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Mixture Model- and Least Squares-Based Packet
Video Error Concealment

Daniel Persson and Thomas Eriksson

Abstract—A Gaussian mixture model (GMM)-based spatio-tem-
poral error concealment approach has recently been proposed
for packet video. The method improves peak signal-to-noise ratio
(PSNR) compared to several famous error concealment methods,
and it is asymptotically optimal when the number of mixture
components goes to infinity. There are also drawbacks, however.
The estimator has high online computational complexity, which
implies that fewer surrounding pixels to the lost area than desired
are used for error concealment. Moreover, GMM parameters are
estimated without considering maximization of the error conceal-
ment PSNR. In this paper, we propose a mixture-based estimator
and a least squares approach for solving the spatio-temporal error
concealment problem. Compared to the GMM scheme, the new
method may base error concealment on more surrounding pixels
to the loss, while maintaining low computational complexity,
and model parameters are found by an algorithm that increases
PSNR in each iteration. The proposed method outperforms
the GMM-based scheme in terms of computation-performance
tradeoff.

Index Terms—Block-based packet video, spatio-temporal error
concealment, least squares (LS) estimation.

I. INTRODUCTION

V IDEO communication over the Internet and via mobile
phones is growing ever more popular. The block-based

state-of-the-art video-coding scheme H.264/MPEG-4 part 10
achieves high compression efficiency, but the resulting bit
stream is vulnerable to communication channel impairments.
Packet errors occur because of various transmission channel
problems, and may be characterized by a simultaneous loss
of bigger amounts of data locally in the video stream. Many
error resilience techniques for combating this problem exist [1].
Methods that work at the decoder side without extra redundancy
from the encoder are referred to as error concealment schemes.
In order to show how our contribution fits into the history of
the error concealment problem, we provide a short revision of
previous techniques.

A. Previous Efforts

Error concealment methods are usually categorized into spa-
tial approaches, that only use spatially surrounding pixels for
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estimation of lost blocks, and temporal approaches, that esti-
mate the motion field and use pixels from previous frames for
replacement of the lost blocks.

Spatial methods may yield better performance than temporal
methods in scenes with high motion, or after a scene change.
A large variety of spatial strategies have been suggested, see,
e.g., [2]–[7]. The method in [8] that replaces lost pixels with
weighted averages of boundary pixels forms part of the error
concealment approach implemented in the H.264 JM decoder
[9].

Details inside lost blocks can not be recreated by spatial
schemes. In this case, information from the past frame may
improve the result. Rather than using the block in the previous
frame at the same spatial position as the lost block for temporal
EC, the motion-compensated block should be used [1]. If the
motion vector is available at the decoder side, it can be utilized.
When the motion vector is also lost, it has to be estimated,
which is the challenge in temporal error concealment. Motion
estimation is often performed by using the median of the
motion vectors of the surrounding blocks, or the motion vector
of the corresponding block in the previous frame [10]. The
motion vector that yields the minimum variation between a
replacement block and its spatial surrounding is chosen as an
estimate in [11]. This algorithm has been adopted for tem-
poral error concealment in the H.264 JM decoder [9]. Other
more advanced temporal error concealment methods are, e.g.,
[12]–[16].

From an information-theoretic view, spatio-temporal ap-
proaches should improve the pure spatial and temporal efforts.
The method in [2] was extended to yield a replacement from
received transform coefficients, pixels on the border of the
lost block, and pixels from a previous frame in [17]. In [18],
motion vectors are estimated, the prediction error is modeled as
a Gaussian Markov random field, and a maximum a posteriori
estimate of the prediction error for the lost block is formed.
Some recent contributions are, e.g., mode selection in [19],
combined and iterative spatio-temporal error concealment
in [20], and error concealment by spatio-temporal boundary
matching and a partial differential equation-based algorithm in
[21].

A mixture of principal components model for error con-
cealment of tracked objects is proposed in [22]. We have
recently proposed a spatio-temporal Gaussian mixture
model (GMM)-based error concealment method [23] for
block-based packet video that has showed good results in peak
signal-to-noise ratio (PSNR) compared to other error conceal-
ment schemes [10], [17], [18]. Gaussian mixture models have
been employed successively for several other tasks in image
processing, for example object detection in images in [24] and

1057-7149/$25.00 © 2009 IEEE

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on February 1, 2010 at 17:25 from IEEE Xplore.  Restrictions apply. 



