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SUMMARY

A mixture model is described for dose-response studies where measurements on a

continuous variable suggest that some animals are not affected by treatment. The model

combines a logistic regression on dose for the probability an animal will "respond" to

treatment with a linear regression on dose for the mean of the responders. Maximum

likelihood estimation via the EM algorithm is described and likelihood ratio tests are used to

distinguish between the full model and meaningful reduced-parameter versions. Use of the

model is illustrated with three real-data examples.
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1. Introduction

In this article we focus on dose-response studies that yield data on a continuous variable and

where there appears to be a dose related chance that an individual will not be affected by

treatment. Our interest in this "nonresponse" phenomenon developed because of .examples

encountered in consulting and also in published articles such as Good (1979). Figures 1 and 2

display two data sets that help motivate and illustrate the features of interest here.

Figure 1 presents data from an assay to compare potency of two lots of vaccine.

Antibody levels (reported in counts per minute) were determined for mouse sera 21 days after

injection and 10glO counts are plotted against 10glO dose. To reduce crowding, values are

offset to the left for lot 1 and to the right for lot 2 at each dose. Figure 2 is a graphical

representation of log transformed values for data in Shirley (1977) on reaction times of mice at

4 dose levels of a toxin. Both plots suggest an increase in mean response with increasing dose,

but there is considerable noise in the data. Note that the apparent "outliers" follow a pattern

which is related to dose. At low doses there are a few large responses while at high doses there

are a few noticeably low responses. These extreme values are well separated from the majority

of responses in the group and result in a roughly quadratic trend (increasing then decreasing)

in variance and in a change in skewness of the response distribution with increasing dose.

The nonresponse phenomenon described by Good (1979) provides a possible explanation

for this pattern. Suppose that for each animal there is a threshold that must be exceeded by

the administered dose for the animal to show an effect of treatment (Le., to "respond" to

treatment). If the threshold varies among individuals, then the proportion expected to

respond to a given dose will be an increasing function of dose. At low doses "responders"

appear as outliers, and at high doses the few nonresponders represent the extreme values.

There are various ways to analyze such data. One approach is to test for a dose-related

trend in location using a procedure which is valid under the null hypothesis of no dose effect

and which has reasonable power in the presence of extreme values (e.g., the Jonckheere

Terpstra test, or see also Shirley, 1977). Such a test does not lead to a quantitative
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description of the effect of dose. A second approach is to view the extreme values as atypical

observations or outliers and use a robust regression procedure to provide a description of the

dose-response relationship. Although robust regression does tend to fit the bulk of the data

and to i l l u m i n ~ t e outliers, the interpretation of fitted values or estimates is not readily related

to population means or percentiles. Regression via weighted least squares using a model in

which both variance and mean are functions of dose (e.g., Davidian and Carroll, 1987) is

another approach that could be considered. All of t4ese methods, however, ignore the

information in the pattern of "outliers" caused by the changing proportion of responders,

suggesting the need for an analysis which accounts for and utilizes this property of the data. If

the pattern of outliers is evidence of an underlying physiological mechanism, then a model

motivated by such considerations has the potential to provide information that is more directly

interpretable and possibly of a more fundamental nature than that provided by empirical

regression approaches. Our goal here is therefore to develop a biologically reasonable model

and analysis for data such as those in Figures 1 and 2.

The model we propose is a mixture model like that of Good (1979) but modified to allow

a dose-dependent probability of "response" and a dose-dependent magnitude of effect for

responders. For simplicity we assume a completely randomized design with ni animals

assigned to receive dose Xi' i = 1,... ,k (nl+ ...+nk = N). Then for a given dose xi' the

observations Yij , j = 1,... ,ni are iid with cdf

(
y"-J.&-A(X.)) (y"-J.&)1J 1 1J

F(yijIO) = P(xi)G u + (1 - p(xi))G -u- ,

where p(.) is a nondecreasing function of Xi between 0 and 1, depending on unknown

(la)

parameters a and {3, J.& is the mean for nonresponders, A(xi) is a function of dose representing

the effect for responders and depending on parameters c and d, u is a scale parameter assumed

common to the distributions for responders and nonresponders, and G(·) is a known cdf.

