]. A more detailed description of the

-step for this method is given in Appendix A.

IV. EXPERIMENTAL RESULTS

A variety of experiments have been performed to evaluate the

proposed methodology for the analysis of DNA microarray im-

ages. The test images1 used were artificially created or obtained

from publicly available microarray databases described in [2]

and [3].

A. Gridding Experiments

At first, we tested the proposed gridding technique for parti-

tioning grid structures into distinct spot areas. In order to objec-

tively evaluate and compare our method, the following experi-

mental study was conducted.

We applied our gridding method and two other widely used

microarray image analysis tools—Spotfinder [5] and ScanAlyze

[6]—to ten spot arrays, (arbitrarily) selected from ten different

real microarray images. Thus, in total, nearly 3500 spots were

used in this experiment. Each method was evaluated by visually

inspecting the gridding results and assigning each spot to one of

three categories: perfectly, marginally, and incorrectly gridded.

A spot was perfectly, marginally, or incorrectly gridded if the

1Color images of this paper can be viewed at http://ipan.cs.uoi.gr/pub.html.

TABLE I
PERFORMANCE OF THREE GRIDDING METHODS USING TEN SPOT ARRAYS

entire, at least 80%, or less than 80% of the spot area was con-

tained in the assigned grid, respectively.

The results of this study are shown in Table I. These results

clearly indicate that our method determines the spot areas more

accurately than the two other methods. It also must be noted

that the Spotfinder and ScanAlyze methods are based on manual

gridding. More specifically, the size of the spot array is first de-

fined. Then a rectangle is placed manually on the image. Based

on the provided dimensions, the rectangle is divided into equal

rectangular or circular cells each corresponding to the region

of a spot. Thus the outcome of the gridding process for these

methods is user dependent, while our method is fully automated.

In these experiments, we tried to the best of our ability to opti-

mize the results obtained by the Spotfinder and ScanAlyze tools.

In Fig. 2. we provide the gridding results with one of the ten

spot arrays using our approach as well as the two other image

analysis tools, ScanAlyze and Spotfinder. We also provide more

detailed gridding results for individual spots in the first column

of Figs. 5 and 7.

B. Spot Analysis Experiments

After identifying the spot regions, we used the proposed

GMM-based approach to analyze each spot region. More

specifically, the procedure we followed consists of the fol-

lowing four stages.

1) Select the number of components of the GMM

model using the cross-validated likelihood method. In

other words, test for the presence or absence

of artifacts in a spot.

2) Estimate the parameters of the -component GMM

model using the ML or MAP technique and label each

spot pixel with one of the labels.

3) If , the artifact component (A) of the GMM

is identified by using the maximum variance criterion.

Then, the remaining two clusters are labeled as and

using the criterion .

4) Calculate the expression value of the corresponding

gene according to the normalizing logarithmic ratio

For comparison purposes we have also implemented two

other methods proposed in [8] and [9] for spot clustering,

namely, the -means algorithm and the partitioning around

medoids (PAM) method. These two methods do not pro-

vide model selection capabilities and, thus, only two clusters

were considered: and .

At this point it should be also noted that filtering, such as low-

pass or median, could be used for noise removal in a separate

step prior to segmentation [9]. In our methodology, the proposed

MAP approach provides a coherent framework for segmentation
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Fig. 2. Comparative gridding results of (a) our method with two widely used microarray image analysis tools: (b) Spotfinder and (c) ScanAlyze.

in which “noise filtering” is implicitly integrated. Furthermore,

it uses a GMM to model the data and thus, unlike filtering, it

also adapts to their statistics.

1) With Artificial Spot Images: In order to objectively

compare the proposed GMM-based methodology with previous

ones, we conducted Monte Carlo simulations using artificially

created spots for which the “ground truth” is known. The

artificial spots were constructed with known mean intensities

for the red (R) and green (G) channels for both the background

and the foreground . Then, the images were

corrupted with additive white Gaussian noise at ten different

levels. For statistical significance, the experiment at each noise

level was repeated ten times with different noise realizations.

Two criteria were used to evaluate the methods tested: a) the

classification (segmentation) error, defined as the percentage of

misclassified pixels after clustering, and b) the mean squared

error (MSE) of the ratio , as estimated by each method over

the ten repetitions of each experiment, with respect to the true

ratio , i.e.,

MSE

The MSE from the true ratio was used as a comparison metric

since, as mentioned previously, this ratio is the feature used for

further analysis of microarray data.

