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Abstract

A natural Bayesian approach for mixture models with an unknown number of com-
ponents is to take the usual finite mixture model with symmetric Dirichlet weights,
and put a prior on the number of components—that is, to use a mixture of finite
mixtures (MFM). The most commonly-used method of inference for MFMs is re-
versible jump Markov chain Monte Carlo, but it can be nontrivial to design good
reversible jump moves, especially in high-dimensional spaces. Meanwhile, there are
samplers for Dirichlet process mixture (DPM) models that are relatively simple and
are easily adapted to new applications. It turns out that, in fact, many of the es-
sential properties of DPMs are also exhibited by MFMs—an exchangeable partition
distribution, restaurant process, random measure representation, and stick-breaking
representation—and crucially, the MFM analogues are simple enough that they can
be used much like the corresponding DPM properties. Consequently, many of the
powerful methods developed for inference in DPMs can be directly applied to MFMs
as well; this simplifies the implementation of MFMs and can substantially improve
mixing. We illustrate with real and simulated data, including high-dimensional gene
expression data used to discriminate cancer subtypes.
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1 Introduction

Mixture models are used in a wide range of applications, including population struc-
ture (Pritchard et al., 2000), document modeling (Blei et al., 2003), speaker recognition
(Reynolds et al., 2000), computer vision (Stauffer and Grimson, 1999), phylogenetics (Pagel
and Meade, 2004), and gene expression profiling (Yeung et al., 2001), to name a few promi-
nent examples. A common issue with finite mixtures is that it can be difficult to choose an
appropriate number of mixture components, and many methods have been proposed for
making this choice (e.g., Henna, 1985; Keribin, 2000; Leroux, 1992; Ishwaran et al., 2001;
James et al., 2001).

From a Bayesian perspective, perhaps the most natural approach is to treat the number
of components k like any other unknown parameter and put a prior on it. When the
prior on the mixture weights is Dirichletk(γ, . . . , γ) given k, we refer to such a model
as a mixture of finite mixtures (MFM), for short. Several inference methods have been
proposed for this type of model (Nobile, 1994; Phillips and Smith, 1996; Richardson and
Green, 1997; Stephens, 2000; Nobile and Fearnside, 2007; McCullagh and Yang, 2008), the
most commonly-used method being reversible jump Markov chain Monte Carlo (Green,
1995; Richardson and Green, 1997). Reversible jump is a very general technique, and has
been successfully applied in many contexts, but it can be difficult to use since applying
it to new situations requires one to design good reversible jump moves, which is often
nontrivial, particularly in high-dimensional parameter spaces. Advances have been made
toward general methods of constructing good reversible jump moves (Brooks et al., 2003;
Hastie and Green, 2012), but these approaches add another level of complexity to the
algorithm design process and/or the software implementation.

Meanwhile, infinite mixture models such as Dirichlet process mixtures (DPMs) have
become popular, partly due to the existence of relatively simple and generic Markov chain
Monte Carlo (MCMC) algorithms that can easily be adapted to new applications (Neal,
1992, 2000; MacEachern, 1994, 1998; MacEachern and Müller, 1998; Bush and MacEach-
ern, 1996; West, 1992; West et al., 1994; Escobar and West, 1995; Liu, 1994; Dahl, 2003,
2005; Jain and Neal, 2004, 2007). These algorithms are made possible by the variety of
computationally-tractable representations of the Dirichlet process, including its exchange-
able partition distribution, the Blackwell–MacQueen urn process (a.k.a. the Chinese restau-
rant process), the random discrete measure formulation, and the Sethuraman–Tiwari stick-
breaking representation (Ferguson, 1973; Antoniak, 1974; Blackwell and MacQueen, 1973;
Aldous, 1985; Pitman, 1995, 1996; Sethuraman, 1994; Sethuraman and Tiwari, 1981).

It turns out that there are MFM counterparts for each of these properties: an ex-
changeable partition distribution, an urn/restaurant process, a random discrete measure
formulation, and in certain cases, an elegant stick-breaking representation. The main point
of this paper is that the MFM versions of these representations are simple enough, and
parallel the DPM versions closely enough, that many of the inference algorithms developed
for DPMs can be directly applied to MFMs. Interestingly, the key properties of MFMs
hold for any choice of prior distribution on the number of components.

There has been a large amount of research on efficient inference methods for DPMs,
and an immediate consequence of the present work is that most of these methods can
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also be used for MFMs. Since several DPM sampling algorithms are designed to have
good mixing performance across a wide range of applications—for instance, the Jain–Neal
split-merge samplers (Jain and Neal, 2004, 2007), coupled with incremental Gibbs moves
(MacEachern, 1994; Neal, 1992, 2000)—this greatly simplifies the implementation of MFMs
for new applications. Further, these algorithms can also provide a major improvement in
mixing performance compared to the usual reversible jump approaches, particularly in high
dimensions.

This work resolves an open problem discussed by Green and Richardson (2001), who
noted that it would be interesting to be able to apply DPM samplers to MFMs:

“In view of the intimate correspondence between DP and [MFM] models dis-
cussed above, it is interesting to examine the possibilities of using either class
of MCMC methods for the other model class. We have been unsuccessful in our
search for incremental Gibbs samplers for the [MFM] models, but it turns out to
be reasonably straightforward to implement reversible jump split/merge methods
for DP models.”

The paper is organized as follows. In Sections 2 and 3, we formally define the MFM and
show that it gives rise to a simple exchangeable partition distribution closely paralleling
that of the Dirichlet process. In Section 4, we describe the Pólya urn scheme (restaurant
process), random discrete measure formulation, and stick-breaking representation for the
MFM. In Section 5, we establish some asymptotic results for MFMs. In Section 6, we
show how the properties in Sections 3 and 4 lead to efficient inference algorithms for the
MFM. In Section 7, we first make an empirical comparison between MFMs and DPMs
on a simulation example, then compare the mixing performance of reversible jump versus
our proposed algorithms, and finally, apply the model to high-dimensional gene expression
data.

2 Model

We consider the following well-known model:

K ∼ pK , where pK is a p.m.f. on {1, 2, . . . }
(π1, . . . , πk) ∼ Dirichletk(γ, . . . , γ), given K = k

Z1, . . . , Zn
iid∼ π, given π (2.1)

θ1, . . . , θk
iid∼ H, given K = k

Xj ∼ fθZj
independently for j = 1, . . . , n, given θ1:K , Z1:n.

Here, H is a prior or “base measure” on Θ ⊂ R
ℓ, and {fθ : θ ∈ Θ} is a family of probability

densities with respect to a sigma-finite measure ζ on X ⊂ R
d. (As usual, we give Θ

and X the Borel sigma-algebra, and assume (x, θ) 7→ fθ(x) is measurable.) We denote
x1:n = (x1, . . . , xn). Typically, X1, . . . , Xn would be observed, and all other variables would
be hidden/latent. We refer to this as a mixture of finite mixtures (MFM) model.
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It is important to note that we assume a symmetric Dirichlet with a single parameter
γ not depending on k. This assumption is key to deriving a simple form for the partition
distribution and the other resulting properties. Assuming symmetry in the distribution of π
is quite natural, since the distribution of X1, . . . , Xn under any asymmetric distribution on
π would be the same as if this asymmetric distribution was replaced by its symmetrization,
i.e., if the entries of π were uniformly permuted (although this would no longer necessarily
be a Dirichlet distribution). Assuming the same γ for all k is a genuine restriction, albeit
a fairly natural one, often made in such models even when not strictly necessary (Nobile,
1994; Phillips and Smith, 1996; Richardson and Green, 1997; Green and Richardson, 2001;
Stephens, 2000; Nobile and Fearnside, 2007). Note that prior information about the relative
sizes of the weights π1, . . . , πk can be introduced through γ—roughly speaking, small γ
favors lower entropy π’s, while large γ favors higher entropy π’s.

Meanwhile, we put very few restrictions on pK , the distribution of the number of com-
ponents. For practical purposes, we need the infinite series

∑∞
k=1 pK(k) to converge to 1

reasonably quickly, but any choice of pK arising in practice should not be a problem. For
certain theoretical purposes—in particular, consistency for the number of components—it
is desirable to have pK(k) > 0 for all k ∈ {1, 2, . . . }.

For comparison, the Dirichlet process mixture (DPM) model with concentration param-
eter α > 0 and base measure H is defined as follows, using the stick-breaking representation
(Sethuraman, 1994):

B1, B2, . . .
iid∼ Beta(1, α)

Z1, . . . , Zn
iid∼ π, given π = (π1, π2, . . . ) where πi = Bi

∏i−1
j=1(1− Bj)

θ1, θ2, . . .
iid∼ H

Xj ∼ fθZj
independently for j = 1, . . . , n, given θ1:∞, Z1:n.

3 Exchangeable partition distribution

The primary observation on which our development relies is that the distribution on par-
titions induced by an MFM takes a form which is simple enough that it can be easily
computed. Let C denote the partition of [n] := {1, . . . , n} induced by Z1, . . . , Zn; in other
words, C = {Ei : |Ei| > 0} where Ei = {j : Zj = i} for i ∈ {1, 2, . . . }.

