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Mixture Modeling for

Marked Poisson Processes

Matthew A. Taddy∗ and Athanasios Kottas†

Abstract. We propose a general inference framework for marked Poisson processes
observed over time or space. Our modeling approach exploits the connection of
nonhomogeneous Poisson process intensity with a density function. Nonparamet-
ric Dirichlet process mixtures for this density, combined with nonparametric or
semiparametric modeling for the mark distribution, yield flexible prior models for
the marked Poisson process. In particular, we focus on fully nonparametric model
formulations that build the mark density and intensity function from a joint non-
parametric mixture, and provide guidelines for straightforward application of these
techniques. A key feature of such models is that they can yield flexible inference
about the conditional distribution for multivariate marks without requiring speci-
fication of a complicated dependence scheme. We address issues relating to choice
of the Dirichlet process mixture kernels, and develop methods for prior specifica-
tion and posterior simulation for full inference about functionals of the marked
Poisson process. Moreover, we discuss a method for model checking that can be
used to assess and compare goodness of fit of different model specifications under
the proposed framework. The methodology is illustrated with simulated and real
data sets.

Keywords: Bayesian nonparametrics, Beta mixtures, Dirichlet process, Marked
point process, Multivariate normal mixtures, Non-homogeneous Poisson process,
Nonparametric regression

1 Introduction

Marked point process data, occurring on either spatial or temporal domains, is en-
countered in research for biology, ecology, economics, sociology, and numerous other
disciplines. Whenever interest lies in the intensity of event occurrences as well as the
spatial or temporal distribution of events, the data analysis problem will involve infer-
ence for a non-homogeneous point process. Moreover, many applications involve marks

– a set of random variables associated with each point event – such that the data gener-
ating mechanism is characterized as a marked point process. In marketing, for example,
interest may lie in both the location and intensity of purchasing behavior as well as con-
sumer choices, and the data may be modeled as a spatial point process with purchase
events and product choice marks. As another example, in forestry interest often lies
in estimating the wood-volume characteristics of a plot of land by understanding the
distribution and type of tree in a smaller subplot. Hence, the forest can be modeled as
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a spatial point process with tree events marked by trunk size and tree species.

Non-homogeneous Poisson processes (NHPPs) play a fundamental role in inference
for data consisting of point event patterns (e.g., Guttorp 1995; Møller and Waagepetersen
2004), and marked NHPPs provide the natural model extension when the point events
are accompanied by random marks. One reason for the common usage of Poisson pro-
cesses is their general tractability and the simplicity of the associated data likelihood.
In particular, for an NHPP, PoP(R, λ), defined on the observation window R with in-
tensity λ(x) for x ∈ R, which is a non-negative and locally integrable function for all
bounded B ⊆ R, the following hold true:

i. For any such B, the number of points in B, N(B) ∼ Po(Λ(B)), where Λ(B) =
∫

B
λ(x)dx is the NHPP cumulative intensity function.

ii. Given N(B), the point locations within B are i.i.d. with density λ(x)/
∫

B
λ(x)dx.

Here, Po(µ) denotes the Poisson distribution with mean µ. Although R can be of
arbitrary dimension, we concentrate on the common settings of temporal NHPPs with
R ⊂ R

+, or spatial NHPPs where R ⊂ R
2.

This paper develops Bayesian nonparametric mixtures to model the intensity func-
tion of NHPPs, and will provide a framework for combining this approach with flexible
(nonparametric or semiparametric) modeling for the associated mark distribution. Since
we propose fully nonparametric mixture modeling for the point process intensity, but
within the context of Poisson distributions induced by the NHPP assumption, the na-
ture of our modeling approach is semiparametric. We are able to take advantage of
the above formulation of the NHPP and specify the sampling density f(x) = λ(x)/ΛR

through a Dirichlet process (DP) mixture model, where ΛR ≡ Λ(R) =
∫

R
λ(x)dx is the

total integrated intensity. Crucially, items i and ii above imply that the likelihood for
an NHPP generated point pattern {x1, . . . ,xN} ⊂ R factorizes as

p
(

{xi}
N
i=1; λ(·)

)

≡ p
(

{xi}
N
i=1; ΛR, f(·)

)

∝ ΛN
R exp(−ΛR)

N
∏

i=1

f(xi), (1)

such that the NHPP density, f(·), and integrated intensity, ΛR, can be modeled sepa-
rately. In particular, the DP mixture modeling framework for f(·) allows for inference
about non-standard intensity shapes and quantification of the associated uncertainty.

This approach was originally developed by Kottas and Sansó (2007) in the context
of spatial NHPPs with emphasis on extreme value analysis problems, and has also been
applied to analysis of immunological studies (Ji et al. 2009) and neuronal data analysis
(Kottas and Behseta 2010). Here, we generalize the mixture model to alternative kernel
choices that provide for conditionally conjugate models and, in the context of temporal
NHPPs, for monotonicity restrictions on the intensity function. However, in addition
to providing a more general approach for intensity estimation, the main feature of
this paper is an extension of the intensity mixture framework to modeling marked
Poisson processes. Indeed, the advantage of a Bayesian nonparametric model-based
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approach will be most clear when it is combined with modeling for the conditional
mark distribution, thus providing unified inference for point pattern data.

Theoretical background on Poisson processes can be found, for instance, in Cressie
(1993), Kingman (1993), and Daley and Vere-Jones (2003). Diggle (2003) reviews
likelihood and classical nonparametric inference for spatial NHPPs, and Møller and
Waagepetersen (2004) discusses work on simulation-based inference for spatial point
processes.

A standard approach to (approximate) Bayesian inference for NHPPs is based upon
log-Gaussian Cox process models, wherein the random intensity function is modeled
on logarithmic scale as a Gaussian process (e.g., Møller et al. 1998; Brix and Diggle
2001; Brix and Møller 2001). In particular, Liang et al. (2009) present a Bayesian hier-
archical model for marked Poisson processes through an extension of the log-Gaussian
Cox process to accommodate different types of covariate information. Early Bayesian
nonparametric modeling focused on the cumulative intensity function,

∫ t

0
λ(s)ds, for

temporal point processes, including models based on gamma, beta or general Lévy
process priors (e.g., Hjort 1990; Lo 1992; Kuo and Ghosh 1997; Gutiérrez-Peña and
Nieto-Barajas 2003). An alternative approach is found in Heikkinen and Arjas (1998,
1999), where piecewise constant functions, driven by Voronoi tessellations and Markov
random field priors, are used to model spatial NHPP intensities.

The framework considered herein is more closely related to approaches that involve
a mixture model for λ(·). In particular, Lo and Weng (1989) and Ishwaran and James
(2004) utilize a mixture representation for the intensity function based upon a con-
volution of non-negative kernels with a weighted gamma process. Moreover, Wolpert
and Ickstadt (1998) include the gamma process as a special case of convolutions with
a general Lévy random field, while Ickstadt and Wolpert (1999) and Best et al. (2000)
describe extensions of the gamma process convolution model to regression settings. Ick-
stadt and Wolpert (1999) also provide a connection to modeling for marked processes
through an additive intensity formulation. Since these mixture models have the inte-
grated intensity term linked to their nonparametric prior for λ(·), they can be cast as a
generalization of our model of independent ΛR.

A distinguishing feature of the proposed approach is that it builds the modeling from
the NHPP density. By casting the nonparametric modeling component as a density es-
timation problem, we can develop flexible classes of nonparametric mixture models that
allow relatively easy prior specification and posterior simulation, and enable modeling
for multivariate mark distributions comprising both categorical and continuous marks.
Most importantly, in the context of marked NHPPs, the methodology proposed herein
provides a unified inference framework for the joint location-mark process, the marginal
point process, and the conditional mark distribution. In this way, our framework offers
a nice simplification of some of the more general models discussed in the literature,
providing an easily interpretable platform for applied inference about marked Poisson
processes. The combination of model flexibility and relative simplicity of our approach
stands in contrast to various extensions of Gaussian process frameworks: continuous
marks lead to additional correlation function modeling or a separate mark distribu-
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tion model; it is not trivial to incorporate categorical marks; and a spatially changing
intensity surface requires complicated non-stationary spatial correlation.