PERSSON AND ERIKSSON: MIXTURE MODEL- AND LEAST SQUARES-BASED PACKET VIDEO ERROR CONCEALMENT 1049

noise reduction, image compression, and texture classification
in [25]. For error concealment of speech, Gaussian mixture
models have been used in [26] and [27]. Moreover, a GMM
has the ability to approximate probability densities arbitrarily
closely asymptotically [25]. Our GMM-based method in
[23] divides the error concealment problem into an offline
GMM parameter estimation problem, and an online minimum
mean-square error (MMSE)-based estimation of the lost blocks
using surrounding pixels as well as the estimated GMM param-
eters.

The GMM-based estimator for lost blocks is, however, com-
putationally complex online, even when fewer pixel values are
regarded in the modeling. An often prevailing technique for
GMM parameter estimation is the expectation maximization al-
gorithm [29], that yields a nondecreasing likelihood of the re-
alizations in the training set in each iteration. The PSNR of
the estimate, which would be a more appropriate performance
measure for our application, is overlooked since estimating the
GMM parameters by maximizing the estimator PSNR is not
mathematically tractable.

B. Our Contribution

In this paper, we suggest a new mixture-based estimator for
spatio-temporal EC. Estimator parameters are obtained in the
least squares (LS) sense by an iterative algorithm offline, and in
such a way that error concealment performance in PSNR is in-
creased in every iteration. The estimator is thereafter employed
on-line for error concealment, using the previously obtained pa-
rameters and pixels surrounding the lost area.

Compared to the method in [23], fewer online floating point
operations are needed, and more pixels surrounding the lost
block may be taken into account in the estimator without a
significant increase in computational complexity. Our formu-
lation of the problem has also, compared to the formulation in
[23], the advantage that we do not need to estimate probability
densities explicitly, which means that many parameters that are
insignificant for obtaining our final estimator are avoided. Our
formulation can in this way be seen as a means for combating
what is known as “the curse of dimensionality,” or “the empty
space phenomenon,” that is the exponential growth of the
needed amount of training data with dimension of the estimated
probability density [25]. Preliminary investigations for this
paper were presented in [28].

The remainder of this paper is organized as follows. Our pro-
posed method is presented in Section II. In Section III, the pro-
posed scheme is compared to previous efforts by means of sim-
ulations. The paper is concluded in Section IV.

II. MIXTURE MODEL-BASED EC

Since the proposed technique is a further development of the
approach reported on in [23], we start by summarizing [23] and
discussing the advantages and the shortcomings of the method.
Thereafter the new technique is introduced.

A. Analysis of GMM-Based Error Concealment

In [23], a group of pixel values that are lost at the decoder side
are represented by elements of the stochastic vector variable ,
and are replaced by employing neighboring pixel values repre-

sented by elements of the stochastic vector variable . A GMM
with component densities describes the relationship between
the vectors and

(1)

where , and the a priori weights are all
positive and sum to one. The functions are Gaussian
distributions with means and covariances

(2)

An estimator for the lost pixels is found by considering an
MMSE problem

(3)

which has the solution

(4)

where is a conditional model pdf that may be derived
from . The solution in (4) leaves us with a new problem,
namely the estimation the parameters of (1). This problem is
solved by the expectation maximization algorithm [29]. Using
(1) and (2), the estimator (4) can be written [23]

(5)

where

(6)

The functions (6), which sum to 1, are referred to as posteriori
weights. Error concealment is thus conducted by

1) offline GMM parameter estimation by means of the expec-
tation maximization algorithm using a video database;

2) online error concealment using (5) and the pixels sur-
rounding the lost pixels .

As seen in [23], the estimator (5) with increases per-
formance in PSNR compared to the linear estimator obtained
when . A qualitative interpretation for the increased per-
formance for is that the posteriori weights (6) classify
the situation of local image correlation in a soft manner, and
combine together several linear estimators

that are specialized for different situations. We will
adapt this view of (5) in order to propose the new mixture-based
estimator.

Though the above scheme has shown to increase PSNR com-
pared to the previous methods [18], [17], [10], a few remarks
about its disadvantages can be made.

• GMM parameter estimation with the expectation maxi-
mization algorithm yields a nondecreasing log-likelihood
of the realizations in the training set in each iteration [30].
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An increase of log-likelihood of the vectors in the training
set is, however, not necessarily linked to an increase in
PSNR of the estimate (5). A treatment where all GMM
parameters are achieved by maximizing the PSNR of (5)
would be more eligible. This consistent approach would,
however, be an extremely difficult problem.