Theorem 3.1. Under the MFM (Equation 2.1), the probability mass function of C is

p(C) = Vn(t)
∏

c∈C

γ(|c|) (3.1)

where t = |C| is the number of parts/blocks in the partition, and

Vn(t) =
∞∑

k=1

k(t)
(γk)(n)

pK(k). (3.2)
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Here, x(m) = x(x+ 1) · · · (x+m− 1) and x(m) = x(x− 1) · · · (x−m+ 1), with x(0) = 1
and x(0) = 1 by convention; note that x(m) = 0 when x is a positive integer less than m.
Theorem 3.1 can be derived from the well-known formula for p(C|k), which can found in,
e.g., Green and Richardson (2001) or McCullagh and Yang (2008); we provide a proof for
completeness. All proofs have been collected in Appendix A. We discuss computation of
Vn(t) in Section 3.2. For comparison, under the DPM, the partition distribution induced
by Z1, . . . , Zn is pDP(C|α) = αt

α(n)

∏
c∈C(|c| − 1)! where t = |C| (Antoniak, 1974). When a

prior is placed on α, as in the experiments in Section 7, the DPM partition distribution
becomes

pDP(C) = V DP

n (t)
∏

c∈C

(|c| − 1)! (3.3)

where V DP
n (t) =

∫
αt

α(n)p(α)dα.
Viewed as a function of the block sizes (|c| : c ∈ C), Equation 3.1 is an exchangeable

partition probability function (EPPF) in the terminology of Pitman (1995, 2006), since it is a
symmetric function of the block sizes. Consequently, C is an exchangeable random partition
of [n]; that is, its distribution is invariant under permutations of [n] (alternatively, this can
be seen directly from the definition of the model, since Z1, . . . , Zn are exchangeable). In
fact, Equation 3.1 induces an exchangeable random partition of the positive integers; see
Section 3.3.

Further, Equation 3.1 is a member of the family of Gibbs partition distributions (Pit-
man, 2006); this is also implied by the results of Gnedin and Pitman (2006) characterizing
the extreme points of the space of Gibbs partition distributions. Results on Gibbs par-
titions are provided by Ho et al. (2007), Lijoi et al. (2008), Cerquetti (2011), Cerquetti
et al. (2013), Gnedin (2010), and Lijoi and Prünster (2010). However, the utility of this
representation for inference in mixture models with a prior on the number of components
does not seem to have been previously explored in the literature.

Due to Theorem 3.1, we have the following equivalent representation of the model:

C ∼ p(C), with p(C) as in Equation 3.1

φc
iid∼ H for c ∈ C, given C (3.4)

Xj ∼ fφc
independently for j ∈ c, c ∈ C, given φ, C,

where φ = (φc : c ∈ C) is a tuple of t = |C| parameters φc ∈ Θ, one for each block c ∈ C.
This representation is particularly useful for doing inference, since one does not have

to deal with component labels or empty components. (If component-specific inferences
are desired, a method such as that provided by Papastamoulis and Iliopoulos (2010) may
be useful.) The formulation of models starting from a partition distribution has been a
fruitful approach, exemplified by the development of product partition models (Hartigan,
1990; Barry and Hartigan, 1992; Quintana and Iglesias, 2003; Dahl, 2009; Park and Dunson,
2010; Müller and Quintana, 2010; Müller et al., 2011).
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3.1 Basic properties

We list here some basic properties of the MFMmodel. See Appendix A for proofs. Denoting
xc = (xj : j ∈ c) and m(xc) =

∫
Θ

[∏
j∈c fθ(xj)

]
H(dθ) (with the convention that m(x∅) =

1), we have

p(x1:n|C) =
∏

c∈C

m(xc). (3.5)

While some authors use the terms “cluster” and “component” interchangeably, we use
cluster to refer to a block c in a partition C, and component to refer to a probability
distribution fθi in a mixture

∑k
i=1 πifθi(x). The number of components K and the number

of clusters T = |C| are related by

p(t|k) = k(t)
(γk)(n)

∑

C:|C|=t

∏

c∈C

γ(|c|), (3.6)

p(k|t) = 1

Vn(t)

k(t)
(γk)(n)

pK(k), (3.7)

where in Equation 3.6, the sum is over partitions C of [n] such that |C| = t. Note that
p(t|k) and p(k|t) depend on n. Wherever possible, we use capital letters (such as K and
T ) to denote random variables as opposed to particular values (k and t). The formula for
p(k|t) is required for doing inference about the number of components K based on posterior
samples of C; fortunately, it is easy to compute. We have the conditional independence
relations

C ⊥ K | T, (3.8)

X1:n ⊥ K | T. (3.9)

3.2 The coefficients Vn(t)

The following recursion is a special case of a more general result for Gibbs partitions
(Gnedin and Pitman, 2006).

Proposition 3.2. The numbers Vn(t) (Equation 3.2) satisfy the recursion

Vn+1(t+ 1) = Vn(t)/γ − (n/γ + t)Vn+1(t) (3.10)

for any 0 ≤ t ≤ n and γ > 0.

This is easily seen by plugging the identity

k(t+1) = (γk + n)k(t)/γ − (n/γ + t)k(t)

into the expression for Vn+1(t + 1). In the case of γ = 1, Gnedin (2010) has discovered a
beautiful example of a distribution on K for which both pK(k) and Vn(t) have closed-form
expressions.
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In previous work on the MFM model, pK has often been chosen to be proportional
to a Poisson distribution restricted to the positive integers or a subset thereof (Phillips
and Smith, 1996; Stephens, 2000; Nobile and Fearnside, 2007), and Nobile (2005) has
proposed a theoretical justification for this choice. Interestingly, the model has some nice
mathematical properties if one instead chooses K − 1 to be given a Poisson distribution,
that is, pK(k) = Poisson(k − 1|λ) for some λ > 0. For instance, it turns out that if
pK(k) = Poisson(k − 1|λ) and γ = 1 then Vn(0) =

(
1−∑n

k=1 pK(k)
)
/λn.

However, to do inference, it is not necessary to choose pK to have any particular form—
we just need to be able to compute p(C), and in turn, we need to be able to compute
Vn(t). To this end, note that k(t)/(γk)

(n) ≤ kt/(γk)n, and thus the infinite series for Vn(t)
(Equation 3.2) converges rapidly when t ≪ n. It always converges to a finite value when
1 ≤ t ≤ n; this is clear from the fact that p(C) ∈ [0, 1]. This finiteness can also be seen
directly from the series since kt/(γk)n ≤ 1/γn, and in fact, this shows that the series for
Vn(t) converges at least as rapidly (up to a constant) as the series

∑∞
k=1 pK(k) converges

to 1. Hence, for any reasonable choice of pK (i.e., not having an extraordinarily heavy tail),
Vn(t) can easily be numerically approximated to a high level of precision. In practice, all
of the required values of Vn(t) can be precomputed before MCMC sampling, and this takes
a negligible amount of time relative to MCMC (see Appendix B.1).

3.3 Self-consistent marginals

For each n = 1, 2, . . . , let qn(C) denote the MFM distribution on partitions of [n] (Equa-
tion 3.1). This family of partition distributions is preserved under marginalization, in the
following sense.

Proposition 3.3. If m < n then qm coincides with the marginal distribution on partitions
of [m] induced by qn.

In other words, drawing a sample from qn and removing elements m+ 1, . . . , n from it
yields a sample from qm. This can be seen directly from the model definition (Equation 2.1),
since C is the partition induced by the Z’s, and the distribution of Z1:m is the same when
the model is defined with any n ≥ m. This property is sometimes referred to as consistency
in distribution (Pitman, 2006).

By Kolmogorov’s extension theorem (e.g., Durrett, 1996), it is well-known that this
implies the existence of a unique probability distribution on partitions of the positive inte-
gers Z>0 = {1, 2, . . . } such that the marginal distribution on partitions of [n] is qn for all
n ∈ {1, 2, . . . } (Pitman, 2006).

4 Equivalent representations

4.1 Pólya urn scheme / Restaurant process

Pitman (1996) considered a general class of urn schemes, or restaurant processes, corre-
sponding to exchangeable partition probability functions (EPPFs). The following scheme
for the MFM falls into this general class.
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Theorem 4.1. The following process generates partitions C1, C2, . . . such that for any n ∈
{1, 2, . . . }, the probability mass function of Cn is given by Equation 3.1.

• Initialize with a single cluster consisting of element 1 alone: C1 = {{1}}.

• For n = 2, 3, . . . , element n is placed in . . .

an existing cluster c ∈ Cn−1 with probability ∝ |c|+ γ

a new cluster with probability ∝ Vn(t+ 1)

Vn(t)
γ

where t = |Cn−1|.
Clearly, this bears a close resemblance to the Chinese restaurant process (i.e., the

Blackwell–MacQueen urn process), in which the nth element is placed in an existing cluster
c with probability ∝ |c| or a new cluster with probability ∝ α (the concentration parameter)
(Blackwell and MacQueen, 1973; Aldous, 1985).

4.2 Random discrete measures

The MFM can also be formulated starting from a distribution on discrete measures that is
analogous to the Dirichlet process. With K, π, and θ1:K as in Equation 2.1, let

G =
K∑

i=1

πiδθi

where δθ is the unit point mass at θ. Let us denote the distribution of G by M(pK , γ,H).
Note that G is a random discrete measure over Θ. If H is continuous (i.e., H({θ}) = 0 for
all θ ∈ Θ), then with probability 1, the number of atoms is K; otherwise, there may be
fewer than K atoms. If we let X1, . . . , Xn|G be i.i.d. from the resulting mixture, i.e., from

fG(x) :=

∫
fθ(x)G(dθ) =

K∑

i=1

πifθi(x),

then the distribution of X1:n is the same as in Equation 2.1. So, in this notation, the MFM
model is:

G ∼ M(pK , γ,H)

X1, . . . , Xn
iid∼ fG, given G.