In Fig. 3(a) and (b), we show the resulting classification error

and MSE curves as functions of the noise level to illustrate the

performance of the four methods. In both curves, the axis cor-

responds to the signal-to-noise ratio (SNR) calculated in decibel

units, while the axis in Fig. 3(b) is in logarithmic scale. These

results demonstrate that the MAP GMM-based method outper-

forms all other methods. Furthermore, at all SNR levels, both

the ML and the MAP GMM-based approaches provide both

better segmentation accuracy and MSE values compared to the

other methods, with these differences being quite significant at

low SNR levels. In Fig. 4, three examples are displayed corre-

sponding to three different SNR levels showing the segmenta-

tion and the ratio value for each one of the compared methods.

It must be noted that in the above experiments all clustering

Fig. 3. (a) Classification error and (b) mean squared error of ratio versus SNR
using artificial spot images.

Fig. 4. Segmentation maps and fluorescent ratios at different SNRs using three
artificial spot images.

methods were identically initialized. Furthermore, MAP param-

eter was used for all cases.

2) With Real Spot Images: We also tested the proposed spot

analysis methodology with real data. Figs. 5 and 7 illustrate the

results obtained for several real spot examples. In each case, we

present the image segmentation results after labeling the pixels

using each of the compared approaches. The spot segmentation

map is constructed by setting the intensity value of each pixel

equal to the mean value of the cluster to which it is assigned. In

the case of the proposed MAP approach, three different segmen-

tation maps are presented that correspond to three values (0.01,
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Fig. 5. Comparative results for five real microarray spots without artifacts. For each method, we give the segmentation map and the estimated fluorescence ratio.

Fig. 6. Plot of all pixel values of spot S of Fig. 5 after labeling them
with (a) MAP-GMM, (b) ML-GMM, (c) K-means, and (d) PAM methods,
respectively. The ellipsoidal clusters resulting from the GMM approaches and
the linear boundary between the two clusters in the K-means case are also
shown.

0.1, 1.0) for the regularization parameter of the Gibbs prior

(9). In total, for each spot we provide six segmentation maps

along with the corresponding fluorescent ratios.

More specifically, Fig. 5 represents comparative results from

five spot examples where no artifacts were detected according

to the cross-validated likelihood criterion, i.e., . In cases

where the shape of spots is not regular and their contour is not

round (mostly due to retrieval of the microarrayer’s spotting

pin), both GMM-based methods generate more regular fore-

ground regions in comparison with the -means and PAM clus-

tering approaches. To better comprehend the behavior of the dif-

ferent clustering methods, we present in Fig. 6 four scatter plots

of the R and G pixel intensities for the spot after labeling

using GMM with the MAP (MAP-GMM), ML (ML-GMM),

-means, and PAM methods, respectively.

The main disadvantage of the -means and PAM methods is

that they are restricted to use as error metric the distance from

the mean or median of the cluster. Thus, they generate clusters

which are separable by simple borders as shown in Fig. 6(c)

and (d). In contrast, GMM-based methods generate ellipsoidal

clusters with complex boundaries as shown in Fig. 6(a) and (b).

As a result, the -means and PAM methods in this example tend

to overestimate the background clusters and provide spots with

background “wholes,” while the GMM-based methods provide

more “uniform” spots.

Fig. 7 illustrates comparative results with another four

spot examples that correspond to cases where an artifact was

detected, i.e., . After labeling, the artifact pixels are

excluded from the calculation of the fluorescent ratios. In the

absence of an artifact correction methodology, the -means

and the PAM methods erroneously classify these pixels as fore-

ground since the contribution of the artifact pixels is significant.

The differences in the fluorescent ratios among these methods

is noticeable. For example, in the case of spots and of

Fig. 7, the -means and PAM methods produce a ratio close

to zero , since they consider as foreground the (yellow)

artifact pixels. On the other hand, the proposed MAP-GMM and

ML-GMM approaches detect the presence of the artifact and

generate more realistic foreground regions. Thus, the produced

fluorescent ratios of about and seem to be

more realistic for the spots and , respectively. We also
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Fig. 7. Comparative results for four real microarray spots with artifacts. For each method we give the segmentation map and the estimated fluorescence ratio.