The plan for the paper is as follows. Section 2 presents our general framework of
model specification for the intensity function of unmarked temporal or spatial NHPPs.
Section 3 extends the modeling framework to general marked Poisson processes in both
a semiparametric and fully nonparametric manner. Section 4 contains the necessary
details for application of the models developed in Sections 2 and 3, including posterior
simulation and inference, prior specification, and model checking (with some of the
technical details given in an Appendix). We note that Section 4.2 discusses general
methodology related to conditional inference under a DP mixture model framework, and
is thus relevant beyond the application to NHPP modeling. Finally, Section 5 illustrates
the methods in three data examples, and Section 6 concludes with discussion.

2 Mixture specification for process intensity

This section outlines the various models for unmarked NHPPs which underlie our general
framework. As described in the introduction, the ability to factor the likelihood as in
(1) allows for modeling of f(x) = λ(x)/ΛR, the process density, independent of ΛR, the
integrated process intensity. The Poisson assumption implies that N is sufficient for ΛR

in the posterior distribution and, in Section 4, we describe standard inference under both
conjugate and reference priors for ΛR. Because the process density has domain restricted
to the observation window R, we seek flexible models for densities with bounded support
that can provide inference for the NHPP intensity and its functionals without relying
on specific parametric forms or asymptotic arguments.

We propose a general family of models for NHPP densities f(x) built through DP
mixtures f(x; G) of arbitrary kernels, kx(x; θ), with support on R. Specifically,

f(x; G) =

∫

kx(x; θ)dG(θ), with kx(x; θ) = 0 for x /∈ R, and G ∼ DP(α, G0),

(2)
where θ is the (typically multi-dimensional) kernel parametrization. The kernel support
restriction guarantees that

∫

R
f(x; G)dx = 1 and hence ΛR =

∫

R
λ(x)dx. The random

mixing distribution G is assigned a DP prior (Ferguson 1973; Antoniak 1974) with pre-
cision parameter α and base (centering) distribution G0(·) ≡ G0(·; ψ) which depends on
hyperparameters ψ. For later reference, recall the DP constructive definition (Sethura-
man 1994) according to which the DP generates (almost surely) discrete distributions
with a countable number of atoms drawn i.i.d. from G0. The corresponding weights
are generated using a stick-breaking mechanism based on i.i.d. Beta(1, α) (a beta dis-
tribution with mean (1 + α)−1) draws, {ζs : s = 1, 2, ...} (drawn independently of the
atoms); specifically, the first weight is equal to ζ1 and, for l ≥ 2, the l-th weight is given

by ζl

∏l−1
s=1(1− ζs). The choice of a DP prior allows us to draw from the existing theory,

and to utilize well-established techniques for simulation-based model fitting.

The remainder of this section describes options for specification of the kernel and
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base distribution for the model in (2): for temporal processes in Section 2.1 and for
spatial processes in Section 2.2. In full generality, NHPPs may be defined over an un-
bounded space, so long as the intensity is locally integrable, but in most applications
the observation window is bounded and this will be a characteristic of our modeling
framework. Indeed, the specification of DP mixture models for densities with bounded
support is a useful aspect of this work in its own right. Hence, temporal point pro-
cesses can be rescaled to the unit interval, and we will thus assume that R = (0, 1).
Furthermore, we assume that spatial processes are observed over rectangular support,
such that the observation window can also be rescaled, in particular, R = (0, 1)× (0, 1)
in Section 2.2 and elsewhere for spatial data.

2.1 Temporal Poisson processes

Denote by {t1, . . . , tN} the temporal point pattern observed in interval R = (0, 1), after
the rescaling described above. Following our factorization of the intensity as λ(t) =
ΛRf(t) and conditional on N , the observations are assumed to arise i.i.d. from f(t; G) =
∫

kt(t; θ)dG(θ) and G is assigned a DP prior as in (2). We next consider specification
for kt(t; θ).

Noting that mixtures of beta densities can approximate arbitrarily well any continu-
ous density defined on a bounded interval (e.g., Diaconis and Ylvisaker 1985, Theorem
1), the beta emerges as a natural choice for the NHPP density kernel. Therefore, the
DP mixture of beta densities model for the NHPP intensity is given by

λ(t;G) = ΛR

∫

b(t; µ, τ)dG(µ, τ), t ∈ (0, 1); G ∼ DP(α, G0). (3)

Here, b(·; µ, τ) denotes the density of the beta distribution parametrized in terms of its
mean µ ∈ (0, 1) and a scale parameter τ > 0, i.e., b(t; µ, τ) ∝ tµτ−1(1 − t)τ(1−µ)−1,
t ∈ (0, 1). Regarding the DP centering distribution G0 ≡ G0(µ, τ), we work with
independent components, specifically, a uniform distribution on (0, 1) for µ, and an
inverse gamma distribution for τ with fixed shape parameter c and mean β/(c − 1)
(provided c > 1). Hence, the density of G0 is g0(µ, τ) ∝ τ−(c+1) exp(−βτ−1)1µ∈(0,1),
where the indicator function is one for 0 < µ < 1 and zero elsewhere. To complete the
model, β can be assigned an exponential hyperprior.

The beta kernel is appealing due to its flexibility and the fact that it is directly
bounded to the unit interval. However, there are no commonly used conjugate priors
for its parameters; there are conjugate priors for parameters of the exponential family
representation of the beta density, such as the beta-conjugate distribution in Grunwald
et al. (1993), but none of these are easy to work with or intuitive to specify. There are
substantial benefits (refer to Section 4) to be gained from the Rao-Blackwellization of
posterior inference for mixture models (see, e.g., MacEachern et al. 1999, for empirical
demonstration of the improvement in estimators) that is only possible with conditional
conjugacy – that is, in this context, when the base distribution is conjugate for the
kernel parametrization. Moreover, the nonparametric mixture allows inference to be
robust to a variety of reasonable kernels, such that the convenience of conjugacy will
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not usually detract from the quality of analysis.

We are thus motivated to provide a conditionally conjugate alternative to the beta
model, and do so by first applying a logit transformation, logit(t) = log (t/(1 − t)),
t ∈ (0, 1), and then using a Gaussian density kernel. In detail, the logit-normal DP
mixture model is then,

λ(t; G) = ΛR

∫

N
(

logit(t);µ, σ2
) 1

t(1 − t)
dG(µ, σ2), t ∈ (0, 1); G ∼ DP(α,G0).

(4)
The base distribution is taken to be of the standard conjugate form (as in, e.g., Esco-
bar and West 1995), such that g0(µ, σ2) = N(µ; δ, σ2/κ)ga(σ−2; ν, ω), where ga(·; ν, ω)
denotes the gamma density with E[σ−2] = ν/ω. A gamma prior is placed on ω whereas
κ, ν and δ are fixed (however, a normal prior for δ can be readily added).

The price paid for conditional conjugacy is that the logit-normal model is susceptible
to boundary effects: the density specification in (4) must be zero in the limit as t
approaches the boundaries of the observation window (such that logit(t) → ±∞). In
contrast, the beta model is not restricted to any single type of boundary behavior,
and will thus be more appropriate whenever there is a need to model processes which
maintain high intensity at the edge of the observation window. Section 5 offers empirical
comparison of the two models.