This random discrete measure perspective is connected to work on species sampling
models (Pitman, 1996) in the following way. When H is continuous, we can construct a
species sampling model by letting G ∼ M(pK , γ,H) and modeling the observed data as
β1, . . . , βn ∼ G given G. We refer to Pitman (1996), Hansen and Pitman (2000), Ishwaran
and James (2003), Lijoi et al. (2005, 2007), and Lijoi et al. (2008) for more background
on species sampling models and further examples. Pitman derived a general formula for
the posterior predictive distribution of a species sampling model; the following result is a
special case. Note the close relationship to the restaurant process (Theorem 4.1).
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Theorem 4.2. If H is continuous, then β1 ∼ H and the distribution of βn given
β1, . . . , βn−1 is proportional to

Vn(t+ 1)

Vn(t)
γH +

t∑

i=1

(ni + γ)δβ∗

i
, (4.1)

where β∗
1 , . . . , β

∗
t are the distinct values taken by β1, . . . , βn−1, and ni = #

{
j ∈ [n − 1] :

βj = β∗
i

}
.

For comparison, when G ∼ DP(αH) instead, the distribution of βn given β1, . . . , βn−1

is proportional to αH +
∑n−1

j=1 δβj
= αH +

∑t
i=1 niδβ∗

i
, since G|β1, . . . , βn−1 ∼ DP(αH +∑n−1

j=1 δβj
) (Ferguson, 1973; Blackwell and MacQueen, 1973).

4.3 Stick-breaking representation

The Dirichlet process has an elegant stick-breaking representation for the mixture weights
π1, π2, . . . (Sethuraman, 1994; Sethuraman and Tiwari, 1981). This extraordinarily clarify-
ing perspective has inspired a number of nonparametric models (MacEachern, 1999, 2000;
Hjort, 2000; Ishwaran and Zarepour, 2000; Ishwaran and James, 2001; Griffin and Steel,
2006; Dunson and Park, 2008; Chung and Dunson, 2009; Rodriguez and Dunson, 2011;
Broderick et al., 2012), has provided insight into the properties of related models (Favaro
et al., 2012; Teh et al., 2007; Thibaux and Jordan, 2007; Paisley et al., 2010), and has been
used to develop efficient inference algorithms (Ishwaran and James, 2001; Blei and Jordan,
2006; Papaspiliopoulos and Roberts, 2008; Walker, 2007; Kalli et al., 2011).

In a certain special case—namely, when pK(k) = Poisson(k − 1|λ) and γ = 1—we have
noticed that the MFM also has an interesting representation that we describe using the
stick-breaking analogy, although it is somewhat different in nature. Consider the following
procedure:

Take a unit-length stick, and break off i.i.d. Exponential(λ) pieces until you run
out of stick.

In other words, let ǫ1, ǫ2, . . .
iid∼ Exponential(λ), define K̃ = min{j : ∑j

i=1 ǫi ≥ 1}, let π̃i = ǫi

for i = 1, . . . , K̃ − 1, and let π̃K̃ = 1−∑K̃−1
i=1 π̃i.

Proposition 4.3. The stick lengths π̃ have the same distribution as the mixture weights π
in the MFM model when pK(k) = Poisson(k − 1|λ) and γ = 1.

This is a consequence of a standard construction for Poisson processes. This suggests a
way of generalizing the MFM model: take any sequence of nonnegative random variables
(ǫ1, ǫ2, . . . ) (not necessarily independent or identically distributed) such that

∑∞
i=1 ǫi > 1

with probability 1, and define K̃ and π̃ as above. Although the distribution of K̃ and π̃
may be complicated, in some cases it might still be possible to do inference based on the
stick-breaking representation. This might be an interesting way to introduce different kinds
of prior information on the mixture weights, however, we have not explored this possibility.
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5 Asymptotics

In this section, we consider the asymptotics of Vn(t), the asymptotic relationship between
the number of components and the number of clusters, and the approximate form of the
conditional distribution on cluster sizes given the number of clusters.

5.1 Asymptotics of Vn(t)

Recall that Vn(t) =
∑∞

k=1

k(t)
(γk)(n) pK(k) (Equation 3.2) for 1 ≤ t ≤ n, where γ > 0 and pK is

a p.m.f. on {1, 2, . . . }. When an, bn > 0, we write an ∼ bn to mean an/bn → 1 as n → ∞.

Theorem 5.1. For any t ∈ {1, 2, . . . }, if pK(t) > 0 then

Vn(t) ∼
t(t)

(γt)(n)
pK(t) ∼

t!

n!

Γ(γt)

nγt−1
pK(t) (5.1)

as n → ∞.

In particular, Vn(t) has a simple interpretation, asymptotically—it behaves like the
k = t term in the series. All proofs have been collected in Appendix A.

5.2 Relationship between the number of clusters and number of
components

In the MFM, it is perhaps intuitively clear that, under the prior at least, the number of
clusters T = |C| behaves very similarly to the number of components K when n is large.
It turns out that under the posterior they also behave very similarly for large n.

Theorem 5.2. Let x1, x2, . . . ∈ X and k ∈ {1, 2, . . . }. If pK(1), . . . , pK(k) > 0 then
∣∣p(T = k | x1:n)− p(K = k | x1:n)

∣∣ −→ 0

as n → ∞.

5.3 Distribution of the cluster sizes under the prior

Here, we examine one of the major differences between the MFM and DPM priors. Roughly
speaking, under the prior, the MFM prefers all clusters to be the same order of magnitude,
while the DPM prefers having a few large clusters and many very small clusters. In the
following calculations, we quantify the preceding statement more precisely. (See Green and
Richardson (2001) for informal observations along these lines.) Interestingly, these prior
influences remain visible in certain aspects of the posterior, even in the limit as n goes to
infinity.

Let C be the random partition of [n] in the MFM model (Equation 3.1), and let A =
(A1, . . . , AT ) be the ordered partition of [n] obtained by randomly ordering the blocks of
C, uniformly among the T ! possible choices, where T = |C|. Then

p(A) =
p(C)
|C|! =

1

t!
Vn(t)

t∏

i=1

γ(|Ai|),
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where t = |C|. Now, let S = (S1, . . . , ST ) be the vector of block sizes of A, that is, Si = |Ai|.
Then

p(S = s) =
∑

A:S(A)=s

p(A) = Vn(t)
n!

t!

t∏

i=1

γ(si)

si!

for s ∈ ∆t, t ∈ {1, . . . , n}, where ∆t = {s ∈ Z
t :

∑
i si = n, si ≥ 1 ∀i} (i.e., ∆t is the set of

t-part compositions of n). For any x > 0, by writing x(m)/m! = Γ(x +m)/(m! Γ(x)) and
using Stirling’s approximation, we have x(m)/m! ∼ mx−1/Γ(x) as m → ∞. This yields the
approximations

p(S = s) ≈ Vn(t)

Γ(γ)t
n!

t!

t∏

i=1

sγ−1
i ≈ pK(t)

nγt−1

Γ(γt)

Γ(γ)t

t∏

i=1

sγ−1
i

(using Theorem 5.1 in the second step), and

p(S = s | T = t) ≈ κ

t∏

i=1

sγ−1
i

for s ∈ ∆t, where κ is a normalization constant. Thus, p(s|t) has approximately the same
shape as a symmetric t-dimensional Dirichlet distribution, except it is discrete. This would
be obvious if we were conditioning on the number of components K, and it makes intuitive
sense when conditioning on T , since K and T are essentially the same for large n.

It is interesting to compare p(s) and p(s|t) to the corresponding distributions for the
Dirichlet process. For the DP with a prior on α, we have pDP(C) = V DP

n (t)
∏

c∈C(|c| − 1)! by
Equation 3.3, and pDP(A) = pDP(C)/|C|! as before, so for s ∈ ∆t, t ∈ {1, . . . , n},

pDP(S = s) = V DP

n (t)
n!

t!
s−1
1 · · · s−1

t

and
pDP(S = s | T = t) ∝ s−1

1 · · · s−1
t ,

which has the same shape as a t-dimensional Dirichlet distribution with all the parameters
taken to 0 (noting that this is normalizable since ∆t is finite). Asymptotically in n, pDP(s|t)
puts all of its mass in the “corners” of the discrete simplex ∆t, while under the MFM,
p(s|t) remains more evenly dispersed.

6 Inference algorithms

Many approaches have been used for posterior inference in the MFM model (Equation 2.1).
Nobile (1994) approximates the marginal likelihood p(x1:n|k) of each k in order to compute
the posterior on k, and uses standard methods given k. Phillips and Smith (1996) and
Stephens (2000) use jump diffusion and point process approaches, respectively, to sample
from p(k, π, θ|x1:n). Richardson and Green (1997) employ reversible jump moves to sample
from p(k, π, θ, z|x1:n). In cases with conjugate priors, Nobile and Fearnside (2007) use
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various Metropolis–Hastings moves on p(k, z|x1:n), and McCullagh and Yang (2008) develop
an approach that could in principle be used to sample from p(k, C|x1:n).