• The estimator (5) has to be run online, but it has a high
computational complexity, which to a large extent depends
on the quadratic forms in the exponents of the Gaussian
distributions in (6).

• A vector with 64 dimensions was employed in [23]. It
would be desirable to increase the number of dimensions
of substantially, but this would be computationally de-
manding because of the matrix operations, both for GMM
parameter estimation, and for online pixel estimation by
means of (5).

To summarize, the benefit of a simplification of the estimator
(5) is threefold: estimator parameters may be obtained by PSNR
maximization, online complexity is reduced, and error conceal-
ment can be based on more surrounding pixels. In what follows,
we will conceive another strategy for mixture-based spatio-tem-
poral error concealment with this in mind.

B. Mixture-Model- and LS-Based Scheme

We introduce an estimator that is heavily inspired by the so-
lution in (5). The means and , are
removed, the matrices are replaced by matrices

, and the posteriori weights are replaced by simpler
functions . Two subsets of the elements of are organized
into vectors and employed in the estimator: the vector is used
for classification in the posteriori weights (C stands for classi-
fication), and the vector is used for prediction (P stands for
prediction). By introducing and , more pixels may be used
in the new simple posteriori weights than with the
prediction. The proposed estimator is thus parametrized by

(7)

(8)

(9)

where and are vectors containing elements of
is scalar, is the dimension of the vectors

and , and

(10)

In the discussion of the GMM-based estimator, we concluded
that different posteriori weights focus on different situations of
video correlation. In accordance with this, the vectors
and should be chosen so that a specific situation of video

correlation is given priority. For example, in order to generate
a mixture component that focuses on spatial correlation,
and should be chosen so that the exponent of (9) incorpo-
rates the difference of the values of many spatially neighboring
pixels. In the same way, in order to generate a mixture com-
ponent that focuses on temporal correlation, and
should be chosen so that the exponent of (9) incorporates the
difference of the values of many temporally neighboring pixels.
A more detailed description of different choices of the vectors

and will be given in the experiment section. Con-
sequently, the new function (7) combines linear estimators by
means of posteriori weights like the GMM-based estimator (5).
Parameter estimates are provided by the LS approach

(11)

In contrast to the parameters of the estimator (5), the parameters
are obtained so that the PSNR

(12)

that is a standard measure of video quality [17], [18], [23] is
maximized. The details of the parameter estimation is the topic
of Section II.C. For summarizing, error concealment is con-
ducted by

1. offline procurement of using (11) and a video database;
2. online employment of the estimator for error con-

cealment of .
The proposed mixture-based approach obtains estimator param-
eters by PSNR maximization, reduces online complexity com-
pared to (5), and may use a vector with high number of di-
mensions while maintaining low computational complexity.

C. Algorithm for Solving the LS Estimation Problem

Since the solving of the LS problem (11) with the proposed
estimator (7) does not have a closed form solution, an iterative
algorithm is now proposed.

1) The Matrices : We minimize the mean squared error
(MSE) as a function of one matrix at a time, while keeping
all other parameters, i.e., , as well
as and , constant

(13)

(14)

This is the standard linear MMSE problem, whose solution is
[31]

(15)
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(16)

(17)

For optimization in practice, the expectations are replaced by
arithmetic means of realizations. The expectation evaluations
may hence be computationally expensive if many realiza-
tions are used. Successive updates of the different matrices

may, however, be calculated without evaluating
the computationally expensive expectation operations in (16)
and (17) more than once.

2) The Parameters and : We first minimize the
MSE as a function of the parameters ,
while keeping all other parameters, i.e., and

, constant. For each update, the MSE is
compared for the parameter vector
obtained in the previous update, and for the two vectors

, where is some scalar, and
to are the elements of a normalized random vector.

The vector that yields the minimum value of the MSE is kept.
This strategy is also employed for updating the parameters

.
To summarize, the updates of the parameters and

, all yield nonincreasing MSE. As the MSE decreases, the
PSNR defined in (12) increases, and the PSNR thus increases
in every iteration. The algorithm is executed off-line, and does
thus not affect the on-line computational complexity.

III. EXPERIMENTS

In this section, the proposed method is simulated and com-
pared to methods suggested by other authors. Details of the sim-
ulations are given in Section III-A, and results of the experi-
ments are presented in Section III-B.