The beta and logit-normal mixtures form the basis for our approach to modeling
marked Poisson processes, and Section 2.2 will extend these models to spatial NHPPs.
Both schemes are developed to be as flexible as possible, in accordance with our semi-
parametric strategy of having point event data restricted by the Poisson assumption
but modeled with an unrestricted NHPP density. However, in some situations it may
be of interest to constrain the model further by making structural assumptions about
the NHPP density, including monotonicity assumptions for the intensity function as
in, for example, software reliability applications (e.g., Kuo and Yang 1996). To model
monotonic intensities for temporal NHPPs, we can employ the representation of non-
increasing densities on R

+ as scale mixtures of uniform densities. In particular, for any
non-increasing density h(·) on R

+ there exists a distribution function G, with support
on R

+, such that h(t) ≡ h(t; G) =
∫

θ−1
1t∈(0,θ)dG(θ) (see, e.g., Brunner and Lo 1989;

Kottas and Gelfand 2001). In the context of NHPPs, a DP mixture formulation could
be written λ(t;G) = ΛR

∫

θ−1
1t∈(0,θ)dG(θ), t ∈ (0, 1), with G ∼ DP(α,G0), where G0

has support on (0, 1), e.g., it can be defined by a beta distribution. Then, λ(t; G) defines
a prior model for non-increasing intensities. Similarly, a prior model for non-decreasing
NHPP intensities can be built from f(t; G) =

∫

θ−1
1(t−1)∈(−θ,0)dG(θ), t ∈ (0, 1), with

G ∼ DP(α, G0), where again G0 has support on (0, 1).

2.2 Spatial Poisson processes

We now present modeling for spatial NHPPs as an extension of the framework in Section
2.1. As mentioned previously, we assume that the bounded event data has been rescaled
such that point locations {x1, . . . ,xN} all lie within the unit square, R = (0, 1)× (0, 1).
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The extra implicit assumption of a rectangular observation window is standard in the
literature on spatial Poisson process modeling (see, e.g., Diggle 2003).

The most simple extension of our models for temporal NHPPs is to build a bivariate
kernel out of two independent densities. For example, a two-dimensional version of
the beta mixture in (3) could be written f(x; G) =

∫

b(x1; µ1, τ1)b(x2; µ2, τ2)dG(µ, τ ),
where µ = (µ1, µ2) and τ = (τ1, τ2). However, although dependence between x1 and
x2 will be induced by mixing, it will typically be more efficient to allow for explicit
dependence in the kernel. A possible two-dimensional extension of (3) is that of Kottas
and Sansó (2007), which employs a Sarmanov dependence factor to induce a bounded
bivariate density with beta marginals. The corresponding model for the spatial NHPP
intensity is given by

λ(x; G) = ΛR

∫

b(x1; µ1, τ1)b(x2; µ2, τ2) (1 + ρ(x1 − µ1)(x2 − µ2)) dG(µ, τ , ρ), (5)

where G ∼ DP(α, G0) and G0 is built from independent centering distributions as in
(3) for each dimension, multiplied by a conditional uniform distribution for ρ over the
region such that 1 + ρ(x1 − µ1)(x2 − µ2) > 0, for all x ∈ R. Thus, g0(µ, τ , ρ) =

1ρ∈(Cµ,Cµ)(C
µ − Cµ)−1

∏2
i=1 ga(τ−1

i ; νi, βi)1µi∈(0,1), where

Cµ = − (max{µ1µ2, (1 − µ1)(1 − µ2)})
−1

and Cµ = − (min{µ1(µ2 − 1), µ2(µ1 − 1)})
−1

.
Gamma hyperpriors are placed on β1 and β2.

Model (5) has appealing flexibility, including resistance to edge effects, but a lack of
conditional conjugacy requires the use of an augmented Metropolis-Hastings algorithm
for posterior simulation (discussed in Appendix A.2). The inefficiency of this approach
is only confounded in higher dimensions, and becomes especially problematic when we
extend the models to incorporate process marks. Hence, we are again motivated to
seek a conditionally conjugate alternative for spatial NHPPs, and this is achieved in a
straightforward manner by applying individual logit transformations to each coordinate
dimension and mixing over bivariate Gaussian density kernels. Specifically, the spatial
NHPP logit-normal model is

λ(x;G) = ΛR

∫

N(logit(x);µ,Σ)
1

∏2
i=1 xi(1 − xi)

dG(µ,Σ), G ∼ DP(α, G0), (6)

where logit(x) is shorthand for [logit(x1), logit(x2)]
′
. The base distribution is again

of the standard conjugate form, such that g0(µ,Σ) = N(µ; δ,Σ/κ)W(Σ−1; ν,Ω), with
fixed κ, ν, δ and a Wishart hyperprior for Ω. Here, W(·; ν,Ω) denotes a Wishart density
such that E[Σ−1] = νΩ−1 and E[Σ] = (ν − 3

2 )−1Ω.

3 Frameworks for modeling marked Poisson processes

The models for unmarked NHPPs, as introduced in Section 2, are just density estima-
tors for distributions with bounded support. As mentioned in the Introduction, the
nonparametric approach is most powerful when embedded in a more complex model for
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marked point processes. Section 3.1 describes how the methodology of Section 2 can be
coupled with general regression modeling for marks, whereas in Section 3.2, we develop
a fully nonparametric Bayesian modeling framework for marked Poisson processes.

3.1 Semiparametric modeling for the mark distribution

In the standard marked point process setting, one is interested in inference for the
process intensity over time or space and the associated conditional distribution for the
marks.

Regarding the data structure, for each temporal or spatial point xi, i = 1, ..., N ,
in the observation window R there is an associated mark yi taking values in the mark
space M, which may be multivariate and may comprise both categorical and continuous
variables. Let h(y | x) denote the conditional mark density at point x. (Note that we use
y and yi as simplified notation for y(x) and y(xi).) Under the semiparametric approach,
we build the joint model for the marks and the point process intensity through

φ(x,y) = λ(x)h(y | x) = ΛRf(x)h(y | x), x ∈ R, y ∈ M. (7)

Note that the conditioning in h(y | x) does not involve any portion of the point process
other than point x; for instance, in temporal processes, the conditional mark density at
time t does not depend on earlier times t′ < t. Under this setting, the Marking theorem

(e.g., proposition 3.9 in Møller and Waagepetersen 2004; Kingman 1993, p. 55) yields
that marked point process {(x,y) : x ∈ R,y ∈ M} is an NHPP with intensity function
given by (7) for (x,y) ∈ R×M, with extension to B ×M for any bounded B ⊃ R.

This intensity factorization, combined with the general NHPP likelihood factoriza-
tion in (1), results in convenient semiparametric modeling formulations for the marked
process through a DP mixture model for f(·) (as in Section 2) and a separate paramet-
ric or semiparametric regression specification for the conditional mark distribution. In
particular, assuming that the marks {yi}

N
i=1 are mutually independent given {xi}

N
i=1,

and combining (1) and (7), we obtain

p
(

{xi,yi}
N
i=1; ΛR, f(·), h(·)

)

∝ ΛN
R exp(−ΛR)

N
∏

i=1

f(xi)

N
∏

i=1

h(yi | xi), (8)

such that the conditional mark density can be modeled independent of process intensity.

The consequence of this factorization of integrated intensity, process density, and
the conditional mark density, is that any regression model for h can be added onto the
modeling schemes of Section 2 and provide an extension to marked processes. In some
applications, it will be desirable to use flexible semiparametric specifications for h, such
as a Gaussian process regression model, while in other settings it will be useful to fit h
parametrically, such as through the use of a generalized linear model. As an illustration,
Section 5.1 explores a Gaussian process-based specification, however, the important
point is that this aspect of the modeling does not require any further development
of the underlying nonparametric model for the NHPP intensity. Moreover, despite
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the posterior independence of f and h, combining them as in (7) leads to a practical
semiparametric inference framework for the joint mark-location Poisson process. The
fully nonparametric approach developed in the following section provides an alternative
for settings where further modeling flexibility is needed.

3.2 Fully nonparametric joint and implied conditional mark modeling

While the semiparametric approach of Section 3.1 provides a convenient extension of the
NHPP models in Section 2, the connection between joint and marked processes provides
the opportunity to build fully nonparametric models for marked point event data. Here,
we introduce a general modeling approach, built through fully nonparametric models for
joint mark-location Poisson processes, and describe how this provides a unified inference
framework for the joint process, the conditional mark distribution, and the marginal
point process.

Instead of specifying directly a model for the marked process, we begin by writing
the joint Poisson process, PoP(R × M, φ), defined over the joint location-mark ob-
servation window with intensity φ(x,y). The inverse of the marking theorem used to
obtain equation (7) holds that, if the marginal intensity

∫

M
φ(x,y)dy = λ(x) is locally

integrable, then the joint process just defined is also the marked Poisson process of
interest.