Due to the results of Sections 3 and 4, much of the extensive body of work on MCMC
samplers for DPMs can be directly applied to MFMs. This leads to a variety of MFM
samplers, of which we consider two main types: (a) sampling from p(C|x1:n) in cases where
the marginal likelihood m(xc) =

∫
Θ

[∏
j∈c fθ(xj)

]
H(dθ) can easily be computed (typically,

this means H is a conjugate prior), and (b) sampling from p(C, φ|x1:n) (in the notation
of Equation 3.4) in cases where m(xc) is intractable or when samples of the component
parameters are desired.

When m(xc) can easily be computed, the following Gibbs sampling algorithm can be
used to sample from the posterior on partitions, p(C|x1:n). Given a partition C, let C \ j
denote the partition obtained by removing element j from C.

1. Initialize C = {[n]} (i.e., one cluster).

2. Repeat the following steps N times, to obtain N samples.

For j = 1, . . . , n: Remove element j from C, and place it . . .

in c ∈ C \ j with probability ∝ (|c|+ γ)
m(xc∪j)

m(xc)

in a new cluster with probability ∝ γ
Vn(t+ 1)

Vn(t)
m(xj)

where t = |C \ j|.

This is a direct adaptation of “Algorithm 3” for DPMs (MacEachern, 1994; Neal, 1992,
2000). The only differences are that in Algorithm 3, |c|+ γ is replaced by |c|, and γVn(t+
1)/Vn(t) is replaced by α (the concentration parameter). Thus, the differences between
the MFM and DPM versions of the algorithm are precisely the same as the differences
between their respective urn/restaurant processes. In order for the algorithm to be valid,
the Markov chain needs to be irreducible, and to achieve this it is necessary that

{
t ∈

{1, 2, . . . } : Vn(t) > 0
}
be a block of consecutive integers containing 1. It turns out that

this is always the case, since for any k such that pK(k) > 0, we have Vn(t) > 0 for all
t = 1, . . . , k.

Note that one only needs to compute Vn(1), . . . , Vn(t
∗) where t∗ is the largest value of t

visited by the sampler. In practice, it is convenient to precompute these values using a guess
at an upper bound tpre on t∗, and this takes a negligible amount of time compared to running
the sampler (see Appendix B.1). Just to be clear, tpre is only introduced for computational
expedience—the model allows unbounded t, and in the event that the sampler visits t > tpre,
it is trivial to increase tpre and compute the required values of Vn(t) on demand.

When m(xc) cannot easily be computed, a clever auxiliary variable technique referred
to as “Algorithm 8” can be used for inference in the DPM (Neal, 2000; MacEachern and
Müller, 1998). Making the same substitutions as above, we can apply Algorithm 8 for
inference in the MFM as well, to sample from p(C, φ|x1:n).

A well-known issue with incremental Gibbs samplers such as Algorithms 3 and 8, when
applied to DPMs, is that mixing can be somewhat slow, since it may take a long time

12



to create or destroy substantial clusters by moving one element at a time. With MFMs,
this issue seems to be exacerbated, since compared with DPMs, MFMs tend to put small
probability on partitions with tiny clusters (see Section 5.3), making it difficult for the
sampler to move through these regions of the space.

To deal with this issue, split-merge samplers for DPMs have been developed, in which
a large number of elements can be reassigned in a single move (Dahl, 2003, 2005; Jain and
Neal, 2004, 2007). In the same way as the incremental samplers, one can directly apply
these split-merge samplers to MFMs as well, by simply plugging-in the MFM partition
distribution in place of the DPM partition distribution. More generally, it seems likely
that any partition-based MCMC sampler for DPMs could be applied to MFMs as well. In
Section 7, we apply the Jain–Neal split-merge samplers, coupled with incremental Gibbs
samplers, to do inference for MFMs in both conjugate and non-conjugate settings.

As usual in mixture models, the MFM is invariant under permutations of the compo-
nent labels, and this can lead to so-called “label-switching” issues if one naively attempts
to estimate quantities that are not invariant to labeling—such as the mean of a given
component—by averaging MCMC samples. In the experiments below, we only estimate
quantities that are invariant to labeling, such as the density, the number of components,
and the probability that two given points belong to the same cluster. Consequently, the
label-switching issue does not arise here. If inference for non-invariant quantities is desired,
methods for this purpose have been proposed (Papastamoulis and Iliopoulos, 2010).

In addition to the partition-based algorithms above, several DPM inference algorithms
are based on the stick-breaking representation, such as the slice samplers for mixtures
(Walker, 2007; Kalli et al., 2011). Although we have not explored this approach, it should
be possible to adapt these to MFMs using the stick-breaking representation described in
Section 4.3.

7 Empirical demonstrations

In Section 7.1, we illustrate some of the similarities and differences between MFMs and
DPMs. Section 7.2 compares the mixing performance of reversible jump MCMC versus the
Jain–Neal split-merge algorithms proposed in Section 6 for inference in the MFM. In Section
7.3, we apply an MFM model to discriminate cancer subtypes based on gene expression
data. All of the examples below happen to involve Gaussian component densities, but of
course our approach is not limited to mixtures of Gaussians.

7.1 Similarities and differences between MFMs and DPMs

In the preceding sections, we established that MFMs share many of the mathematical
properties of DPMs. Here, we empirically compare MFMs and DPMs, using simulated
data from a three-component bivariate Gaussian mixture. Our purpose is not to argue that
either model should be preferred over the other, but simply to illustrate that in certain
respects they are very similar, while in other respects they differ. In general, we would
not say that either model is uniformly better than the other; rather, one should choose
the model which is best suited to the application at hand—specifically, if one believes
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there to be infinitely many components, then an infinite mixture such as a DPM is more
appropriate, while if one expects finitely many components, an MFM is likely to be a better
choice. For additional empirical analysis of MFMs versus DPMs, we refer to Green and
Richardson (2001), who present different types of comparisons than we consider here.

7.1.1 Setup: data, model, and inference

Consider the data distribution
∑3

i=1 wiN (µi, Ci) where w = (0.45, 0.3, 0.25), µ1 =
(
4
4

)
,

µ2 =
(
7
4

)
, µ3 =

(
6
2

)
, C1 =

(
1 0
0 1

)
, C2 = R

(
2.5 0
0 0.2

)
RT where R =

(
cos ρ − sin ρ
sin ρ cos ρ

)
with ρ = π/4,

and C3 =
(
3 0
0 0.1

)
. See Figure 1 (bottom).

For the model, we use multivariate normal component densities fθ(x) = fµ,Λ(x) =

N (x|µ,Λ−1), and for the base measure (prior) H on θ = (µ,Λ), we take µ ∼ N (µ̂, Ĉ), Λ ∼
Wishartd(V, ν) independently, where µ̂ is the sample mean, Ĉ is the sample covariance, ν =

d = 2, and V = Ĉ−1/ν. Here, Wishartd(Λ|V, ν) ∝ | det Λ|(ν−d−1)/2 exp
(
− 1

2
tr(V −1Λ)

)
. Note

that this is a data-dependent prior. Note further that taking µ and Λ to be independent
results in a non-conjugate prior; this is appropriate when the location of the data is not
informative about the covariance (and vice versa).

For the MFM, we take K ∼ Geometric(r) (pK(k) = (1 − r)k−1r for k = 1, 2, . . . ) with
r = 0.1, and we choose γ = 1 for the finite-dimensional Dirichlet parameters. For the
DPM, we put an Exponential(1) prior on the concentration parameter, α. This makes the
priors on the number of clusters t roughly comparable for the range of n values considered
below; see Figure 4.

For both the MFM and DPM, we use the split-merge sampler of Jain and Neal (2007)
for non-conjugate priors, coupled with Algorithm 8 of Neal (2000) (using a single auxiliary
variable) for incremental Gibbs updates to the partition. Specifically, following Jain and
Neal (2007), we use the (5,1,1,5) scheme: 5 intermediate scans to reach the split launch
state, 1 split-merge move per iteration, 1 incremental Gibbs scan per iteration, and 5 inter-
mediate moves to reach the merge launch state. Gibbs updates to the DPM concentration
parameter α are made using Metropolis–Hastings moves.

Five independent datasets were used for each n ∈ {50, 100, 250, 1000, 2500}, and for
each model (MFM and DPM), the sampler was run for 5,000 burn-in iterations and 95,000
sample iterations (for a total of 100,000). Judging by traceplots and running averages of
various statistics, this appeared to be sufficient for mixing. The cluster sizes were recorded
after each iteration, and to reduce memory storage requirements, the full state of the chain
was recorded only once every 100 iterations. For each run, the seed of the random number
generator was initialized to the same value for both the MFM and DPM. The sampler used
for these experiments took approximately 8× 10−6 n seconds per iteration, where n is the
number of observations in the dataset. All experiments were performed using a 2.80 GHz
processor with 6 GB of RAM.

7.1.2 Density estimation

For certain nonparametric density estimation problems, both the DPM and MFM have
been shown to exhibit posterior consistency at the minimax optimal rate, up to logarithmic
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Figure 1: Density estimates for MFM (left) and DPM (right) on increasing amounts of
data from the bivariate example (bottom). As n increases, the estimates appear to be
converging to the true density, as expected.