There are numerous choices for specific forms for p, A, and G. In implementing the

model with several real data sets we have used
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and

Ll(x.) = c + dx. ,
1 1

G(y) = ~(y), the standard normal cdf.

(lb)

In Section 2 we develop the analysis for the model defined by (la) and (lb), referred to

below as the mixture model (1). Theory and some practical issues related to estimation and

testing are also described. In Section 3, the mixture model (1) is applied to three data sets to

illustrate the types of inferences that are possible. Slight generalizations of the model are

introduced for two of the data sets and graphical assessments of model adequacy are provided.

Concluding remarks are given in Section 4.

2. Maximum Likelihood Estimation and Hypothesis Testing

2.1 Computation of Estimates and the EM Algorithm

The method of maximum likelihood (ML) has been successfully used in a variety of

mixture problems, and both theoretical properties and practical aspects of the method have

been well studied (e.g., Titterington, Smith and Makov, 1985; Redner and Walker, 1984). We

have therefore relied entirely on ML and likelihood theory for estimation and tests related to

the mixture model (1). For computation of estimates Redner and Walker (1984) recommend

the EM algorithm for several reasons which include economy of programming and reliable

global convergence. We have also found the EM algorithm useful for computations and" here

briefly outline application of the algorithm for the model in (1).

For j = 1,...,ni' i = 1,... ,k, let Zij be an indicator variable that denotes responder status.

Thus

Z.. =
IJ

-(a+,8x.) 1

{

I with probability p(a,,8,xi) = (1+ e 1 )-

o with probability 1 - p(a,,8,xi)
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The Zij are not observed (except Zij = 0 may be known for the controls), and the EM

algorithm proceeds by treating the observations Y = (Y11,... ,Yknk)' as an incomplete data

problem, the complete data being (Y, Z). The complete data log likelihood is

(
1 ) 1 k n

i 2
LdY,Z,O)= N log ~ - N log u - 2 L: L: (l-Zr )(Yr -Jl)

;211' 2u i=l j=l J J

1 k ~ 2
- 2 L: L: Z..[Y.. - (Jl + c + dx.)]

20' i=l j=l lJ lJ 1

k n i

+ .L: r: [(l-Zij)log(l- p(o,P'Xi» + Zij log(p(o,P,xi»] .
l=lJ=l

The E-step and M-step of the algorithm correspond to calculating updated estimates

011+ 1 = (QII+1,plI+1,JlII+l,cll+l,dll+1,0'1I+1), given current values

011 = (all ,pll ,JlII ,cll ,dll ,ull )' by choosing 0
11

+
1

as the value of 0 which maximizes

Q(O,OIl) = E[LdZ,Y,O)IY,OIl]. Here Q(O,OIl) is Lc of (2) with 0 = (o,P,Jl,c,d,u) and with Zij

reptaced by the conditional e x p e ~ t a t i o n

(2)

¢J( .) being the standard normal pdf. For observations with Zij unknown, the Wij may be

interpreted as posterior probabilites that the Yij are responders and can be used for identifying

the responders. If for any Yij the value of Zij is known (e.g., Zij = 0 is often assumed for the

controls), then computations are correct if, in Q, wi] is set equal to the known value of Zij'

Note that maximizing Q(O,OIl) reduces to two separate maximization problems, one

involving (o,P) and the other involving (Jl,c,d,u). Explicit solutions for determining

(JlII+1,cll+1,dll+1,UIl+1) are easily derived, but (01l+1,pll+1) must be determined
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numerically as in standard logistic regression (see the Appendix). It is also easily shown that e
h . . h' . . d h . I t' (Jv+ 1 eat eac IteratIOn t ere IS a umque maXImum an ence a umque so u Ion . onvergence

properties of the EM algorithm are summarized in Section 4 of Redner and Walker (1984).

The EM algorithm was programmed and applied to several data sets i n c 1 u d i ~ g those in

the examples in Section 3. To check computations, results were compared with- estimates and

log likelihood (log L) values obtained using PROe NLIN of SAS (1987), with the derivative

free option (METHOD = DUD) and with the loss function (_LOSS_) set equal to -log L.

Agreement between the two procedures was good but our overall impression is that the EM

algorithm is faster, is less sensitive to starting values, and results in smaller values of -log L

even with similar convergence criteria.