Analogously to the model development in Section 2, we define a process over the
joint location-mark space with intensity function

φ(x,y; G) = ΛR

∫

kx(x; θx)ky(y; θy)dG(θx, θy) = ΛRf(x,y; G), G ∼ DP(α, G0), (9)

where the mark kernel ky(y; θy) has support on M and the integrated intensity can be
defined in terms of either the joint or marginal process, such that ΛR =

∫

R
λ(x)dx =

∫

R

[∫

M
φ(x,y)dy

]

dx. Note that the marginal intensity, and hence the marked point
process, are properly defined with locally integrable intensity functions. Specifically, we
can move integration over M inside the infinite sum and

∫

M

φ(x,y)dy = ΛR

∫

θx

kx(x; θx)

∫

θy

[∫

M

ky(y; θy)dy

]

dG(θx, θy) (10)

= ΛR

∫

kx(x; θx)dGx(θx) = ΛRf(x;G) = λ(x).

Here, Gx(θx) is the marginal mixing distribution, which has an implied DP prior with
base density gx

0 (θx) =
∫

g0(θ
x, θy)dθy, and we have thus recovered the original DP

mixture model of Section 2 for the marginal location NHPP PoP(R, λ). As an aside
we note that, through a similar argument and since φ(x,y) = λ(x)h(y | x), the joint
location-mark process of (9) satisfies the requirements of proposition 3.9 in Møller and
Waagepetersen (2004), and hence the marks alone are marginally distributed as a Pois-
son process defined on M with intensity

∫

R
φ(x,y)dx = ΛR

∫

ky(y; θy)dGy(θy).
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In general, both the mixture kernel and base distributions will be built from inde-
pendent components corresponding to marks and to locations, and the random mixing
measure is relied upon to induce dependence between these random variables. This
technique has been employed in regression settings by Taddy and Kottas (2010), and
provides a fairly automatic procedure for nonparametric model building in mixed data-
type settings. For example, suppose that a spatial point process is accompanied by
categorical marks, such that marks {y1, . . . , yN} are each a member of the set M =
{1, 2, . . . ,M}. The joint intensity model can be specified as

φ(x, y;G) = ΛR

∫

kx(x; θx)qydG(θx,q), G ∼ DP(α,Gx

0 (θx)Dir(q;a)), (11)

where q = [q1, . . . , qM] is a probability vector with qy = Pr(Y = y | q), Dir(q;a) is the

Dirichlet distribution, with a = (a1, ..., aM ), such that E(qy | a) = ay/
∑M

s=1 as, and
the location-specific kernel, kx, and centering distribution, Gx

0 , are specified as in either
(5) or (6) and thereafter. Additional marks can be incorporated in the same manner by
including additional independent kernel and base distribution components.

Similarly, continuous marks can be modeled through an appropriate choice for the
independent mark kernel. For example, in the case of real-valued continuous marks (i.e.,
M = R) for a temporal point process, the choice of a normal density kernel leads to the
intensity model

φ(t, y;G) = ΛR

∫

kt(t; θt)N(y; η, σ2)dG(θt, η, σ2), G ∼ DP
(

α,Gt
0(θ

t)Gy
0(η, σ2)

)

. (12)

The location specific kernel, kt, and base measure, Gt
0, can be taken from Section 2.1;

Gy
0 can be specified through the conjugate normal inverse-gamma form as in (4). Other

possible mark kernels are negative-binomial or Poisson for count data (as in Section
5.2), a Weibull for failure time data, or a log-normal for positive continuous marks (as
in Section 5.3).

As an alternative to this generic independent kernel approach, the special case of
a combination of real-valued continuous marks with the logit-normal kernel models in
either (4) or (6) allows for joint multivariate-normal kernels. Thus, instead of the model
in (12), a temporal point process with continuous marks is specified via bivariate normal
kernels as

φ(t, y; G) = ΛR

∫

N ([logit(t), y]′; µ,Σ)
1

t(1 − t)
dG(µ,Σ), G ∼ DP(α, G0), (13)

with base distribution of the standard conjugate form, exactly as described following
(6). Specification is easily adapted to spatial processes or multivariate continuous marks
through the use of higher dimensional normal kernels (see Section 5.3 for an illustration).

A key feature of the joint mixture modeling framework for the location-mark process
is that it can provide flexible specifications for multivariate mark distributions com-
prising both categorical and continuous marks. For any of the joint intensity models
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specified in this section, inference for the conditional mark density is available through

h(y | x; G) =
f(x,y; G)

f(x;G)
=

∫

kx(x; θx)ky(y; θy)dG(θx, θy)
∫

kx(x; θx)dGx(θx)
. (14)

Of course, other conditioning arguments are also possible if, for example, some subset of
the marks is viewed as covariates for a specific mark of interest. In any case, the integrals
in (14) are actually infinite sums induced by discrete realizations from the posterior
distribution for G. In Section 4.2, we show that truncation approximations to the
infinite sums allow for proper conditional inference and, hence, for fully nonparametric
inference about any functional of the conditional mark distribution.

4 Implementation

This section provides guidelines for application of the models proposed in Sections 2
and 3, with prior specification and posterior simulation briefly discussed in Section 4.1
(further details can be found in the Appendix), inference for marked NHPP functionals
in Section 4.2, and model checking in Section 4.3.

4.1 Prior specification and posterior simulation

As with our approach to model building, we can specify the prior for integrated intensity
independent of the prior for parameters of the DP mixture density model. The marginal
likelihood for ΛR corresponds to a Poisson density for N , such that the conjugate
prior for ΛR is a gamma distribution. As a default alternative, we make use of the
(improper) reference prior for ΛR, which can be derived as π(ΛR) ∝ Λ−1

R for ΛR > 0.
The posterior distribution for the integrated intensity is then available analytically as a
gamma distribution, since the posterior distribution for the NHPP intensity factorizes as
p(f(·),ΛR | data) = p(f(·) | data)p(ΛR | N). In particular, p(ΛR | N) = ga(N, 1) under
our default reference prior. Similarly, under the semiparametric approach of Section 3.1,
prior specification and posterior inference for any model applied to the conditional mark
distribution can be dealt with separately from the intensity function model, and will
generally draw on existing techniques for the regression model of interest.

What remains is to establish general prior specification and MCMC simulation al-
gorithms for the DP mixture process density models of Sections 2 and 3.2. In a major
benefit of our approach – one which should facilitate application of these models – we
are able here to make use of standard results and methodology from the large literature
on DP mixture models. Our practical implementation guidelines are detailed in the
Appendix, with prior specification in A.1 and a posterior simulation framework in A.2.

4.2 Inference about NHPP functionals

Here, we describe the methods for posterior inference about joint or marginal intensity
functions and for conditional density functions. We outline inference for a general
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NHPP with events {zi}
N
i=1, possibly consisting of both point location and marks, and

leave specifics to the examples of Section 5.

Due to the almost sure discreteness of the DP, a generic representation for the various
mixture models for NHPP densities is given by f(z; G) =

∑∞
l=1 plk(z; ϑl), where the ϑl,

given the base distribution hyperparameters ψ, are i.i.d. from G0, and the weights pl are
generated according to the stick-breaking process discussed in Section 2. Here, z may
include only point locations (as in the models of Section 2) or both point locations and
marks whence k(z; ϑ) = kx(x; ϑx)ky(y;ϑy) (as in Section 3.2). Hence, the DP induces
a clustering of observations: for data = {z1, . . . , zN}, if we introduce latent mixing

parameters θ = {θ1, . . . , θN} such that zi | θi
ind
∼ k(zi; θi), with θi | G

iid
∼ G, for i =

1, . . . , N , and G | α, ψ ∼ DP(α, G0(·;ψ)), then observations can be grouped according
to the number, m ≤ N , of distinct mixing parameters in θ. This group of distinct
parameter sets, θ⋆ = {θ⋆

1 , . . . , θ⋆
m}, maps back to data through the latent allocation

vector, s = [s1, . . . , sN ], such that θi = θ⋆
si

. The expanded parametrization is completed
by the number of observations allocated to each unique component, n = [n1, . . . , nm],

where nj =
∑N

i=1 1si=j , and the associated groups of observations {zi : si = j}. If G
is marginalized over its DP prior, we obtain the Pólya urn expression for the DP prior
predictive distribution,

p(θ0 | θ⋆, α, ψ) = dE [G(θ0) | θ⋆, α, ψ] ∝ αg0(θ0; ψ) +

m
∑

j=1

njδθ⋆
j
(θ0) (15)

where δa denotes a point mass at a. Moreover, based on the DP Pólya urn structure,

the prior for θ⋆, given m and ψ, is such that θ⋆
j | ψ

iid
∼ G0(·;ψ), for j = 1, . . . , m.