Fig. 8. Plot of pixel values in spot S of Fig. 7 after labeling (a) with
MAP-GMM, (b) ML-GMM, (c)K-means, and (d) PAM methods, respectively.
The ellipsoidal clusters resulting from the GMM approaches and the linear
boundary between the two clusters in the K-means case are also shown.

present in Fig. 8 four plots of the R and G pixel intensity values

for these two spot areas after labeling pixels with the four

approaches being compared. Again, the enhanced data-fitting

capabilities of the GMM-based approaches are obvious.

Another point to make in our experimental study concerns

the comparison between the MAP-GMM and ML-GMM esti-

mators. The results in Figs. 5 and 7 show that both approaches

yield similar results in terms of the fluorescent ratios. How-

ever, they do not produce the same segmentation maps. For

low values of the regularization parameter , both

methods generate identical segmentation maps. As the value of

grows in MAP-GMM, the contribution of the prior term in-

creases and generates smoother foreground and background re-

gions. Thus, it eliminates isolated foreground pixels located in

background regions. While the value of the parameter must

be tuned, in our experiments we observed that a value in the

range [0.1, 1.0] gives satisfactory results. From this point of

view, the MAP-GMM approach can be viewed as a method for

noise reduction in the sense that it eliminates the effects of the

microarray manufacturing imperfections.

In Fig. 9, we show some comparisons for spot quantifica-

tion between the proposed method and two existing image anal-

ysis tools: GenePix [7] and Spotfinder [5]. Comparisons with

ScanAlyze [6] were not included since GenePix uses the same

principle for spot segmentation. From Fig. 9, it is clear that the

circle used in GenePix is not representative on many occasions,

when the spot is irregularly shaped or when artifact islets are

present, of the spot area. In other words, the analysis provided

by GenePix is based only on the spatial properties of the spot

and does not take into consideration the intensity of the pixels.

For example, in spot shown in Figs. 5 and 9, the circle used

by GenePix misses completely the cresent-shaped spot which

the proposed method captures quite accurately. This is also re-

flected in the large difference of the fluorescent ratios provided

by these methods. Also, in spot in Figs. 7 and 9, it is clear

that the region selected by GenePix segmentation as foreground

includes pixels that our algorithm labels as artifact, and this is

also reflected in the computed fluorescent ratios. Similarly, the

thresholding-based algorithm used in Spotfinder in certain in-

stances of irregular spots and spots with artifacts produces faulty
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Fig. 9. Calculated fluorescent ratios for six spot examples using the GenePix
and Spotfinder microarray image tools.

segmentations; see, for example, spots in Figs. 5 and 7, re-

spectively. In these spots also the fluorescent ratios provided by

Spotfinder and our method are significantly different.

Finally, the last series of experiments uses an interesting

family of microarray images provided by Agilent Technologies

that have a specific imperfections: the spots in these images,

although perfectly circular, contain sometimes artifacts in their

perimeter. Agilent provides analysis software that ignores the

perimeter of the spot based on what is called as the “cookie

cutter algorithm” [21]. We tested the proposed methodology

with such images2 and found that it is able to detect the presence

of artifacts in these spots using the cross-validation criterion.

Furthermore, it classifies as artifact a “don’t like” region which

is not taken into account during the ratio calculation. For

comparison purposes, we also provide the segmentation and

the ratio results using the -means and the PAM algorithms.

Since the cross-validation method is specific to the GMM, only

two clusters were used in these methods. In Fig. 10, we show

five spot examples of this type of image. It is interesting to

notice the considerable difference in the ratios obtained by

the proposed methodology with respect to the other methods

for certain spot cases (e.g., case 5).

V. CONCLUSION

In this paper, we have proposed a new fully automated ap-

proach for the analysis of microarray images. First, we describe

a new hierarchical gridding procedure based on the vertical and

horizontal projections of the color images. This approach is

simple and automatic, and provides better results compared with

popular existing tools. However, the main novelty of this work is

the proposed GMM-based methodology for spot image segmen-

tation. Two methods for estimating the GMM parameters are

presented: ML and MAP. Both approaches are based on the EM

algorithm. A cross-validated likelihood criterion is also used to

select the number of components of the GMM. This provides

the capability to detect and correct artifacts in the spot area. As

2Test images were downloaded from http://www.silicocyte.com/dis/images-
forevaluation.htm.

Fig. 10. Five examples of Agilent Technologies images. The segmentation
result together with the calculated ratio value are provided for each clustering
method.

our experiments demonstrated, the proposed methodology pro-

duces better and more accurate results in terms of segmentation

maps and fluorescence ratios as compared with existing soft-

ware tools and other clustering methods proposed in previous

works.