2.2 Covariance Estimation and Model Adequacy

A method often used to estimate E, the covariance matrix of the ML estimates, is to

calculate the sample information matrix I(Y), and let E= I(y)-I. It was straightforward

(though s o m e w h a ~ tedious) to adapt the method of Louis (1982) to calculate I(Y) for the

mixture model (1) (see the Appendix for details). However, since the accuracy of I(y)-1 as

an estimator of E depends on the model being correct and on sample sizes, we considered two

methods for checking the adequacy of I(Y) -1.

The first procedure is a simple nonparametric bootstrap: draw iid bootstrap samples

{Vi], j = 1,... ,ni} with replacement from the data {Yij , j = 1,... ,ni}, i = 1,... ,k. For each of B

sets of bootstrap samples, fit the model (1) and obtain 0i,... ,OB. Let EB be the sample

A

covariance of the B bootstrap estimates. E B will consistently estimate the true covariance

matrix of°regardless of whether the model (1) is correct.

A

A second method for nonparametrically estimating the covariance matrix of (J follows

from an expansion of the log likelihood function log L«(J),

°- (J = I(y)-IV'log L«(J) + Rn ,
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where 'Vlog L( fJ) is the gradient of log L( fJ) and Rn ~ 0 under appropriate regularity

conditions. Since the covariance matrix of 'Vlog L( fJ) may be estimated by

k n·

1 [ A ~[ A~'O(Y) = L: L: 'Vlog f(YrlfJ) 'Vlog f(YrlfJ) ,
. 1· 1 J J1= J=

where f(ylfJ)is the density of (1a), a nonparametric estimate of the covariance matrix of 0 is

A 1 1 A A
then ED = I(Y)- O(Y)I(Y)- . Similar to the bootstrap estimate E B, ED will be consistent

regardless of whether the model (1) is correct. In fact under iid sampling at each dose

A A P
E B - ED - 0, and we have found close agreement between the two estimates in the data

A

from Figure 2 (see Section 3.2 and Table 2). Because ED is so much simpler to compute than

A A

E B, we recommend ED although it appears to depend more on asymptotic approximation

A

than E B.

A A 1
Differences between ED or E B and I(Y)- suggest inadequacies of the model (1) or

failure of the asymptotics in small samples. We intend to elaborate elsewhere on the

comparison of I(Y) -1 and ED for model verification, but in the present article we have relied

mainly on plots of fitted means and standard deviations (see Section 3) for that purpose.

When the Zij are known or the component distributions are clearly separated, standard GOF

procedures can be used to check the normality assumption. Practically speaking, however, the

normality assumption has the advantage that (1), ~, d,a) are then explicit and simple to

compute in the M step of the EM algorithm.

Within the context of model (1) we test for the adequacy of submodels using standard

likelihood ratio methods, i.e., by comparing -2 log A to the chi-squared distribution with

appropriate degrees of freedom. The usual chi-squared asymptotics will hold as long as 0I,{3

f( -00,00) and no null hypothesis implies that c = d = 0 (see Ghosh and Sen, 1985). In

particular in our Section 3 examples we use -2 log A mainly for tests concerning the

regression parameters, i.e., for HO: {3 = 0, HO: d = 0, and HO: {3 = d = O.
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3. Examples

3.1 Comparison of Potency for Two Vaccine Prepa.rations

The data in Figure 1 were generated in a "parallel line" assay to compare the potency of

two lots of vaccine. The usual analysis for such data would involve comparing intercepts for

the two lots, assuming linear regressions with common slope for the two dose-response

functions. In our analysis, we compared the dose-response relationships for the two lots by

carrying out hypothesis tests to determine whether any of the parameters of the basic model in

(1) were different for the two lots. Preliminary testing indicated d = 0 for both lots, so a 10-

parameter model, with lk, [3, 1', c, and tr assumed lot-specific, was fit to the combined data.

With this full model as the alternative, a likelihood ratio test was carried out for each of the

null hypotheses HOI: lkl = lk2' H02: [31 = {32' H03 : 1'1 = 1'2' H04: cl = c2' and H05: 0'1 =

0'2' where subscripts on parameters indicate lot dependence. A test of the overall null of no

difference between lots (H06: lkl = lk2' [31 = [32' 1'1 = 1'2' cl = c2' and 0'1 = 0'2) was also e
carried out.