Within the DP mixture framework, estimation of linear functionals of the mixture
is possible via posterior expectations conditional on only this finite dimensional repre-
sentation (i.e., it is not necessary to draw G). In particular, with the NHPP density
modeled as our generic DP mixture, the posterior expectation for the intensity func-
tion can be written as E [λ(z; G) | data] = E(ΛR | N)p(z | data), where p(z | data) =
E [f(z;G) | data] is the posterior predictive density given by

∫

1

α + N



α

∫

k(z; θ)dG0(θ;ψ) +

m
∑

j=1

njk(z; θ⋆
j )



p(θ⋆, s, α, ψ | data)dθ⋆dsdαdψ.

(16)
Hence, a point estimate for the intensity function is available through E [f(z; G) | data]
estimated as the average, for each point in a grid in z, over realizations of (16) calculated
for each MCMC posterior sample for θ⋆, s, α and ψ.

However, care must be taken when moving to posterior inference about the condi-
tional mark distribution in (14). As a general point on conditioning in DP mixture
models for joint distributions, Pólya urn-based posterior expectation calculations, such
as (16), are invalid for the estimation of non-linear functionals of λ or f . For example,
Müller et al. (1996) develop a DP mixture curve fitting approach that, in the context
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of our model, would estimate the conditional mark density by

ĥ(y|x) =

∫

∫

kx(x; θx)ky(y; θy)dE [G(θ) | θ, α, ψ]
∫

kx(x; θx)dE [G(θ) | θ, α, ψ]
p(θ, α, ψ | data)dθdαdψ, (17)

which is the ratio of Pólya urn joint and marginal density point estimates given θ and
DP prior parameters α, ψ, averaged over MCMC draws for these parameters. Unfortu-
nately, (17) is not E [h(y | x; G) | data], the posterior expectation for random conditional
density h(y | x; G) = f(x,y; G)/f(x; G), which would be the natural estimate for the
conditional mark density at any specified combination of values (x,y). Hence, the re-
gression estimate in Müller et al. (1996) as well as that proposed in the more recent
work of Rodriguez et al. (2009), based on p(x,y | data)/p(x | data), provide only
approximations to E [h(y | x; G) | data]; in particular, the latter estimate is approxi-
mating the expectation of a ratio with the ratio of expectations. Such approximations
are particularly difficult to justify in inference for non-linear functionals of h(y | x;G).

Hence, to obtain the exact point estimate E [h(y | x; G) | data], and, most impor-
tantly, to quantify full posterior uncertainty about general functionals of the NHPP
intensity, it is necessary to obtain posterior samples for the mixing distribution, G.
Note that p(G | data) =

∫

p(G | θ⋆, s, α, ψ)p(θ⋆, s, α, ψ | data)dθ⋆dsdαdψ, where
p(G | θ⋆, s, α, ψ) follows a DP distribution with precision parameter α + N and base
distribution given by (15) (see Appendix A.2). As discussed in Ishwaran and Zarepour
(2002), using results from Pitman (1996), a draw for G | θ⋆, s, α, ψ can be represented
as q0G

∗(·) +
∑m

j=1 qjδθ⋆
j
(·), where G∗ | α, ψ ∼ DP(α,G0(ψ)), and, independently of G∗,

(q0, q1, ..., qm) | α, s ∼ Dir(q0, q1, ..., qm; α, n1, ..., nm). Therefore, posterior realizations
for G can be efficiently generated, by drawing for each posterior sample {θ⋆, s, α, ψ},

dGL = q0

{

L
∑

l=1

plδϑl
(·)

}

+

m
∑

j=1

qjδθ⋆
j
(·),

that is, using a truncation approximation to G∗ based on the DP stick-breaking def-
inition. Specifically, the ϑl, l = 1, ..., L, are i.i.d. from G0(ψ), and the pl are con-
structed through i.i.d. Beta(1, α) draws, ζs, s = 1, ..., L − 1, such that p1 = ζ1, pl =

ζl

∏l−1
s=1(1 − ζs), for l = 2, ..., L − 1, and pL = 1 −

∑L−1
l=1 pl. The truncation level L

can be chosen using standard distributional properties for the weights in the DP rep-
resentation for G∗ =

∑∞
l=1 ωlδϑl

(·). For instance, E(
∑L

l=1 ωl | α) = 1 − {α/(α + 1)}L,

which can be averaged over the prior for α to estimate E(
∑L

l=1 ωl). Given any specified
tolerance level for the approximation, this expression yields the corresponding value L.
Note that even for dispersed priors for α, relatively small values for L (i.e., around 50)
will generally provide very accurate truncation approximations.

Now, the posterior distribution for any functional (linear or non-linear) of the NHPP
density, and thus of the intensity function, can be sampled by evaluating the functional
using the posterior realizations GL. For example, suppose that z = [t, y], such that
we have a temporal process with a single mark, where the mixture kernel factors as
k(z; θ) = kt(t; θt)ky(y; θy). Given a posterior realization for GL and a posterior draw
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for ΛR, a posterior realization for marginal process intensity at time t is available as

λ(t;GL) = ΛR

[

q0

∑L

l=1
plk

t(t; ϑt
l) +

∑m

j=1
qjk

t(t; θ⋆t
j )

]

where ϑl = (ϑt
l , ϑ

y
l ) and θ⋆

j = (θ⋆t
j , θ⋆y

j ), and a realization for the conditional density of
mark value y at time t arises through

h(y | t; GL) =
q0

∑L
l=1 plk

t(t;ϑt
l)k

y(y; ϑy
l ) +

∑m
j=1 qjk

t(t; θ⋆t
j )ky(y; θ⋆y

j )

q0

∑L
l=1 plkt(t; ϑt

l) +
∑m

j=1 qjkt(t; θ⋆t
j )

. (18)

Similarly, realized conditional expectation is available as

E[y | t; GL] = (f(t; GL))−1

{

q0

∑L

l=1
plk

t(t; ϑt
l)E(y|ϑy

l ) +
∑m

j=1
qjk

t(t; θ⋆t
j )E(y|θ⋆y

j )

}

(19)
a weighted average of kernel means with time-dependent weights. For multivariate
Gaussian kernels, as in (13), one would use conditional kernel means (available through
standard multivariate normal theory; see Section 5.2). The approach applies similarly
to multivariate marks and/or to marked spatial NHPP, and we can thus obtain flexible
inference for general functionals of marked NHPPs with full uncertainty quantification.

4.3 Model checking

A basic assumption implied by the Poisson process model is that the number of events
within any subregion of the observation window is Poisson distributed, with mean equal
to the integrated intensity over that subregion. Hence, a standard approach to assessing
model validity is to compare observed counts to integrated intensity within a set of
(possibly overlapping) subregions (e.g., Diggle 2003; Baddeley et al. 2005).

An alternative approach to model checking is to look at goodness-of-fit for simplifying
transformations of the observations. In particular, we propose transforming each margin
of the point event data (i.e., each spatial coordinate and each mark) into quantities that
are assumed, conditional on the intensity model, distributed as i.i.d. uniform random
variables. Posterior samples of these (assumed) i.i.d. uniform sets can be compared,
either graphically or formally, to the uniform distribution to provide a measure of model
validity.