APPENDIX

AN -STEP FOR ESTIMATING THE PARAMETERS

To maximize (13) with respect , we set its derivative

equal to zero and obtain the following quadratic expression:

(14)

where indicates the derivative. Let us denote with the

positive root of the above equation. The problem can be formu-

lated as follows: “Given a vector with elements

and the hyperplane , find the point on the hyper-

plane with that is closest to .”

This defines the following constrained convex quadratic pro-

gramming (QP) problem:

subject to and (15)

In order to solve this QP problem, several approaches can be em-

ployed such as active-set methods and penalty-barrier methods.

For this purpose, we have implemented an active-set type of

method [20] where we exploit the fact that the Hessian is the

identity matrix which in turn leads to closed-form expressions
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for the Lagrange multipliers. The detailed steps for solving this

QP problem are given in the following algorithm.

Algorithm 1: A sequential convex QP

algorithm

Input:

Output:

and

Set and ,

1. Calculate as :

if then

else

end if

2. Check for termination

if then

STOP

end if

3. Update and as:

if then

and

end if

4. Go to step 1.

REFERENCES

[1] Y. H. Yang, M. J. Buckley, S. Duboit, and T. P. Speed, “Comparison of
methods for image analysis on cDNA microarray data,” J. Computat.

Graph. Statist., vol. 11, pp. 108–136, 2002.
[2] A. A. Alizadeh et al., “Distinct types of diffuse large B-cell lymphoma

identified by gene expression profiling,” Nature, vol. 403, pp. 503–511,
2000.

[3] J. Mata, R. Lyne, G. Burns, and J. Bahler, “The trancriptional program
of meiosis and sporulation in fission yeast,” Nature Genetics, vol. 32,
pp. 143–147, 2002.

[4] K. Blekas, N. P. Galatsanos, and I. Georgiou, “An unsupervised arti-
fact correction approach for the analysis of DNA microarray images,” in
Proc. IEEE Int. Conf. Image Processing (ICIP), vol. 2, Barcelona, Spain,
Sep. 2003, pp. 165–168.

[5] P. Hegde et al., “A concise guide to cDNA microarray analysis,” Biotech-

niques, vol. 29, pp. 548–562, 2000.
[6] M. B. Eisen. (1999) ScanAlyze. [Online]. Available:

http://rana.lbl.gov/EisenSoftware.htm
[7] I. A. Instruments. (2002) GenePix Pro documentation. [Online]. Avail-

able: http://www.axon.com
[8] D. Bozinov and J. Rahnenfuhrer, “Unsupervised technique for robust

target seperation and analysis of DNA microarray spots through adaptive
pixel clustering,” Bioinformatics, vol. 18, no. 5, pp. 747–756, 2002.

[9] R. Nagarajan, “Intensity-based segmentation of microarray images,”
IEEE Trans. Med. Imag., vol. 22, no. 7, pp. 882–889, Jul. 2003.

[10] A. W.-C. Liew, H. Yang, and M. Yang, “Robust adaptive spot seg-
mentation of DNA microarray images,” Pattern Recogn., vol. 36, pp.
1251–1254, 2003.

[11] G. M. McLachlan and D. Peel, Finite Mixture Models. New York:
Wiley, 2001.

[12] P. Smyth, “Model selection for probabilistic clustering using cross-val-
idated likelihood,” Statist. Comput., vol. 10, pp. 63–72, 2000.

[13] S. Sanjay-Gopal and T. J. Hebert, “Bayesian pixel classification using
spatially variant finite mixtures and the generalized EM algorithm,”
IEEE Trans. Image Process., vol. 7, no. 7, pp. 1014–1028, Jul. 1998.

[14] M. Katzer, F. Kummert, and G. Sageter, “A Markov random field model
of microarray gridding,” in Proc. ACM Symp. Applied Computing (SAC),
Melbourne, FL, 2003, pp. 72–77.

[15] H. S. Baird, “The skew angle of printed documents,” in Proc. Conf. So-

ciety Photographic Scientists Engineers, 1987, pp. 14–21.
[16] C. Bowman, R. Baumgartner, and S. Booth, “Automated analysis of

gene-microarray images,” in Proc. IEEE Can. Conf. Electrical Com-

puter Engineering (CCECE), 2002, pp. 1140–1144.
[17] P. Bajcsy, “Gridline: Automatic grid alignment in DNA microarray

scans,” IEEE Trans. Image Process., vol. 13, no. 1, pp. 15–25, Jan.
2004.