Table 1 presents values of -log L for the full and reduced models, and also of -2 log A

for the likelihood ratio test performed to evaluate each reduced model. The overall test of no

difference between lots yields -2 log A = 7.07 corresponding to an approximate p value of .22

based on the xg distribution. Looking at the tests aimed at specific pairs of parameters there

is again no indication that lk, {3, 1', c, or 0' differ across lots. We conclude there is no

indication of a difference between lots in potency either with respect to the average magnitude

of effect for responders, or with respect to the distribution of the response threshold.

Results for Model 6, which assumes no difference between lots, are presented graphically

in Figures 3a and 3b. Model-based estimates of the mean and standard deviation as a function

of dose were calculated by substituting ML estimates for parameter values in the expressions
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plotted against dose for comparison with the usual sample means and standard deviations

calculated separately for each lot. Note that the trend in mean response in Figure 3a is close

to linear but there is an indication of a quadratic effect on variance in Figure 3b. Fitted

means agree well with the sample means from both lots. The sample standard deyiations

differ more between lots than do the means, but on average the agreement with the fitted

standard deviations is reasonable given the small sample sizes.

3.2 Mouse Reaction Times

The data in Figure 2 are now used to illustrate analysis of a single data set with emphasis

on the estimation of estimator precision. Likelihood ratio tests indicated that a reduced model

with d = {3 = 0 in (1b) was not adequate for the data, but that the model with d = 0 was

satisfactory ( -log L values were 9.191 for d = {3 = 0, 6.590 for d = 0, and 6.400 for the

unrestricted model). Apparently the proportion of responders increases with dose, but the

magnitude of the effect among responders is unaffected by dose, at least for the range of doses

studied.

Estimates were therefore calculated under the model with d = 0 and model-based means

and standard deviations are displayed in Figure 4 together with the usual sample means and

standard deviations. Again note the quadratic trend in variability which is nicely fitted by the

model. Individual values of the Wij (not displayed) are either close to 0 or close to 1 indicating

marked separation between responder and nonresponder distributions. Parameter estimates

are presented in Table 2 together with standard errors and correlations obtained using each of

the three methods outlined in Section 2.2. From Table 2 we see that the model-based

standard errors (computed from I(Y) -1) for ~ , c and:; are very close to the nonparametric

A A A A

estimates from En and the bootstrap EB, while the bootstrap standard errors for a and {3 are

larger than for the other two methods. Estimated correlations for the two nonparametric

approaches agree closely, but in several instances the nonparametric correlations are

substantially different from those calculated using I(Y) -1. One possible explanation for this
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difference between E
B

and I(y)-l is nonnormality of the responder distribution (e.g., the

third moment skewness coefficient 11 = -.95 for Yij values that would be classified as

A

responders using the weights wij ). Overall, as the bootstrap E B should be the most reliable

covariance estimator, it is reassuring that results provided by the computationall! simpler ED

and I(Y) -1 are similar, with the exception of certain covariances based on I(Y) -1.

3.3 Addiction to Morphine in Rats

Weeks and Collins (1971) studied the addiction to morphine in rats in an experiment

where, by pressing a lever, rats could obtain morphine by self-injection. There were 9 groups

of rats corresponding to 8 concentrations of morphine sulphate solution and a saline control.

After 6 days of access to morphine, saline was substituted for the morphine sulphate in each

dosed group, and physical dependence was determined for each rat using a weight loss

criterion. The number of lever presses (self-injection rates) on the 6th day are displayed in

Figure 1 of Good (1979) for the controls and for 4 concentrations of morphine sulphate, with

each point identified according to whether the rat was a "responder" (i.e., became physically e
dependent) or not. These data are reproduced here in Figure 5 as a plot of Y = logIQ(R+1)

against x = 10glQ(dose) where R = number of lever presses. Note that there is some overlap

of values for responders and nonresponders in the dosed groups and that the proportion of

responders is not monotonic on dose. Also, unlike the data in Figures 1 and 2, the means for

responders show a regression on dose, the slope of the regression being negative because higher

injection rates are needed to deliver the same amount of morphine at low concentrations

compared to high concentrations. In practice, the mixture model would not be applied to the

data of Figure 5 because responder status (determined by physical dependence) is assumed

known for each observation. On the other hand, these data provide an opportunity to assess

the mixture model by comparing results with an analysis which utilizes the information on

responder status.