Consider first temporal point processes, and assume that the point pattern {ti :
i = 1, ..., N}, with ordered time points 0 = t0 < t1 ≤ t2 ≤ ... ≤ tN < 1, is a real-
ization from an NHPP with intensity function λ(t) and cumulative intensity function

Λ(t) =
∫ t

0
λ(s)ds. Then, based on the time-rescaling theorem (e.g., Daley and Vere-

Jones 2003), the transformed point pattern {Λ(ti) : i = 1, ..., N} is a realization from
a homogeneous Poisson process with unit rate. Let Λ(t; GL) be the posterior draws for
the cumulative intensity, obtained following the approach of Section 4.2. Then, with
Λ(0;GL) = 0 by definition, the rescaled times Λ(ti;GL) − Λ(ti−1; GL), i = 1, ..., N , are
independent exponential random variables with mean one. Thus, the sampled ui =
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1 − exp{−(Λ(ti; GL) − Λ(ti−1;GL))}, i = 1, ..., N , are independent uniform random
variables on (0, 1).

This approach can be extended to spatial processes by applying the rescaling to each
margin of the observation window (e.g., Cressie 1993). If we have data corresponding
to an NHPP on R = (0, 1) × (0, 1) with intensity λ(x), then point event locations
along (say) the first margin of the window are the realization of a one-dimensional

NHPP with intensity λ1(x1) =
∫ 1

0
λ(x)dx2, and analogously for λ2(x2). Since the

kernels in (5) and (6) are easily marginalized, cumulative intensities Λ1(·) and Λ2(·) are
straightforward to calculate as sums of marginal kernel distribution functions, based on
the sampled GL as described in Section 4.2. For each dimension j, these are then applied
to ordered marginals {xj,1, . . . , xj,N} to obtain i.i.d. uniform random variables, uij = 1−
exp{−(Λj(xj,i; GL)−Λj(xj,i−1;GL))}, i = 1, ..., N , where by definition Λj(xj,0; GL) = 0
for j = 1, 2.

Finally, there are a variety of ways that the marks can be transformed into uni-
form random variables (for instance, the marginal process for continuous marks is also
Poisson, such that the time-rescaling theorem applies), but, arguably, the most infor-
mative approach is to look at the conditional mark distribution of (14). Full infer-
ence is available for the conditional cumulative distribution function H(y | x;GL) =
∫ y

−∞
h(s | x; GL)ds, through a summation similar to that in (18), at any desired points

(x, y). We thus obtain sets of ui that are assumed to be i.i.d. uniform by taking,
for each sampled GL, the distribution function evaluated at the data such that ui =
H(yi | xi; GL), for i = 1, . . . , N .

Goodness-of-fit is evaluated through comparison of the ui samples with the uni-
form distribution, using either graphical or distance-based techniques. For instance,
in the context of neuronal data analysis, Brown et al. (2001) used standard tests and
quantile-quantile (Q-Q) plots to measure agreement of the estimated ui with the uniform
distribution on (0, 1). In the examples of Section 5, we focus on Q-Q plots for graphical
model assessment, and find that these provide an intuitive picture of the marginal fit.
In particular, under our Bayesian modeling approach, inference about model validity
can be based on samples from the full posterior for each set of ui, with each realization
corresponding to a single draw for GL, through plots of posterior means and uncertainty
bounds for the Q-Q graphs.

The rescaling diagnostics involve a checking of the fit provided by the DP mixture
model as well as of the Poisson process model assumption, and thus characterize a gen-
eral nonparametric model assessment technique. Note that, in evaluating the model
for event-location intensity, it is not, in general, feasible under this approach to dis-
tinguish the role of the Poisson assumption from the form of the nonparametric model
for the NHPP density. The flexibility of the DP mixture modeling framework is use-
ful in this regard, since by allowing general intensity shapes to be uncovered by the
data, it enables focusing the goodness-of-fit evaluation on the NHPP assumption for
the point process. Furthermore, all of these goodness-of-fit assessments are focused on
model validity with respect to marginal processes (although, of course, these are implied
marginals from a multidimensional fit). It is possible to extend the rescaling approach
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to higher dimensions, by defining a distance metric in the higher dimensional space and
evaluating cumulative intensity functions with respect to this metric (e.g., Diggle 1990).
However, such procedures are considerably more difficult to implement and will need to
be designed specifically for the application of interest.

5 Examples

We include three data examples to illustrate the methodology. Specifically, Section
5.1 involves a simulated data set from a one-dimensional Poisson process with both
categorical and continuous marks. In Sections 5.2 and 5.3, we consider real data on coal
mining disaster events occurring in time with count marks, and on spatial tree locations
data with trunk-diameter marks, respectively.

5.1 Simulated events with continuous and binary marks

We first consider a simulated data set from a temporal Poisson process with observa-
tion window R = (0, 1) and intensity λ(t) = 250 (b(t; 1/11, 11) + b(t; 4/7, 7)), such that
ΛR = 500. The simulated point pattern comprises N = 481 point events, which are
accompanied by binary marks z and continuous marks y generated from a joint con-
ditional density h(y, z | t) = h(y | z, t)Pr(z | t). Here, Pr(z = 1 | t) = t2 and the
conditional distribution for y, given z and t, is built from y = −10(1 − t)4 + ε, with
ε ∼ N(0, 1) if z = 0, and ε ∼ ga(4, 1) if z = 1. Hence, the marginal regression function
for y given t is non-linear with non-constant error variance, and Pr(z = 1 | t) increases
from 0 to 1 over R.

We consider a fully nonparametric DP mixture model consisting of the beta kernel
in (3) for point locations combined with a normal kernel for y and a Bernoulli kernel
for z. Hence, the full model for the NHPP density is given by

f(t, y, z; G) =

∫

b(t; µ, τ)N(y; η, φ)qz(1 − q)1−zdG(µ, τ, η, φ, q), G ∼ DP(α,G0)

where g0(µ, τ, η, φ, q) = 1µ∈(0,1)ga(τ−1; 2, βτ )N(η; 0, 20φ)ga(φ−1; 2, βφ)b(q; 0.5, 1). We
use the reference prior for ΛR, and for the DP hyperpriors take α ∼ ga(2, 1), βτ ∼
ga(1, 1/20) and βφ ∼ ga(1, 1); note that βτ and βφ are the means for τ and φ, respec-
tively, under G0. The hyperpriors are specified following the guidelines of Appendix
A.1, and posterior simulation proceeds as outlined in Appendix A.2. Since the beta ker-
nel specification is non-conjugate, we jointly sample parameters and allocation variables
with Metropolis-Hasting draws for each (µi, τi) and si given s(−i) and (µ⋆, τ ⋆)(−i), as
in algorithm 5 of Neal (2000).

Results are shown in Figure 1. In the top row, we see that our methods are able to
capture the marginal point intensity and general conditional behavior for y and z; note
that the uncertainty bounds are based on a full assessment of posterior uncertainty that
is made possible through use of the truncated GL approximations to random mixing
measure G (as developed in Section 4.2). We also fit a Gaussian process (GP) regression
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Figure 1: Simulation study results. On top, from left to right, we have posterior mean
and 90% interval for the marginal intensity λ(t;G) (with the true intensity denoted by
the grey line), the data (dark grey for z = 1), and posterior 90% predictive intervals
based on both h(y | t;G) (solid lines) and GP regression (dotted lines), and posterior
mean and 90% intervals for Pr(z = 1 | t; G) (with the true function denoted by the grey
line). The middle row has mean and 90% intervals for conditional densities for y at
t = 1/2, marginalized over z (left panel) and conditional on z (middle and right panels),
with true densities plotted in grey. Lastly, the bottom row shows posterior samples
for βτ and βφ (dark grey, with priors in the background) and for the number of latent
mixture components.
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model to the (t, y) data pairs (using the tgp package for R under default parametrization)
and, in contrast to our approach based on draws from h(y | t; GL) as in (18), the top
middle panel shows the GP model’s global variance as unable to adapt to a wider skewed
error distribution for larger t values.