[18] P. J. Green, “Bayesian reconstructions from emission tomography data
using a modified EM algorithm,” IEEE Trans. Med. Imag., vol. 9, no. 1,
pp. 84–93, Mar. 1990.

[19] Y. Zhang, M. Brady, and S. Smith, “Segmentation of brain MR images
through a hidden Markov random field model and the expectation-maxi-
mization algorithm,” IEEE Trans. Med. Imag., vol. 20, no. 1, pp. 45–57,
Jan. 2001.

[20] K. Blekas, A. Likas, N. P. Galatsanos, and I. E. Lagaris, “A spatially con-
strained mixture model for image segmentation,” IEEE Trans. Neural

Netw., no. 2, pp. 494–498, Mar., 2005.
[21] (2003) Agilent Feature Extraction Software. Agilent Technologies. [On-

line]. Available: http://www.chem.agilent.com


	toc
	Mixture Model Analysis of DNA Microarray Images
	K. Blekas*, Member, IEEE, N. P. Galatsanos, Senior Member, IEEE,
	I. I NTRODUCTION
	II. A UTOMATIC M ICROARRAY G RIDDING

	Fig.€1. (a) These signals are obtained by summing up the rows an
	III. M IXTURE M ODELS FOR S POT A NALYSIS
	A. Maximum Likelihood Estimation of GMM Parameters
	B. Cross-Validated Likelihood for Artifact Identification
	C. MAP Estimation of GMM Parameters

	IV. E XPERIMENTAL R ESULTS
	A. Gridding Experiments


	TABLE I P ERFORMANCE OF T HREE G RIDDING M ETHODS U SING T EN S 
	B. Spot Analysis Experiments

	Fig.€2. Comparative gridding results of (a) our method with two 
	1) With Artificial Spot Images: In order to objectively compare 

	Fig.€3. (a) Classification error and (b) mean squared error of r
	Fig.€4. Segmentation maps and fluorescent ratios at different SN
	2) With Real Spot Images: We also tested the proposed spot analy

	Fig.€5. Comparative results for five real microarray spots witho
	Fig. 6. Plot of all pixel values of spot $S_{2}$ of Fig. 5 after
	Fig.€7. Comparative results for four real microarray spots with 
	Fig. 8. Plot of pixel values in spot $S_{3}$ of Fig. 7 after lab
	Fig.€9. Calculated fluorescent ratios for six spot examples usin
	V. C ONCLUSION

	Fig.€10. Five examples of Agilent Technologies images. The segme
	A N $M$ - STEP FOR E STIMATING THE P ARAMETERS $\pi ^{i}_{j}$
	Y. H. Yang, M. J. Buckley, S. Duboit, and T. P. Speed, Compariso
	A. A. Alizadeh et al., Distinct types of diffuse large B-cell ly
	J. Mata, R. Lyne, G. Burns, and J. Bahler, The trancriptional pr
	K. Blekas, N. P. Galatsanos, and I. Georgiou, An unsupervised ar
	P. Hegde et al., A concise guide to cDNA microarray analysis, Bi
	M. B. Eisen . (1999) ScanAlyze . [Online] . Available: http://ra
	I. A. Instruments . (2002) GenePix Pro documentation . [Online] 
	D. Bozinov and J. Rahnenfuhrer, Unsupervised technique for robus
	R. Nagarajan, Intensity-based segmentation of microarray images,
	A. W.-C. Liew, H. Yang, and M. Yang, Robust adaptive spot segmen
	G. M. McLachlan and D. Peel, Finite Mixture Models . New York: W
	P. Smyth, Model selection for probabilistic clustering using cro
	S. Sanjay-Gopal and T. J. Hebert, Bayesian pixel classification 
	M. Katzer, F. Kummert, and G. Sageter, A Markov random field mod
	H. S. Baird, The skew angle of printed documents, in Proc. Conf.
	C. Bowman, R. Baumgartner, and S. Booth, Automated analysis of g
	P. Bajcsy, Gridline: Automatic grid alignment in DNA microarray 
	P. J. Green, Bayesian reconstructions from emission tomography d
	Y. Zhang, M. Brady, and S. Smith, Segmentation of brain MR image
	K. Blekas, A. Likas, N. P. Galatsanos, and I. E. Lagaris, A spat

	(2003) Agilent Feature Extraction Software . Agilent Technologie