15



Figure 2: Left: Hellinger distance between the estimated and true densities, for MFM (red,
left) and DPM (blue, right) density estimates, on the bivariate example. Right: Bayes
factors in favor of the MFM over the DPM. For each n ∈ {50, 100, 250, 1000, 2500}, five
independent datasets of size n were used, and the lines connect the averages for each n.

factors (Kruijer et al., 2010; Ghosal and Van der Vaart, 2007). In fact, even for small sample
sizes, we observe empirically that density estimates under the two models are remarkably
similar; for example, see Figure 1. (See Appendix B.2 for details on computing the density
estimates.) As the amount of data increases, the density estimates for both models appear
to be converging to the true density, as expected. Indeed, Figure 2 indicates that the
Hellinger distance between the estimated density and the true density is going to zero, and
further, that the rate of convergence appears to be nearly identical for the DPM and the
MFM. This suggests that for density estimation, the behavior of the two models seems to
be essentially the same.

On the other hand, Figure 2 shows that the Bayes factors p(x1:n|MFM)/p(x1:n|DPM)
are increasing as n grows, indicating that the MFM is a better fit to this data than the
DPM, in the sense that it has a higher marginal likelihood. This makes sense, since the
MFM is correctly specified for data from a finite mixture, while the DPM is not.

7.1.3 Clustering

Frequently, mixture models are used for clustering and latent class discovery, rather than
for density estimation. MFMs have a partition distribution that takes a very similar form
to that of the Dirichlet process, as discussed in Section 3. Despite this similarity, the MFM
partition distribution differs in two fundamental respects.

(1) The prior on the number of clusters t is very different. In an MFM, one has complete
control over the prior on the number of components k, which in turn provides control
over the prior on t. Further, as the sample size n grows, the MFM prior on t converges
to the prior on k. In contrast, in a Dirichlet process, the prior on t takes a particular
parametric form and diverges at a log n rate.

(2) Given t, the prior on the cluster sizes is very different. In an MFM, most of the
prior mass is on partitions in which the sizes of the clusters are all the same order
of magnitude, while in a Dirichlet process, most of the prior mass is on partitions in
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Figure 3: Representative sample clusterings from the posterior for the MFM and DPM,
on n = 250 data points from the bivariate example. The bottom plot shows the true
component assignments. See discussion in the text. (Best viewed in color.)
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which the sizes vary widely, with a few large clusters and many very small clusters
(see Section 5.3).

These prior differences carry over to noticeably different posterior clustering behavior.
Figure 3 displays a few representative clusterings sampled from the posterior for the three-
component bivariate Gaussian example. Around 92% of the MFM samples look like (a)
and (b), while around 2/3 of the DPM samples look like (d). Since the MFM is consistent
for k, the proportion of MFM samples with three clusters tends to 100% as n increases,
however, we do not expect this to occur for the DPM (see Section 7.1.4); indeed, when
n = 2500, it is 98% for the MFM and still around 2/3 for the DPM. Many of the DPM
samples have tiny “extra” clusters consisting of only a few points, as seen in Figure 3 (e)
and (f). Meanwhile, when the MFM samples have extra clusters, they tend to be large, as
in (c). All of this is to be expected, due to items (1) and (2) above, along with the fact that
these data are drawn from a finite mixture over the assumed family, and thus the MFM is
correctly specified, while the DPM is not.

7.1.4 Mixing distribution and the number of components

Assuming that the data are from a finite mixture, it is also sometimes of interest to infer
the mixing distribution or the number of components, subject to the caveat that these
inferences are meaningful only to the extent that the component distributions are correctly
specified and the model is finite-mixture identifiable. (In the notation of Section 4.2, the
mixing distribution isG, and we say the model is finite-mixture identifiable if for any discrete
measures G,G′ supported on finitely-many points, fG = fG′ a.e. implies G = G′.) While
Nguyen (2013) has shown that under certain conditions, DPMs are consistent for the mixing
distribution (in the Wasserstein metric), Miller and Harrison (2013, 2014) have shown that
the DPM posterior on the number of clusters is typically not consistent for the number of
components, at least when the concentration parameter is fixed; the question remains open
when using a prior on the concentration parameter, but we conjecture that it is still not
consistent. On the other hand, MFMs are consistent for the mixing distribution and the
number of components (for Lebesgue almost-all values of the true parameters) under very
general conditions (Nobile, 1994); this is a straightforward consequence of Doob’s theorem.
The relative ease with which this consistency can be established for MFMs is due to the
fact that in an MFM, the parameter space is a countable union of finite-dimensional spaces.

These consistency/inconsistency properties are readily observed empirically—they are
not simply large-sample phenomena. As seen in Figure 4, the tendency of DPM samples
to have tiny extra clusters causes the number of clusters t to be somewhat inflated, ap-
parently making the DPM posterior on t fail to concentrate, while the MFM posterior on
t concentrates at the true value (by Section 5.2). In addition to the number of clusters t,
the MFM also permits inference for the number of components k in a natural way (Figure
4), while in the DPM the number of components is always infinite. One might wonder
whether the DPM would perform better if the data were drawn from a mixture with an
additional one or two components with much smaller weight, however, this doesn’t seem to
make a difference; see Appendix B.3. On the other hand, on data from an infinite mixture,
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Figure 4: Prior and posterior on the number of clusters t for the MFM (left) and DPM
(right), and the posterior on the number of components k for the MFM (bottom), on
increasing amounts of data from the bivariate example. Each prior on t is approximated
from 106 samples from the prior.

one would expect the DPM to perform better than the MFM. See Appendix B.2 for the
formulas used to compute the posterior on k.

7.1.5 Issues with estimating the number of components

Due to the fact that inference for the number of components is a topic of high interest
in many research communities, it seems prudent to make some cautionary remarks in this
regard. Many approaches have been proposed for estimating the number of components
(Henna, 1985; Keribin, 2000; Leroux, 1992; Ishwaran et al., 2001; James et al., 2001; Henna,
2005; Woo and Sriram, 2006, 2007). In theory, the MFM model provides a Bayesian
approach to consistently estimating the number of components, making it a potentially
attractive method of assessing the heterogeneity of the data. However, there are several
possible pitfalls to consider, some of which are more obvious than others.

An obvious potential issue is that in many applications, the clusters which one wishes
to distinguish are purely notional (for example, perhaps, clusters of images or documents),
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and a mixture model is used for practical purposes, rather than because the data are
actually thought to arise from a mixture. Clearly, in such cases, inference for the “true”
number of components is meaningless. On the other hand, in some applications, the data
definitely come from a mixture (for example, extracellular recordings of multiple neurons),
so there is in reality a true number of components, although usually the form of the mixture
components is far from clear.

More subtle issues are that the posteriors on k and t can be (1) strongly affected
by the base measure H, and (2) sensitive to misspecification of the family of component
distributions {fθ}. Issue (1) can be seen, for instance, in the case of normal mixtures: it
might seem desirable to choose the prior on the component means to have large variance
in order to be less informative, however, this causes the posteriors on k and t to favor
smaller values (Richardson and Green, 1997; Stephens, 2000; Jasra et al., 2005). The basic
mechanism at play here is the same as in the Bartlett–Lindley paradox, and shows up in
many Bayesian model selection problems. With some care, this issue can be dealt with
by varying the base measure H and observing the effect on the posterior—that is, by
performing a sensitivity analysis—for instance, see Richardson and Green (1997).

Issue (2) is more serious. In practice, we typically cannot expect our choice of {fθ : θ ∈
Θ} to contain the true component densities (assuming the data are even from a mixture).
When the model is misspecified in this way, the posteriors of k and t can be severely
affected and depend strongly on n. For instance, if the model uses Gaussian components,
and the true data distribution is not a finite mixture of Gaussians, then the posteriors of
k and t can be expected to diverge to infinity as n increases. Consequently, the effects of
misspecification need to be carefully considered if these posteriors are to be used as measures
of heterogeneity. Steps toward addressing the issue of robustness have been taken by Woo
and Sriram (2006, 2007) and Rodŕıguez and Walker (2014), however, this is an important
problem demanding further study.

Despite these issues, sample clusterings and estimates of the number of components or
clusters can provide a useful tool for exploring complex datasets, particularly in the case
of high-dimensional data that cannot easily be visualized. It should always be borne in
mind, though, that the results can only be interpreted as being correct to the extent that
the model assumptions are correct.

7.2 Comparison with reversible jump MCMC

We compare two methods of inference for the MFM: the usual reversible jump MCMC
(RJMCMC) approach, and our proposed approach based on the Jain–Neal split-merge
algorithms. This purpose of this is (1) to compare the mixing performance of our method
versus RJMCMC, and (2) to demonstrate the validity of our method by showing agreement
with results obtained using RJMCMC. In addition to having better mixing performance,
our method has the significant advantage of providing generic algorithms that apply to a
wide variety of component distributions and priors, while RJMCMC requires one to design
specialized reversible jump moves.

Note that RJMCMC is a very general framework and an enormous array of MCMC
algorithms could be considered to be a special case of it. The most commonly-used instan-
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tiation of RJMCMC for univariate Gaussian mixtures seems to be the original algorithm
of Richardson and Green (1997), so it makes sense to compare with this. For multivariate
Gaussian mixtures, several RJMCMC algorithms have been proposed (Marrs, 1998; Zhang
et al., 2004; Dellaportas and Papageorgiou, 2006), however, the model we consider below
uses diagonal covariance matrices, and in this case, the Richardson and Green (1997) moves
can simply be extended to each coordinate. More efficient algorithms almost certainly exist
within the vast domain of RJMCMC, but the goal here is to compare with “plain-vanilla
RJMCMC” as it is commonly-used.