The middle row of Figure 1 illustrates behavior for a slice of the conditional mark
density for y, at t = 1/2, both marginally and given z = 0 or 1. The marginal (left-
most) plot shows that our model is able to reproduce the skewed response distribution,
while the other two plots capture conditional response behavior given each value for
z. As one would expect, posterior uncertainty around the conditional mark density
estimates is highest at the transition from normal to gamma errors. Finally, posterior
inference for model characteristics is illustrated in the bottom row of Figure 1. Peaked
posteriors for βτ and βφ show that it is possible to learn about hyperparameters of the
DP base distribution for both t and y kernel parameters, despite the flexibility of a DP
mixture. Moreover, based on the posterior distribution for m, we note that the near to
500 observations have been shrunk to (on average) 12 distinct mixture components.

5.2 Temporal Poisson process with count marks

Our second example involves a standard data set from the literature, the “coal-mining
disasters” data (e.g., Andrews and Herzberg 1985, p. 53-56). The point pattern is
defined by the times (in days) of 191 explosions of fire-damp or coal-dust in mines
leading to accidents, involving 10 or more men killed, over a total time period of 40,550
days, from 15 March 1851 to 22 March 1962. The data marks y are the number of
deaths associated with each accident.

This example will compare two different mixture models for marginal location inten-
sity: a “direct” model with beta-Poisson kernels, and a “transformed” model with data
mapped to R

2 and fit via multivariate normal kernels. The first scheme models data
directly on its original scale, but requires Metropolis-Hastings augmented MCMC for
the beta kernel parameters, and dependence between t and y is induced only through G.
The second model affords the convenience of the collapsed Gibbs sampler and correlated
kernels, but on a transformed scale.

Following our general modeling approach, both models use the reference prior for
ΛR and assume NHPP density form f(t, y; G) =

∫

k(t, y; θ)dG(θ) with G ∼ DP(α,G0)
and π(α) = ga(2, 1). The distinction between the two models is thus limited to choice
of kernel and base distribution. For the direct model,

k(t, y;µ, τ, φ) = b(t; µ, τ)Po≥10(y; φ), (20)

g0(µ, τ, φ) = 1µ∈(0,1)ga(τ−1; 2, βτ )ga(φ; 1, 1/60),

where Po≥10(y; φ) is a Poisson density truncated at y = 10, and with π(βτ ) = ga(1, 1/63).
This leads to prior expectations E[φ] = 60 and E[τ ] = E[βτ ] = 63 for mean location
kernel precision (1+ τ)/(µ(1−µ)) ≈ 4(1+63), which translates to a standard deviation
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Figure 2: Coal-mining disasters. Mean and 90% intervals for (clockwise from top-left):
marginal density f(t; GL) (with data histogram); conditional expected count E(y |
t; GL) (data counts in grey); and posterior Q-Q plots for Pr(y < yi | ti;GL) and
Λ(ti; GL), respectively.

of 1/16. For the transformed model, we take ỹ = y − 9.5 and

k(t, y; µ,Σ) =
N ([logit(t), log(ỹ)]′; µ,Σ)

ỹt(1 − t)
(21)

g0(µ,Σ) = N(µ; (0, 2.5)′, 10Σ)W (Σ−1; 3,Ω),

with π(Ω) = W(3, diag[10, 20]) for E(Σ) = 2/3E(Ω) = diag[1/5, 1/10] (logit(t) and
log(ỹ) range in (-5,5) and (-1,6), respectively). Both models were robust to changes in
this parametrization (e.g., E[φ] ∈ [10, 100] and diagonal elements of E[Σ] in [0.1, 1]).

Results under both models are shown in Figure 2. In the top left panel, we see
that marginal process density estimates derived from each model are generally similar,
with the normal model perhaps more sensitive to data peaks and troughs. There is
no noticeable edge effect for either model. The Q-Q plot in the bottom left panel
shows roughly similar fit with the normal model performing slightly better. The top
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and bottom right panels report inference for the count mark conditional mean and
distribution Q-Q plot. For the beta-Poisson model, posterior realizations for E(y | t; GL)
are obtained using (19). The conditional mean calculation for the normal model must
account for correlated kernels (and the transformation to ỹ), such that E(y | t; GL) is

9

2
+



q0

L
∑

l=1

plN(t;µlt, σ
2
lt)E[y | t; ϑl] +

m
∑

j=1

qjN(t;µ⋆
jt, σ

⋆2
jt )E[y | t; θ⋆

j ]



 /f(t;GL)

where E[y | t, θ] = exp
[

µy + ρσ−2
t (t − µt) + 0.5(σ2

y − ρ2σ−2
t )

]

with µ = (µt, µy) and Σ

partitioned into variances (σ2
t , σ2

y) and correlation ρ. Similarly, uniform quantiles for the
conditional mark distribution under the beta-Poisson model are available as weighted
sums of Poisson distribution functions, while the normal model calculation for Pr(y <
yi | ti; GL) is as above for E(y | t; GL), but with E[y | t, θ] replaced by Pr(y < yi | ti; θ) =
Φ

([

ỹi − µy + ρσ−2
t (ti − µt)

]

(σ2
y − ρ2σ−2

t )−1/2
)

. The estimated conditional mean func-
tions are qualitatively different, with the Poisson model missing the peak around 1910.
Indeed, the corresponding QQ plot shows that the normal model provides a better fit to
this data; we hypothesize that this is due to the equality of mean and variance assumed
in Poisson kernels, and may be fixed by using instead, say, truncated negative binomials.

5.3 Spatial Poisson process with continuous marks

Our final example considers the locations and diameters of 584 Longleaf pine trees in a
200×200 meter patch of forest in Thomas County, GA. The trees were surveyed in 1979
and the measured mark is diameter at breast height (1.5 m), or dbh, recorded only for
trees with greater than 2 cm dbh. The data, available as part of the spatstat package
for R, were analyzed by Rathburn and Cressie (1994) as part of a space-time survival
point process. Poisson processes are generally viewed as an inadequate model for forest
patterns, due to the dependent birth process by which trees occur. However, the NHPP
should be flexible enough to account for variability in tree counts at a single time point
and, in this example, we will concentrate primarily on inference for the conditional dbh
mark distribution.

To analyse this data set, we employ a spatial version of the model in (13), with
tree marks log-transformed to lie on the real line. Thus, our three-dimensional normal
kernel model is

φ(x, y;G) = ΛR

∫

N([logit(x), log(y − 2)]′;µ,Σ)

(y − 2)
∏2

i=1 xi(1 − xi)
dG(µ,Σ), G ∼ DP(α, G0).

The base distribution is taken to be g0(µ,Σ) = N(µ; (0, 0, 1)′, 100Σ)W(Σ−1; 4,Ω), with
π(Ω) = W(4,diag[0.1, 0.1, 0.1, 0.1]). A ga(2, 1) prior is placed on α. Posterior sampling
follows the fully collapsed Gibbs algorithm of Appendix A.2.

In this data set, high density clusters of juveniles trees (dbh < 5cm) combine with
the more even dispersal of larger trees to form conditional mark densities with non-
standard shapes and non-homogeneous variability. This behavior is clearly exhibited in



M. A. Taddy and A. Kottas 355

0 50 100 150 200

0
5
0

1
0
0

1
5
0

2
0
0

X1

X
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Uniform Quantile

E
st

im
a

te
d

 Q
u

a
n

ti
le

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5 X = [100, 100] X = [150, 150]

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

2 20 40 60 80

X = [150, 50]

2 20 40 60 80

X = [25, 150]

C
o

n
d

it
io

n
a

l 
D

en
si

ty

Diameter

Figure 3: Longleaf pines. The left panel has data (point size proportional to tree
diameter) and a Q-Q plot (mean and 90% interval) for

∫ y
h(s | x; GL)ds evaluated at

data. The right panel plots posterior mean and 90% intervals for h(y | x;GL) at four
specific x values.

the posterior estimates of the conditional density for dbh, shown on the right side of
Figure 3, at four different locations in the observations window. Although conditional
densities vary in shape over the different locations, each appears to show the mixture
of a diffuse component for mature trees combined with a sharp increase in density at
low dbh values, corresponding to collections of juvenile trees (only some of whom make
it to maturity). It is notable that we are able to infer this structure nonparametrically,
in contrast to existing approaches where the effect of a tree-age threshold is assumed a

priori (as in Rathburn and Cressie 1994). Finally, the conditional mark distribution Q-Q
plot on the bottom left panel of Figure 3 (based on calculations similar to those in Section
5.2) shows a generally decent mean-fit with wide uncertainty bands corresponding to
the 95% and 5% density percentile Q-Q plots.