A. Simulation Prerequisites

The listed conditions are chosen to fit state-of-the-art
block-based video coders, and are impartial to all the compared
schemes:

Coder: We focus on the predictively coded frames (an ap-
plication of the proposed method to restoration of intra-coded
frames is completely analogous). Motion vectors are calculated
for 8 8-blocks. A search for a motion vector is performed by
checking every integer displacement vector where

. Each row of 16 16-blocks is divided into
8 8-blocks, that are interleaved into two packets as in [17], see
Fig. 1.

Motion Vectors for Error Concealment: The error conceal-
ment schemes are evaluated in the case of correctly received
motion vectors that are protected in a high priority layer, and in
the case of lost motion vectors that are estimated by the median
of the motion vectors of the available neighboring blocks [10].

Video Data: We use the luminance component of 124
MPEG-1 movies from [32] that have a frame rate of 29.97
frames per second and an image size of 352 240 pixels. The

Fig. 1. Block interleaving. One row of 16� 16-blocks is separated into two
packets.

movies are divided into two independent sets, one for offline
parameter optimization, and another for evaluation. In order to
show the robustness of our scheme, we use more movies for the
evaluation than for the training. The sets used for parameter op-
timization and evaluation contain 35 and 89 randomly selected
movies respectively. For visual comparison, a test movie from
[33] is used.
The proposed estimator uses the following setting:

Pixel Employment: Each lost 8 8-block is repaired by split-
ting it into four 4 4-blocks whose pixels are represented by a
vector , see Fig. 2. The vector is estimated using vectors of
available surrounding pixels and , cf. (7) and Fig. 2. We
choose to work with few mixture components since we strive
for low online complexity. A mixture with compo-
nents is investigated. Mixture component 1 focuses on spatial
correlation by employing and such that all possible
differences between closest spatial neighbors to the north and
to the west in are included in the exponent. In the same
way, mixture component 2 focuses on temporal correlation by
employing and such that all possible differences
between closest neighbors in the time direction in are in-
cluded in the exponent. A mixture with components that
focus on pixel differences in the south-west, west, north-west,
north, and time directions is also investigated. Likewise, a mix-
ture with components that focus on pixel differences in
the south-south-west, south-west, west-south-west, west, west-
north-west, north-west, north-north-west, north, and time direc-
tion is examined, as well.

Surrounding pixels may not be available, because the block to
be estimated is close to a border, or because several neighboring
blocks are lost. Separate estimators (7) are obtained and stored
for four cases, namely the case where all pixels in in Fig. 2
are present, the case where all pixels in over the lost block
in frame and over the motion-compensated position of the lost
block in frame are present, the case where all pixels in

to the left of the lost block in frame and to the left of the
motion-compensated position of the lost block in frame
are present, and the case where only the part of that is in
frame in Fig. 2 is present. In the last case, there is no
for classification, and, therefore, the estimator in (7) is reduced
to the linear LS estimator by setting .

Offline Parameter Estimation: The parameters and
are initialized by setting them equal to 1, and

the parameters are initialized by the linear MMSE esti-
mator that is obtained by setting in (7) and solving (11).

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on February 1, 2010 at 17:25 from IEEE Xplore.  Restrictions apply. 



1052 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 5, MAY 2009

Fig. 2. Illustration of variables to be used with the proposed estimator. Lost
blocks of size 8� 8 are divided into four 4� 4-blocks � and estimated sepa-
rately. The vector � is estimated using vectors of available surrounding pixels
� and � .

Fig. 3. Illustration of variables to be used with the GMM-based estimator as
in [23]. Lost blocks of size 8� 8 are divided into four 4� 4-blocks � that are
estimated separately. The vector � is estimated using a vector of surrounding
pixels �.

Fig. 4. Performance in PSNR, and computational complexity in terms of
the number of online floating point operations, is visualized for the proposed
method, GMM, i.e., the method in [23], and KLT-GMM. All pixels surrounding
the lost block are received, and the motion vectors are lost and estimated on
the receiver side. From left to right, the number of mixture components � is
2, 5, and 9 for the proposed method, 1, 2, 5, 20, 64 for GMM, and 1, 2, 3, 10,
20, 40, 60 for KLT-GMM.

For the update of and , we choose . In each up-
date, 1500 000 realizations of are used. In each
of 10 first iterations, ten updates are performed for and ,
respectively, as well as one update per . In ten final itera-
tions, only the are updated. Separate parameter estimates

are obtained for the case of motion vectors that are protected
in a high priority layer, and the case where lost motion vectors

Fig. 5. Comparisons of different error concealment schemes in the case when
the motion vectors are unavailable and replaced by the median of the motion
vectors of the available surrounding blocks.