7.2.1 Comparison with RJMCMC on the galaxy dataset

The galaxy dataset (Roeder, 1990) is a standard benchmark for mixture models, consisting
of measurements of the velocities of 82 galaxies in the Corona Borealis region. To facilitate
the comparison with RJMCMC, we use exactly the same model as Richardson and Green
(1997). The component densities are univariate normal, fθ(x) = fµ,λ(x) = N (x|µ, λ−1),
and the base measure H on θ = (µ, λ) is µ ∼ N (µ0, σ

2
0), λ ∼ Gamma(a, b) independently

(where Gamma(λ|a, b) ∝ λa−1e−bλ). Further, a hyperprior is placed on b, by taking b ∼
Gamma(a0, b0). The remaining parameters are set to µ0 = (max{xi} + min{xi})/2, σ0 =
max{xi} − min{xi}, a = 2, a0 = 0.2, and b0 = 10/σ2

0. Note that the parameters µ0, σ0,
and b0 are functions of the observed data x1, . . . , xn. See Richardson and Green (1997)
for the rationale behind these parameter choices. (Note: This choice of σ0 may be a bit
too large, affecting the posteriors on the number of clusters and components, however, we
stick with it to facilitate the comparison.) Following Richardson and Green (1997), we take
K ∼ Uniform{1, . . . , 30} and γ = 1.

As in Section 7.1, we use the split-merge sampler of Jain and Neal (2007) for non-
conjugate priors, coupled with Algorithm 8 of Neal (2000). We use Gibbs sampling to
handle the hyperprior on b (i.e., append b to the state of the Markov chain, run the sampler
given b as usual, and periodically sample b given everything else). More general hyperprior
structures can be handled similarly. In all other respects, the same inference algorithm as
in Section 7.1 is used. We do not restrict the parameter space in any way (e.g., forcing the
component means to be ordered to obtain identifiability, as was done by Richardson and
Green, 1997). All of the quantities we consider are invariant to the labeling of the clusters;
see Jasra et al. (2005) for discussion on this point. Results for RJMCMC were obtained
using the Nmix software provided by Peter Green,1 which implements the algorithm of
Richardson and Green (1997).

Results

First, we demonstrate agreement between results from RJMCMC and our method based
on the Jain–Neal algorithm. Table 1 compares estimates of the MFM posterior on the
number of components k using both Jain–Neal and RJMCMC. Each algorithm was run for
106 iterations, the first 105 of which were discarded as burn-in. The two methods are in

1Currently available at http://www.maths.bris.ac.uk/~peter/Nmix/.
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very close agreement, empirically verifying that they are both correctly sampling from the
MFM posterior.

Table 1: Estimates of the MFM posterior on k for the galaxy dataset.

k 1 2 3 4 5 6 7
Jain–Neal 0.000 0.000 0.060 0.134 0.187 0.194 0.158
RJMCMC 0.000 0.000 0.059 0.131 0.187 0.197 0.160

8 9 10 11 12 13 14 15
0.110 0.069 0.040 0.023 0.012 0.007 0.004 0.002
0.110 0.068 0.039 0.022 0.012 0.006 0.003 0.002

To compare the mixing performance of the two methods, Figure 5 (top) shows traceplots
of the number of clusters over the first 5000 iterations. The number of clusters is often used
to assess mixing, since it is usually one of the quantities for which mixing is slowest. One
can see that the Jain–Neal split-merge algorithm appears to explore the space more quickly
than RJMCMC. Figure 5 (bottom left) shows estimates of the autocorrelation functions
for the number of clusters, scaled by iteration. The autocorrelation of Jain–Neal decays
significantly more rapidly than that of RJMCMC, confirming the visual intuition from
the traceplot. This makes sense since the Jain–Neal algorithm makes splitting proposals
in an adaptive, data-dependent way. The effective sample size (based on the number of
clusters) is estimated to be 1.6% for Jain–Neal versus 0.6% for RJMCMC; in other words,
100 Jain–Neal samples are equivalent to 1.6 independent samples (Kass et al., 1998).

However, each iteration of the Jain–Neal algorithm takes approximately 2.9 × 10−6 n
seconds, where n = 82 is the sample size, compared with 1.3 × 10−6 n seconds for RJM-
CMC, which is a little over twice as fast. In both algorithms, one iteration consists of a
reassignment move for each datapoint, updates to component parameters and hyperparam-
eters, and a split or merge move, but it makes sense that Jain–Neal would be a bit slower
per iteration since its reassignment moves and split-merge moves require a few more steps.
Nonetheless, it seems that this is compensated for by the improvement in mixing per iter-
ation: Figure 5 (bottom right) shows that when rescaled to account for computation time,
the estimated autocorrelation functions are nearly the same. Thus, in this experiment, the
two methods perform roughly equally well.

7.2.2 Comparison with RJMCMC as dimensionality increases

In this subsection, we show that our approach can provide a massive improvement over
RJMCMC when the parameter space is high-dimensional. We illustrate this with a model
that will be applied to gene expression data in Section 7.3.

We simulate data of increasing dimensionality, and assess the effect on mixing per-
formance. Specifically, for a given dimensionality d, we draw X1, . . . , Xn ∼ 1

3
N (m, I) +

1
3
N (0, I) + 1

3
N (−m, I), where m = (3/

√
d, . . . , 3/

√
d) ∈ R

d, and then normalize each di-

mension to have zero mean and unit variance. The purpose of the 1/
√
d factor is to prevent
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Figure 5: Results on the galaxy dataset. Top: Traceplots of the number of clusters at each
iteration. Bottom: Estimated autocorrelation function of the number of clusters, scaled by
iteration (left) and time in milliseconds (right).

the posterior from concentrating too quickly as d increases, so that one can still see the
sampler exploring the space.

To enable scaling to the high-dimensional gene expression data in Section 7.3, we use
multivariate Gaussian component densities with diagonal covariance matrices (i.e., for each
component, the dimensions are independent univariate Gaussians), and we place indepen-
dent conjugate priors on each dimension. Specifically, for each component, for i = 1, . . . , d,
dimension i is N (µi, λ

−1
i ) given (µi, λi), and λi ∼ Gamma(a, b), µi|λi ∼ N (0, (cλi)

−1). We
set a = 1, b = 1, and c = 1 (recall that the data are zero mean, unit variance in each
dimension), K ∼ Geometric(0.1), and γ = 1.

We compare the mixing performance of three samplers:

1. Collapsed Jain–Neal. Given the partition C of the data into clusters, the parameters
can be integrated out analytically since the prior is conjugate. Thus, we can use
the split-merge sampler of Jain and Neal (2004) for conjugate priors, coupled with
Algorithm 3 of Neal (2000). Following Jain and Neal (2004), we use the (5,1,1)
scheme: 5 intermediate scans to reach the split launch state, 1 split-merge move per
iteration, and 1 incremental Gibbs scan per iteration.

2. Jain–Neal. Even though the prior is conjugate, we can still use the Jain and Neal
(2007) split-merge algorithm for non-conjugate priors, coupled with Algorithm 8 of
Neal (2000). As in Section 7.1, we use the (5,1,1,5) scheme.

3. RJMCMC. For reversible jump MCMC, we use a natural multivariate extension of the
moves from Richardson and Green (1997). Specifically, for the split move, we propose
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Figure 6: Top: Estimated autocorrelation functions for the number of clusters, for each
algorithm, for each d ∈ {4, 8, 12}. Bottom: Traceplots of the number of clusters over the
first 20 seconds of sampling.

splitting the mean and variance for each dimension i according to the formulas in
Richardson and Green (1997), using independent variables u2i and u3i. For the birth
move, we make a proposal from the prior. The remaining moves are essentially the
same as in Richardson and Green (1997).

Results

For each d ∈ {4, 8, 12}, a dataset of size n = 100 was generated as described above, and
each of the three algorithms was run for 106 iterations. For each algorithm and each d,
Figure 6 shows the estimated autocorrelation function for the number of clusters (scaled
to milliseconds), as well as a traceplot of the number of clusters over the first 20 seconds
of sampling. We see that as the dimensionality increases, mixing performance degrades
for all three algorithms, which is to be expected. However, it degrades significantly more
rapidly for RJMCMC than for the Jain–Neal algorithms, especially the collapsed version.
This difference can be attributed to the clever data-dependent split-merge proposals in
the Jain–Neal algorithms, and the fact that the collapsed version benefits further from the
effective reduction in dimensionality resulting from integrating out the parameters.
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As the dimensionality increases, the advantage over RJMCMC becomes ever greater.
This demonstrates the major improvement in performance that can be obtained using the
approach we propose. In fact, in the next section, we apply our method to very high-
dimensionality gene expression data on which the time required for RJMCMC to mix
becomes unreasonably long, making it impractical. Meanwhile, our approach using the
collapsed Jain–Neal algorithm still mixes well.

7.3 Discriminating cancer subtypes using gene expression data

In cancer research, gene expression profiling—that is, measuring the amount that each
gene is expressed in a given tissue sample—enables the identification of distinct subtypes
of cancer, leading to greater understanding of the mechanisms underlying cancers as well
as potentially providing patient-specific diagnostic tools. In gene expression datasets, there
are typically a small number of very high-dimensional data points, each consisting of the
gene expression levels in a given tissue sample under given conditions.