As this data set was larger than those in Sections 3.1 and 3.2 (N = 102 compared to 48
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and 40, respectively), it was possible to fit a more general model than that in (1). Specifically,

the assumption of a common variance for responders and nonresponders was relaxed and (la)

replaced with

With (3) as the full model, likelihood ratio tests were then carried out to examine various

(3)

submodels. Results suggested that the submodel with /3 = 0 was adequate for these data, but

any other reduced model was too restrictive (e.g., values of -log L for the full model, the

model with /3 = 0, and the model with /3 = 6 = 0 were 92.446, 92.456, and 97.478,

respectively).

The mixture model analysis based on (3) with /3=0 leads to several conclusions that can

be checked against results based on knowing "responder" status. These are: (i) variability

appears to b ~ smaller for responders than for nonresponders (6 = -.253), (ii) the mean for

responders decreases with the concentration of the morphine solution (d= -.418), and (iii)

there is no evidence of an increase in the proportion of responders (or physically dependent

rats) with increasing concentration of the morphine solution (/3 = 0). The plots of sample

means and standard deviations for responders and nonresponders together with analogous

model-based quantities in Figures 6a and 6b support conclusions (i) and (ii). In Figure 6a,

there is also a suggestion of an effect of dose on nonresponder means, but the influential point

at x = 0 is based on one observation only. The actual proportions of responders at log

concentrations -1.5, -1.0, -.5, and 0 were 11/17,17/30,11/17, and 11/12, respectively.

Logistic regression of these proportions on log concentrations failed to reject /3 = 0 (-2 log A

= 2.36, p >.10) which agrees with (iii) based on the mixture model analysis. Assuming /3 = 0,

the proportion of responders for each morphine concentration (Le., excluding saline controls)

was estimated to be .62 and .66, based on the mixture model and logistic regression,

respectively.
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Model adequacy can also be assessed by comparing the sample means and standard

deviations, calculated ignoring responder status, with the corresponding model-based estimates

(see Figure 7). Note that the model-based means and standard deviations are not continuous

functions of dose, the discontinuity occurring at dose = 0 (arbitrarily plotted in F!gure 7 at

x = -2 log units). The discontinuity is a property of the models (1) or (3) under the

ltSsumptions that {J = 0 and that all controls are nonresponders, because then p(x) = 0 if

x = 0 and p(x) = p > 0 for x > O. This reduced model is not biologically reasonable but can

be regarded ai' a.n approximation given a limited range of morphine concentrations. In spite of

this limitation, the fitted mean function does seem to describe the pattern in the observed

group means. The shape of the fitted standard deviation function seems to agree less well with

the concave trend displayed by the group standard deviations. Finally, it is worth noting the

following advantage of the mixture model (even with {J = 0) compared to an empirical

regression approach. When dose is expressed on a log scale, there is no arbitrariness involved

in including the control or dose = 0 group with the mixture model. In contrast, if the controls

are to be included, it is not at all obvious how to construct an empirical regression function

relating mean response and log dose, for the data of Figure 7.

4. Concluding Remarks

Indiscriminate use of mixture models such as (1) is not recommended (e.g., Farewell,

1986). We suggest the model (1) be employed only when there is good empirical or biological

evidence of "nonresponse" or of a similar phenomenon. The separation between groups of data

points in Figures 1 and 2 suggests to us the presence of such a mechanism. The model (1)

might also be criticized as having unnecessarily many parameters. However, any regression

model that adequately accounts for the type of heteroscedascity seen in the example data sets

will involve estimation of a comparable number of parameters. For example, a model with

linear regression of the mean on dose and quadratic regression of variance on dose involves 5

parameters and does not represent the changes in skewness. Finally, one of our objectives will
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be met if this article encourages closer inspection of patterns of variability and outlier

occurrence in dose response data, resulting in more critical thought about the underlying

biological mechanisms.

12



Table 1 e
Values of -2 log A for testing the equality across lots of parameters of the mixture model, for

the data in Figure 1.

-2 log A
Number of for reduced vs.