Fig. 6. Comparisons of different error concealment schemes in the case when
the motion vectors are available.

are estimated by the median of the motion vectors of the avail-
able neighboring blocks.

B. Results

Two sets of experiments are conducted. First, we investigate
the performance in PSNR versus the computational complexity
of different mixture-based estimator solutions to the error con-
cealment problem. Thereafter, our solution is compared to gen-
eral state-of-the-art error concealment schemes.

Mixture-Based Estimator Comparison: The purpose of this
first experiment is to see that our estimator strategy yields higher
performance in PSNR for the same computational complexity,
as well as lower computational complexity for the same perfor-
mance in PSNR, compared to the GMM-based estimator [23].
Moreover, we suggest a new version of the method in [23],
namely a GMM where the Gaussian components have diagonal
covariance matrices, that is trained using Karhunen Loéve trans-
form (KLT)-rotated vectors.

The GMM uses the same information as in [23] for estimating
, namely as illustrated in Fig. 3. The KLT-GMM algorithm

uses the union of and seen in Fig. 2 for forming an esti-
mate, which is considerably more information than what is used
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Fig. 7. Visual comparison of restorations of a movie frame from [33] by means of the different error concealment methods in the case of a previous frame without
errors, and lost motion vectors that are estimated by the median of the motion vectors of the neighboring blocks. (a) Original whole frame; (b) whole frame with
error pattern; (c) motion-compensated copying of frame detail that is the woman’s right arm; (d) method in [18]; (e) method in [17]; (f) method in [23] with� � �;
(g) method in [17] with� � ��; (h) proposed method with� � �; (i) proposed method with� � � applied to whole frame.

in the GMM approach. All pixels surrounding the loss are re-
ceived, and the motion vectors are lost and estimated on the re-
ceiver side. For evaluation in this experiment, 500 000 randomly
drawn realization vectors from the evaluation
movies were used.

Fig. 4 shows performance in PSNR and computational com-
plexity in terms of the number of online floating point opera-
tions, for the proposed method, the method in [23], and KLT-
GMM. The proposed method clearly has the best tradeoff be-
tween performance in PSNR and computational complexity: For
example, the proposed method with mixture compo-
nents increases the performance in PSNR by 1.6 dB compared
to the method in [23] operating at the same complexity. Also,
the proposed method with increases performance by
0.3 dB compared to the method in [23], at 35 times lower com-
putational complexity. In the case when the motion vectors are
received, the PSNR values are higher, but the proposed method
still has the best tradeoff between performance in PSNR and
computational complexity.

Error Concealment Comparison: The proposed scheme is
compared to previously proposed methods that mix spatial and
temporal information given the motion vectors: the method in

[18], the method in [17], and GMM-based error concealment
[23], as well as to motion compensated copying [10]. In the ex-
periments, the packets are assigned as lost in an independent and
identically distributed random manner, and pixels surrounding
a lost 8 8-block are not guaranteed to be available. The errors
are distributed and propagate in a few tens of frames in each
movie. Simulations are run for packet loss probabilities ranging
from 0.05 to 0.3.

Fig. 5 presents the results for the case when the motion vec-
tors are unavailable and replaced by the median of the motion
vectors of the available surrounding blocks. In Fig. 6, we see
the results in the case when the motion vectors are available.
The proposed method gives best performance in PSNR in all
tested cases. A GMM-based method with gives a com-
parable result, but this comes at a cost of 11 times higher online
computational complexity than the proposed method.

Visual performance is compared in Fig. 7(a)–(i). Fig. 7(a)
shows the whole original frame and Fig. 7(b) shows the ap-
plied error pattern. Fig. 7(c)–(h) shows error concealment re-
sults for the woman’s right arm obtained by motion compen-
sated copying [10], the method in [18], the method in [17], the
method in [23] with and , and the proposed
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method with respectively. The whole frame restored by
the proposed method with is shown in Fig. 7(i).

IV. CONCLUSION

In this paper, a mixture model- and LS-based estimation
technique for solving the packet video error concealment
problem is presented. The proposed scheme improves per-
formance in PSNR compared to other state-of-the-art error
concealment schemes, for a wide range of stationary packet
loss probabilities. For the same computational complexity,
the proposed mixture-based method outperforms a previously
proposed GMM-based technique in terms of PSNR. Also,
for the same performance in PSNR, the proposed scheme has
considerably lower computational complexity than the GMM
approach. Other more sophisticated mixture-based estimators
and parameter estimation techniques may yield further im-
provements and constitute interesting extensions of this work.
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