One approach to analyzing gene expression data is to use Gaussian mixture models to
identify clusters which may represent distinct cancer subtypes (Yeung et al., 2001; McLach-
lan et al., 2002; Medvedovic and Sivaganesan, 2002; Medvedovic et al., 2004; de Souto et al.,
2008; Rasmussen et al., 2009; McNicholas and Murphy, 2010). In fact, in a comparative
study of seven clustering methods on 35 cancer gene expression datasets with known ground
truth, de Souto et al. (2008) found that finite mixtures of Gaussians provided the best re-
sults, as long as the number of components k was set to the true value. However, in practice,
choosing an appropriate value of k can be difficult. Using the methods developed in this
paper, the MFM provides a principled approach to inferring the clusters even when k is
unknown, as well as doing inference for k, provided that the components are well-modeled
by Gaussians.

The purpose of this example is to demonstrate that our approach can work well even
in very high-dimensional settings, and may provide a useful tool for this application. It
should be emphasized that we are not cancer scientists, so the results reported here should
not be interpreted as scientifically relevant, but simply as a proof-of-concept.

7.3.1 Setup: data, model, and inference

We apply the MFM to gene expression data collected by Armstrong et al. (2001) in a study
of leukemia subtypes. Armstrong et al. (2001) measured gene expression levels in samples
from 72 patients who were known to have one of two leukemia types, acute lymphoblastic
leukemia (ALL) or acute myelogenous leukemia (AML), and they found that a previously
undistinguished subtype of ALL, which they termed mixed-lineage leukemia (MLL), could
be distinguished from conventional ALL and AML based on the gene expression profiles.

We use the preprocessed data provided by de Souto et al. (2008), which they filtered to
include only genes with expression levels differing by at least 3-fold in at least 30 samples,
relative to their mean expression level across all samples. The resulting dataset consists
of 72 samples and 1081 genes per sample, i.e., n = 72 and d = 1081. Following standard
practice, we take the base-2 logarithm of the data before analysis, and normalize each
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Figure 7: Results on the leukemia gene expression dataset. Left: Posteriors on the number
of clusters and components. Right: Posterior similarity matrix. See the text for discussion.

dimension to have zero mean and unit variance.
We use the same model as in Section 7.2.2. Note that these parameter settings are

simply defaults and have not been tailored to the problem; a careful scientific investigation
would involve thorough prior elicitation, sensitivity analysis, and model checking.

The collapsed Jain–Neal algorithm described in Section 7.2.2 was used for inference.
The sampler was run for 1,000 burn-in iterations, and 19,000 sample iterations. This
appears to be many more iterations than required for burn-in and mixing in this particular
example—in fact, only 5 to 10 iterations are required to separate the clusters, and the
results are indistinguishable from using only 10 burn-in and 190 sample iterations. The
full state of the chain was recorded every 20 iterations. Each iteration took approximately
1.3× 10−3 n seconds, with n = 72.

7.3.2 Results

The posterior on the number of clusters t is concentrated at 3 (see Figure 7), in agreement
with the division into ALL, MLL, and AML determined by Armstrong et al. (2001). The
posterior on k is shifted slightly to the right because there are a small number of observa-
tions; this accounts for uncertainty regarding the possibility of additional components that
were not observed in the given data.

Figure 7 also shows the posterior similarity matrix, that is, the matrix in which entry
(i, j) is the posterior probability that data points i and j belong to the same cluster; in
the figure, white is probability 0 and black is probability 1. The rows and columns of the
matrix are ordered according to ground truth, such that 1-24 are ALL, 25-44 are MLL, and
45-72 are AML. The model has clearly separated the subjects into these three groups, with
a small number of exceptions: subject 41 is clustered with the AML subjects instead of
MLL, subject 52 with the MLL subjects instead of AML, and subject 17 is about 50% ALL
and 50% MLL. Thus, the MFM has successfully clustered the subjects according to cancer
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subtype. This demonstrates the viability of our approach in high-dimensional settings.

A Proofs

Proof of Theorem 3.1. Note that Equation A.1 below is well-known (see, e.g., Green and
Richardson (2001) or McCullagh and Yang (2008)); we derive it here for completeness.
Letting Ei = {j : zj = i}, and writing C(z) for the partition induced by z = (z1, . . . , zn),
by Dirichlet-multinomial conjugacy we have

p(z|k) =
∫

p(z|π)p(π|k)dπ =
Γ(kγ)

Γ(γ)k

∏k
i=1 Γ(|Ei|+ γ)

Γ(n+ kγ)
=

1

(kγ)(n)

∏

c∈C(z)

γ(|c|),

for z ∈ [k]n, provided that pK(k) > 0. Recall that x(m) = x(x + 1) · · · (x + m − 1) and
x(m) = x(x−1) · · · (x−m+1), with x(0) = 1 and x(0) = 1 by convention; note that x(m) = 0
when x is a nonnegative integer less than m. It follows that for any partition C of [n],

p(C|k) =
∑

z∈[k]n : C(z)=C

p(z|k)

= #
{
z ∈ [k]n : C(z) = C

} 1

(γk)(n)

∏

c∈C

γ(|c|)

=
k(t)

(γk)(n)

∏

c∈C

γ(|c|), (A.1)

where t = |C|, since #
{
z ∈ [k]n : C(z) = C

}
=

(
k
t

)
t! = k(t). Finally,

p(C) =
∞∑

k=1

p(C|k)pK(k) =
(∏

c∈C

γ(|c|)
) ∞∑

k=1

k(t)
(γk)(n)

pK(k) = Vn(t)
∏

c∈C

γ(|c|),

with Vn(t) as in Equation 3.2.

Proof of Equation 3.4. Theorem 3.1 shows that the distribution of C is as shown. Next,

note that instead of sampling only θ1, . . . , θk
iid∼ H given K = k, we could simply sample

θ1, θ2, . . .
iid∼ H independently of K, and the distribution of X1:n would be the same. Now,

Z1:n determines which subset of the i.i.d. variables θ1, θ2, . . . will actually be used, and the
indices of this subset are independent of θ1, θ2, . . . ; hence, denoting these random indices
I1 < · · · < IT , we have that θI1 , . . . , θIT |Z1:n are i.i.d. from H. For c ∈ C, let φc = θIi where
i is such that c = {j : zj = Ii}. This completes the proof.

Proof of the properties in Section 3.1. Abbreviate x = x1:n, z = z1:n, and θ = θ1:k, and
assume p(z, k) > 0. Letting Ei = {j : zj = i}, we have p(x|θ, z, k) =

∏k
i=1

∏
j∈Ei

fθi(xj)
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and

p(x|z, k) =
∫

Θk

p(x|θ, z, k)p(dθ|k) =
k∏

i=1

∫

Θ

[ ∏

j∈Ei

fθi(xj)
]
H(dθi)

=
k∏

i=1

m(xEi
) =

∏

c∈C(z)

m(xc).

Since this last expression depends only on z, k through C = C(z), we have p(x|C) =∏
c∈C m(xc), establishing Equation 3.5. Next, recall that p(C|k) = k(t)

(γk)(n)

∏
c∈C γ

(|c|) (where

t = |C|) from Equation A.1, and thus

p(t|k) =
∑

C:|C|=t

p(C|k) = k(t)
(γk)(n)

∑

C:|C|=t

∏

c∈C

γ(|c|),

(where the sum is over partitions C of [n] such that |C| = t) establishing Equation 3.6.
Equation 3.7 follows, since

p(k|t) ∝ p(t|k)p(k) ∝ k(t)
(γk)(n)

pK(k),

(provided p(t) > 0) and the normalizing constant is precisely Vn(t). To see that C ⊥ K | T
(Equation 3.8), note that if t = |C| then

p(C|t, k) = p(C, t|k)
p(t|k) =

p(C|k)
p(t|k) ,

(provided p(t, k) > 0) and due to the form of p(C|k) and p(t|k) just above, this quantity
does not depend on k; hence, p(C|t, k) = p(C|t). To see that X ⊥ K | T (Equation 3.9),
note that X ⊥ K | C; using this in addition to C ⊥ K | T , we have

p(x|t, k) =
∑

C:|C|=t

p(x|C, t, k)p(C|t, k) =
∑

C:|C|=t

p(x|C, t)p(C|t) = p(x|t).

Proof of Theorem 4.1. Let C∞ be the random partition of Z>0 as in Section 3.3, and for
n ∈ {1, 2, . . . }, let Cn be the partition of [n] induced by C∞. Then

p(Cn|Cn−1, . . . , C1) = p(Cn|Cn−1) ∝ qn(Cn) I(Cn \ n = Cn−1),

where C\n denotes C with element n removed, and I(·) is the indicator function (I(E) = 1 if
E is true, and I(E) = 0 otherwise). Recalling that qn(Cn) = Vn(|Cn|)

∏
c∈Cn

γ(|c|) (Equation
3.1), we have, letting t = |Cn−1|,

p(Cn|Cn−1) ∝
{

Vn(t+ 1)γ if n is a singleton in Cn, i.e., {n} ∈ Cn
Vn(t)(γ + |c|) if c ∈ Cn−1 and c ∪ {n} ∈ Cn,

for Cn such that Cn \ n = Cn−1 (and p(Cn|Cn−1) = 0 otherwise). With probability 1,
qn−1(Cn−1) > 0, thus Vn−1(t) > 0 and hence also Vn(t) > 0, so we can divide through by
Vn(t) to get the result.
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Proof of Theorem 4.2. Let G ∼ M(pK , γ,H) and let β1, . . . , βn
iid∼ G, given G. Then the

joint distribution of (β1, . . . , βn) (with G marginalized out) is the same as (θZ1 , . . . , θZn
) in

the original model (Equation 2.1). Let Cn denote the partition induced by Z1, . . . , Zn as
usual, and for c ∈ Cn, define φc = θI where I is such that c = {j : Zj = I}; then, as in the
proof of Equation 3.4, (φc : c ∈ Cn) are i.i.d. from H, given Cn.