Model Parameters -log L full model p-value

Full Model
All parameters lot specific

(O:'i' {3i' Ili' ci' O'i)' i=1,2 10 -17.707

Reduced Models
Submodels defined by
the single constraint:

1. 0:'1 = 0:'2 9 -17.366 0.68 .41

2. {31 = {32 9 -17.325 0.76 .31

3. III = 112 9 -17.087 1.24 .27

4. c1 = c2 9 -17.051 1.31 .25

e5. 0'1 = 0'2 9 -16.612 2.19 .14

Completely Reduced Model

6. All parameters constrained
to be equal across lots 5 -14.173 7.07 .22

(0:'1=0:'2' {31={32' 1l1=1l2'

c1 =c2' 0'1=0'2)
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Table 2

Parameter estimates, estimated precision, and correlations under the the mixture model (1)
with d=O for the data in Figure 2.

Standard Errors

I(y)-l
.. ..

Parameter Estimate EB ED

Q -1.90 1.08 1.29 1.08

/3 1.12 .53 .65 .53

I' 1.01 .04 .04 .04

c 1.09 .06 .05 .06

tr 0.18 .02 .02 .02

Correlations

I(y)-l
.. ..

Estimator Pair E
B ED

....

-.93 -.94 -.93Q,/3

....
-.01 -.16 -.17a,I'

....
-.01 -.02 .09a,c

....
.01 -.11 -.15a,tr

....

.01 .16 .12/3,1'

....

.00 .00 -.06/3,c

....

-.01 .06 .10/3,tr

....
-.64 -.71 -.75I',c

....
-.01 .20 .20I',tr

....
-.01 -.36 -.38C,tr

Note. See section 2.2 for the three methods used to calculate standard errors and correlations.
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APPENDIX

For the M step of the EM Algorithm given in Section (2.1) we need to maximize Q«(J,(JII),

which is just LC<Y,Z,(J) with Zij' replaced by wij. For concise notation we will use Pi for

p(a,,8,xi)' Ai for A(xi) = c + dxi' and omit the ranges for Ef=1 E : ~ I ' Recall that if Zij is

known to be 0, then set Pi = Wij = 0, and if Zij is known to be 1, then set Pi = Wij = 1. The

gradient V'Q«(J,(JII) is

8Q«(J,(JII) ~ II) II ~/ 2a = EE (1 - w.. (Y"-IJ) + w..(Y.. -A.) (7'
IJ IJ IJ IJIJ 1

8Q«(J,01l) [2 II 2 II 2J/ 38 = EE -(7' + (l-w.. )(Y.. -IJ) + w..(Y.. -A.) (7'
(7' IJ IJ IJ IJ I

The Hessian H(0) of Q(0,0 11
) is block diagonal with the (a ,,8) part similar to that for

standard logistic regressions: the (Ok,OI) elements of H(O) are EEhij(Ok,OljO), where

h..(a,ajO) = -(I-p. )p., h..(a,,8j(J) = -(I-p. )p.x., and h..(,8,,8jO) = -(I-p. ) p . x ~ . The
IJ 1 1 IJ I 1 I IJ I 1 1

estimates ( l ~ 1 I + 1 ,pll+l) are unique and can be found easily by Newton-Raphson iteration of

",p+l "'p+l , ",p "'p , ",p "'p 1 P II "'II "'II
(a , ,8 ) = (a ,,8 ) - H22(a ,,8 ) - V'Q(° ,0 ), where (a ,,8 ) are used as starting

values and H22(a,,8) is the 2 x2 part of H(O) relating to (a,,8).

The estimates (jjll+l, cll+l, JII+I, qll+l) are explicitly found by setting V'Q(O,OIl) = OJ

e.g.,

15



JjIl+1 = [EEY.. - EEwr.y"U/[N - EEwr.J '
IJ IJ IJ IJ

... 11+1 1 [ II ...11+1 2 "'11+1 2JIT = -N EE (l-w.. )(Y.. -JJ· ) + w..(Y.. - Ll. )
lJ IJ IJIJ I

Following Louis (1982), the sample information matrix I(Y) (see Section 2-.2) may be

... ... ...
computed as I(Y) = -H(9) - K(9), where 9 is the ML estimate and

K(9) = E[V'LdY,Z,9) . (V'LdY,Z,9))'IY,i] .