6 Discussion

We have presented a nonparametric Bayesian modeling framework for marked non-
homogeneous Poisson processes. The key feature of the approach is that it develops
the modeling from the Poisson process density. We have considered various forms of
Dirichlet process mixture models for this density which, when extended to the joint
mark-location process, result in highly flexible nonparametric inference for the loca-
tion intensity as well as for the conditional mark distribution. The approach enables
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modeling and inference for multivariate mark distributions comprising both categorical
and continuous marks, and is especially appealing with regard to the relative simplicity
with which it can accommodate spatially correlated marks. We have discussed methods
for prior specification, posterior simulation and inference, and model checking. Finally,
three data examples were used to illustrate the proposed methodology.

The Poisson assumption for marked point processes is what enables us to sepa-
rate modeling for the process density from the integrated intensity. This simplification
is particularly useful for applications involving several related intensity functions and
mark distributions, and is less restrictive than it may at first appear. For instance,
Taddy (2010) presents an estimation of weekly violent crime intensity surfaces, using
autoregressive modeling for marked spatial NHPPs, and Kottas et al. (2012) compares
neuronal firing intensities recorded under multiple experimental conditions, using hier-
archically dependent modeling for temporal NHPPs.

Among the possible ways to relax the restrictions of the Poisson assumption, while
retaining the appealing structure of the NHPP likelihood, we note the class of multi-
plicative intensity models studied, for instance, in Ishwaran and James (2004). These
models for marked point processes are under the NHPP setting and, indeed, follow the
simpler strategy of separate modeling for the process intensity and mark density as in the
semiparametric framework of Section 3.1. More generally, one could envision relaxing
the Poisson assumption for the number of marks through a joint intensity function such
that the location intensity is not the marginal of the joint intensity over marks. Such
extensions would however sacrifice the main feature of our proposed framework – flexi-
ble modeling for multivariate mark distributions under a practical posterior simulation
inference scheme. As a more basic extension, our factorization in (1) could be combined
with alternative specifications for integrated intensity; for example, hierarchical models
may be useful to connect intensity across observation windows.

Appendix: Implementation Details for Dirichlet Process

Mixture Models

A.1 Prior Specification

Prior specification for the DP precision parameter is facilitated by the role of α in
controlling the number, m ≤ N , of distinct mixture components. For instance, for
moderately large N , E[m | α] ≈ α log ((α + N)/α). Furthermore, it is common to
assume a gamma prior for α, such that π(α) = ga(α; aα, bα), and use prior intuition
about m combined with E[m | α] to guide the choice of aα and bα.

Specification of the base distribution parameters will clearly depend on kernel choice
and application details, and DP mixture models are typically robust to reasonable
changes in this specification. First, the base distribution for kernel location (usually
the mean, but possibly median) can be specified through a prior guess for the data
center; for example, this value can be used to fix the mean parameter δ in (6) or the
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mean of a normal hyperprior for δ. In choosing dispersion parameters, note that the
DP prior will place most mass on a small number of mixture components, with the
remaining components assigned very little weight and, hence, very few observations. At
the same time, this behavior can be overcome in the posterior and it is important to
not restrict the mixture to overly-dispersed kernels. Thus, the expectation of the kernel
variance (or scale, or shape) parameters should be specified with a small number of
mixture components in mind, but with low precision. For example, again in the context
of (6), the square-root of the hyperprior expectation for diagonal elements of Ω can be
set at 1/8 to 1/16 of a prior guess at the data range, and the precision ν will be as small
as is practical (usually the dimension of the kernel plus 2). The factor κ is then chosen
to scale the mixture to expected dispersion in µ.

Moreover, except when specific prior information about co-dependence is available,
it is best to center G0 on kernel parametrization that implies independence between
variables, such that the mixture is centered on a model with dependence induced non-
parametrically by G. For example, in the model of (6), we assume zeros in the off-
diagonal elements for the prior expectation of Ω, and this is combined with a small ν
to allow for within-kernel dependence where appropriate. A prior expectation of inde-
pendence also fits with our general approach of building kernels for mixed-type data as
the product of multiple independent densities.

Note that we have chosen to introduce prior information into the base measure based
on the intuition arising from a small number of large mixture components and α near
zero. Recent work in Bush, Lee, and MacEachern (2010) provides a rigorous treatment
of non-informative prior specification, and they advocate a hierarchical scheme for α|G0

that maintains desirable properties at all scales of precision. As the main work here – use
of mixtures for modeling joint location-mark Poisson process densities – is independent
of prior and base measure choice, these innovations, as well as application-specific prior
schemes, could potentially be integrated into our framework.

A.2 Posterior Simulation

Using results from Antoniak (1974), the posterior distribution for the DP mixture model
is partitioned as p(G, θ⋆, s, α, ψ | data) = p(G | θ⋆, s, α, ψ)p(θ⋆, s, α, ψ | data), where
G, given θ⋆, s, α, ψ, is distributed as a DP with precision parameter α + N and base
distribution given by (15). Hence, full posterior inference involves sampling for the finite
dimensional portion of the parameter vector, which is next supplemented with draws
from the conditional posterior distribution for G (obtained as discussed in Section 4.2).
A generic Gibbs sampler for posterior simulation from p(θ⋆, s, α, ψ | data), derived by
combining MCMC methods from MacEachern (1994) and Escobar and West (1995),
proceeds iteratively as follows:

� For i = 1, . . . , N , denote by s(−i) the allocation vector with component si removed,

and by N
(−i)
s the number of elements of s(−i) that are equal to s. Then, if s = sr
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for some r 6= i, the i-th allocation variable is updated according to

Pr(si = s | s(−i), α, ψ, data) ∝
N

(−i)
s

N − 1 + α

∫

k(zi; θ
⋆)p(θ⋆ | s(−i), ψ,data)dθ⋆,

where p(θ⋆ | s(−i), ψ, data) is the density proportional to g0(θ
⋆; ψ)

∏

{r 6=i:sr=s}

k(zr; θ
⋆).

Moreover, the probability of generating a new component, Pr(si 6= sr ∀ r 6= i |
s(−i), α, ψ,data), is proportional to α(N − 1 + α)−1

∫

k(zi; θ
⋆)g0(θ

⋆; ψ)dθ⋆.

� For j = 1, ..., m, draw θ⋆
j from p(θ⋆

j | s, ψ,data) ∝ g0(θ
⋆
j ; ψ)

∏

{i:si=j} k(zi; θ
⋆
j ).

� Draw the base distribution hyperparameters from π(ψ)
∏m

j=1 g0(θ
⋆
j ; ψ), where π(ψ)

is the prior for ψ. Finally, if α is assigned a gamma hyperprior, it can be updated
conditional on only m and N using the auxiliary variable method from Escobar
and West (1995).

The integrals that are needed to update the components of s can be evaluated analyti-
cally for models where G0 is conjugate for k(·; θ). It is for this reason that conditionally
conjugate mixture models can lead to substantially more efficient posterior sampling,
especially when θ is high-dimensional. When this is not true (as for, e.g., beta kernel
models or the truncated Poisson of Equation 20), the draw for s requires use of the
auxiliary parameters, θ⋆, sampled as in the second step of our algorithm, in conjunc-
tion with a joint Metropolis-Hastings draw for each θi and si given θ(−i) and s(−i). In
particular, we can make use of algorithms from Neal (2000) for non-conjugate models.
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