Therefore, we have the following equivalent construction for (β1, . . . , βn):

Cn ∼ qn, with qn as in Section 3.3

φc
iid∼ H for c ∈ Cn, given Cn

βj = φc for j ∈ c, c ∈ Cn, given Cn, φ.

Due to the self-consistency property of q1, q2, . . . (Proposition 3.3), we can sample Cn, (φc :
c ∈ Cn), β1:n sequentially for n = 1, 2, . . . by sampling from the restaurant process for
Cn|Cn−1, sampling φ{n} from H if n is placed in a cluster by itself (or setting φc∪{n} = φc if
n is added to c ∈ Cn−1), and setting βn accordingly.

In particular, if the base measure H is continuous, then the φ’s are distinct with proba-
bility 1, so conditioning on β1:n−1 is the same as conditioning on Cn−1, (φc : c ∈ Cn−1), β1:n−1,
and hence we can sample βn|β1:n−1 in the same way as was just described. In view of the
form of the restaurant process (Theorem 4.1), the result follows.

We use the following elementary result in the proof of Theorem 5.1; it is a special case
of the dominated convergence theorem.

Proposition A.1. For j = 1, 2, . . . , let a1j ≥ a2j ≥ · · · ≥ 0 such that aij → 0 as i → ∞.
If

∑∞
j=1 a1j < ∞ then

∑∞
j=1 aij → 0 as i → ∞.

Proof of Theorem 5.1. For any x > 0, writing x(n)/n! = Γ(x + n)/(n! Γ(x)) and using
Stirling’s approximation, we have

x(n)

n!
∼ nx−1

Γ(x)

as n → ∞. Therefore, the k = t term of Vn(t) (Equation 3.2) is

t(t)
(γt)(n)

pK(t) ∼
t!

n!

Γ(γt)

nγt−1
pK(t).

The first t− 1 terms of Vn(t) are 0, so to prove the result, we need to show that the rest of
the series, divided by the k = t term, goes to 0. (Recall that we have assumed pK(t) > 0.)
To this end, let

bnk = (γt)(n)
k(t)

(γk)(n)
pK(k).

We must show that
∑∞

k=t+1 bnk → 0 as n → ∞. We apply Proposition A.1 with aij =
bt+i,t+j. For any k > t, b1k ≥ b2k ≥ · · · ≥ 0. Further, for any k > t,

(γt)(n)

(γk)(n)
∼ nγt−1

Γ(γt)

Γ(γk)

nγk−1
−→ 0
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Figure 8: Amount of time required to precompute the MFM coefficients Vn(1), . . . , Vn(tpre)
for various values of tpre, for increasing n.

as n → ∞, hence, bnk → 0 as n → ∞ (for any k > t). Finally, observe that
∑∞

k=t+1 bnk ≤
(γt)(n)Vn(t) < ∞ for any n ≥ t. Therefore, by Proposition A.1,

∑∞
k=t+1 bnk → 0 as n → ∞.

This proves the result.

Proof of Theorem 5.2. For any t ∈ {1, . . . , k},

pn(K = t | T = t) =
1

Vn(t)

t(t)
(γt)(n)

pK(t) −→ 1 (A.2)

as n → ∞ (where pn denotes the MFM distribution with n samples), by Equation 3.7 and
Theorem 5.1. For any n ≥ k,

p(K = k | x1:n) =
k∑

t=1

p(K = k | T = t, x1:n) p(T = t | x1:n),

and note that by Equations 3.9 and A.2, p(K = k | T = t, x1:n) = pn(K = k | T = t) −→
I(k = t) for t ≤ k. The result follows.

B Miscellanea

B.1 Time required to precompute the MFM coefficients

In all of the empirical demonstrations in this paper, the largest value of t visited by the
sampler was less than 30. Thus, in each case it was sufficient to precompute Vn(t) for
t = 1, . . . , 30, and reuse these values throughout MCMC sampling.

To see how long this precomputation would take if the sample size n and/or the number
of clusters were much larger, Figure 8 shows the amount of time required to compute Vn(t)
for t = 1, . . . , tpre, for each tpre ∈ {30, 200, 1000, 5000, 25000}, for increasing values of n,
when K ∼ Geometric(0.1) and γ = 1. For tpre = 30 it only takes around 0.001 seconds
for any n. For much larger values of tpre it takes longer, but the time required relative to
MCMC sampling would still be negligible. The reason why the computation time decreases
as n grows past tpre is that, as discussed in Section 3.2, the infinite series for Vn(t) (Equation
3.2) converges more rapidly when n is much bigger than t.
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B.2 Formulas for some posterior quantities

Posterior on the number of components k

The posterior on t = |C| is easily estimated from posterior samples of C. To compute the
MFM posterior on k, note that

p(k|x1:n) =
∞∑

t=1

p(k|t, x1:n)p(t|x1:n) =
n∑

t=1

p(k|t)p(t|x1:n),

by Equation 3.9 and the fact that t cannot exceed n. Using this and the formula for p(k|t)
given by Equation 3.7, it is simple to transform our estimate of the posterior on t into an
estimate of the posterior on k. For the DPM, the posterior on the number of components
k is always trivially a point mass at infinity.

Density estimates

Using the restaurant process (Theorem 4.1), it is straightforward to show that if C is a
partition of [n] and φ = (φc : c ∈ C) then

p(xn+1 | C, φ, x1:n) ∝
Vn+1(t+ 1)

Vn+1(t)
γ m(xn+1) +

∑

c∈C

(|c|+ γ)fφc
(xn+1) (B.1)

where t = |C|, and, using the recursion for Vn(t) (Equation 3.10), this is normalized when
multiplied by Vn+1(t)/Vn(t). Further,

p(xn+1 | C, x1:n) ∝
Vn+1(t+ 1)

Vn+1(t)
γ m(xn+1) +

∑

c∈C

(|c|+ γ)
m(xc∪{n+1})

m(xc)
, (B.2)

with the same normalization constant. Therefore, when m(xc) can be easily computed,
Equation B.2 can be used to estimate the posterior predictive density p(xn+1|x1:n) based
on samples from C | x1:n. When m(xc) cannot be easily computed, Equation B.1 can
be used to estimate p(xn+1|x1:n) based on samples from C, φ | x1:n, along with samples

θ1, . . . , θN
iid∼ H to approximate m(xn+1) ≈ 1

N

∑N
i=1 fθi(xn+1).

The posterior predictive density is, perhaps, the most natural estimate of the density.
However, following Green and Richardson (2001), a simpler way to obtain a natural estimate
is by assuming that element n+ 1 is added to an existing cluster; this will be very similar
to the posterior predictive density when n is sufficiently large. To this end, we define
p∗(xn+1 | C, φ, x1:n) = p(xn+1 | C, φ, x1:n, |Cn+1| = |C|), where Cn+1 is the partition of [n+1],
and observe that

p∗(xn+1 | C, φ, x1:n) =
∑

c∈C

|c|+ γ

n+ γt
fφc

(xn+1)

where t = |C| (Green and Richardson, 2001). Using this, we can estimate the density by

1

N

N∑

i=1

p∗(xn+1 | C(i), φ(i), x1:n), (B.3)
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Figure 9: Posterior on the number of clusters t for the MFM and DPM on data from the
modified bivariate example with a small fourth component.

where (C(1), φ(1)), . . . , (C(N), φ(N)) are samples from C, φ | x1:n. The corresponding expres-
sions for the DPM are all very similar, using its restaurant process instead. The density
estimates shown in this paper are obtained using this approach.

These formulas are conditional on additional parameters such as γ for the MFM, and
α for the DPM. If priors are placed on such parameters and they are sampled along with
C and φ given x1:n, then the posterior predictive density can be estimated using the same
formulas as above, but also using the posterior samples of these additional parameters.

B.3 Small components

In Section 7.1, we noted that the DPM tends to introduce one or two tiny extra components,
and it is natural to wonder whether the DPM would fare better if the data were actually
drawn from a mixture with an additional one or two small components. To see, we modify
the data distribution from Section 7.1 to be a four-component mixture in which w1 is
reduced from 0.45 to 0.44, and the fourth component has weight w4 = 0.01, mean µ4 =

(
8
11

)
,

and covariance C4 =
(
0.1 0
0 0.1

)
. We use exactly the same model and inference parameters as

in Section 7.1.
Figure 9 shows that the MFM still more accurately infers the number of clusters than the

DPM. We expect that in order to have a situation where the DPM performs more favorably
in terms of clustering and inferring the number of clusters, the number of components would
have to be sufficiently large relative to the sample size, or infinite.
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