...
The elements of H(9) relating to (a,fJ) were given above. The remaining nonzero elements are

H...... = _N/(;2, H...... = H...... = -EE~ ../lT2, H ... = H ... = -EE~ ..x./(;2,
JJJJ IJC cc IJ Jjd ~d IJ I

H...... = -EE~ .. x ~ / ( ; 2 , and H...... = _2N/(;2, w h e r e ~ .. is wl!"J' evaluated at 911 = i.
dd IJ I lTlT IJ

A A A A A AA

The (9k ,91) elements of K(9) are EE(1-wij)wijai/9k,91), where aij(a,a) = 1,

... "') ('" ... 2 ...... ) ... / ...2 ... ... ... / ...2a..(a,{3 = x., a.. 13,13) = x· , a"(IJ,a = -A. IT , a..(IJ,fJ) = -Ll.x. IT ,
IJ I IJ I IJ I IJ I I

a.. (Jj,Jj) = l~/(;4, a.. (~,a) = (Y.. _l.)/(;2, a.. (~,ih = (y.. _l.)x./(;2,
IJ I IJ IJ I IJ IJ II

a.. (~,Jj) = -l.(Y.. -l.)/(;4, a.. (~,~) = (Y.. _l.)2/(;4, a..(d,a) = (Y.. _l.)x./(;2,
IJ I IJ I IJ IJ I IJ IJ I I

a..(d,th = (y.. -l)x~/(;2, a..(d,Jj) = -l.(Y.. -l.)x./(;4, a . . . ( d , ~ ) = (Y.._l.)2x./(;4,
IJ IJ I lJ IIJ II IJ IJ I I

... ... ... 2 / ...4 ...... ) [( ... 2 ... )2]/"'3 ( ... '" ...... )a...(d,d) = (Y.. -Ll.) x· IT , a...(lT,a = Y.. -A.) -(Y.. -IJ IT, a.. IT,fJ) = a..(lT,a x.,
IJ IJ I I IJ IJ I IJ IJ IJ I .

a..«(;,Jj) = -a..«(;,a)l./(;2, a.. «(;,~) = a.. « ( ; , ~ ) = a..«(;,a)(Y.. -l.)/(;2,
IJ IJ I IJ IJ IJ IJ I

a..«(;,d) = a.. « ( ; , ~ ) x . , and a..«(;,(;) = [(Y.. _l.)2_(y.. _Jj)2]2/(;6.
IJ IJ I IJ IJ I IJ
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Figure Captions

Figure 1. Mouse serum antibody levels, as 10glO (count per minute) or log CPM, 21 days

after injection with vaccine, for two lots of vaccine at 3 doses. At eac1.l dose,

values are offset to the left for lot 1 (~) and to the right for lot 2 (8).

Figure 2. Log reaction times of mice, by dose, from Shirley (1977). Doses reported as low,

medium, and high in Shirley (1977) are treated here as equally spaced.

Figure 3a. Sample means by lot (. and 6) and fitted means (-) for serum antibody levels

of Figure 1. Fitted means are based on the mixture model (1) with d = 0 and

assuming no differences between lots.

Figure 3b. Sample standard deviations by lot (. and 6) and fitted standard ueviations (-)

for serum antibody levels of Figure 1.

Figure 4. Sample (6) and fitted (0) means and standard deviations for mouse reaction times

of Figure 2. Fitted values are based on the mixture model (1) with d = O.

Figure 5. Self-injection rates, as log10 (# of lever presses + 1) or log (count + 1), for rats

after 6 days of exposure to morphine. Physically dependent rats or responders ( ~ ) ,

identified by a weight loss criterion, are distinguished from nonresponders (fl.).

Data from Good (1979).

Figure 6a. Sample and fitted means for responders (. and -) and nonresponders (fl. and -)

for self-injection rates of Figure 5. Fitted values are based on the mixture model

(3) with /3 = o.
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Figure 6b. Sample and fitted standard deviations for responders (. and -) and nonresponders e
((),. and -) for self-injection rates of Figure 5.

Figure 7. Sample means (0) and standard deviations (*) together with fitted m e ~ n s (. for

log dose =-00 and -- for log dose> -1.5) and fitted standard deviations (.A

for log dose =-00 and -- for log dose> -1.5), for self injection rates of Figure

5. Fitted values are based on the mixture model (3) with f3 = o.
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Figure 4
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