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1
Mixture of Experts Modeling with
Social Science Applications

Isobel Claire Gormley & Thomas Brendan Murphy

University College Dublin

1.1 Introduction

Clustering methods are used to group observations into homogeneous subgroups. Clustering
methods are usually either algorithmically based (e.g. k-means or hierarchical clustering)
(see Hartigan 1975) or based on statistical models (e.g. Fraley and Raftery 2002; McLachlan
and Basford 1988).

Clustering methods have been widely used in the social sciences. Examples of clustering
applications include market research (Punj and Stewart 1983), archaeology (Hall 2004),
education (Aitkin et al. 1981; Gormley and Murphy 2006) and sociology (Lee et al. 2005). In
Section 1.2, we outline two applications of clustering in the social sciences: studying voting
blocs in elections (Section 1.2.1) and exploring organizational structure in a corporation
(Section 1.2.2).

In any cluster analysis application, it is common that clustering is implemented on outcome
variables of interest without reference to concomitant covariate information on the objects
being clustered. Once a clustering of objects has been produced, the user must probe the
clusters to investigate their structure. Interpretations of the clusters can be produced with
reference to values of the outcome variables within each cluster and/or with reference to the
concomitant covariate information that wasn’t used in the construction of the clusters.

The use of a model-based approach to clustering allows for any uncertainty to be
accounted for in a probabilistic framework. Mixture models are the basis of many model-
based clustering methods. In Section 1.3, we briefly describe the use of mixture models
for clustering. The mixture of experts model (Jacobs et al. 1991) provides a framework
for extending the mixture model to allow the model parameters to depend on concomitant
covariate information; these models are reviewed in Section 1.4.
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Examples of mixture of experts models and their application are motivated in Section 1.2
and implemented for the study of voting blocs in Section 1.5 and for studying organizational
structure in Section 1.6.

We conclude, in Section 1.7, by discussing mixture of experts models and their
interpretation in statistical applications.

1.2 Motivating Examples

1.2.1 Voting Blocs

In any election, members of the electorate exhibit different voting behaviors by choosing
to vote for different candidates. Differences in voting behavior may be due to allegiance
to a political party or faction, choosing familiar candidates, choosing geographically local
candidates or one of many other reasons. Such different voting behaviors lead to a collection
of votes from a heterogeneous population.

The discovery and characterization of voting blocs (i.e. groups of voters with similar
preferences) is of considerable interest. For example, Tam (1995) studies Asian voting
behavior within the American political arena via a multinomial logistic regression model
and concludes that Asians should not be treated as a monolithic group. Holloway (1995)
examines the differences between voting blocs when analyzing United Nations roll call data
using a multidimensional scaling technique. Stern (1993), Murphy and Martin (2003) and
Busse et al. (2007) use mixtures of distance-based models to characterize voting blocs in
the American Psychological Association presidential election of 1980. Gormley and Murphy
(2008a) use a mixture of Plackett-Luce (Plackett 1975) and Benter (Benter 1994) models
to characterize voting blocs in the electorate for Irish governmental and Irish presidential
elections. Spirling and Quinn (2010) use a Dirichlet process mixture model to study voting
blocs in the U.K. House of Commons.

Many of the above studies investigate the existence of voting blocs by clustering voting
data and then subsequently investigating the resulting clusters by examining the cluster
parameters and by exploring concomitant voter covariates (when available) for members of
each cluster. Such explorations can assist in determining what factors influence voting bloc
membership and as a result voting behavior.

A more principled approach to investigating which factors influence voting behavior is to
incorporate voter covariates in the modeling process which is used to construct the clusters.
The mixture of experts framework provides a modeling structure to do this. In Section 1.5,
we outline the use of mixture of experts models to characterize intended voting behavior in
the 1997 Irish presidential election.

1.2.2 Social and Organizational Structure

The study of social mechanisms which underlie cooperation among peers within an
organization is an important area of study within sociology and within organizations in
general (Lazega 2001). Social network analysis (e.g. Wasserman and Faust 1994) is a
highly active research area which provides an approach to examining structures within an
organization or a network of ‘actors’. The study of such networks has recently attracted
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attention from a broad spectrum of research communities including sociology, statistics,
mathematics, physics and computer science.

Specifically, social network data record the interactions (relationships) between a group
of actors or social entities. For example, a social network data set may detail the friendship
links among a group of colleagues or it may detail the level of international trade between
countries. Network data may be binary, indicating the presence/absence of a link between two
actors, or it may be non-binary indicating the level of interaction between two actors. The aim
of social network analysis is to explore the structure within the network, to aid understanding
of underlying phenomena and the relations that may or may not exist within the network.

Many statistical approaches to modeling the interactions between actors in a network are
available (Goldenberg et al. 2009; Kolaczyk 2009; Snijders et al. 2006; Wasserman and Faust
1994); many recent modeling advances tend to employ the idea of locating actors in a latent
social space. In particular, Hoff et al. (2002) develop the idea of a latent social space and
define the probability of a link between two actors as a function of their separation in the
latent social space; this idea has been developed in various directions in Handcock et al.
(2007), Krivitsky and Handcock (2008) and Krivitsky et al. (2009) in order to accommodate
clusters (or communities) of highly connected actors in the network and other network
effects. Airoldi et al. (2008) develop an alternative latent variable model for social network
data where a soft clustering of network actors is achieved; this has been further extended by
Xing et al. (2010) to model dynamic networks. More recently, Mariadassou et al. (2010) and
Latouche et al. (2010) developed novel latent variable models for finding clusters of actors
(or nodes) in network data.

In many social network modeling applications, concomitant covariate information on each
actor is not used in the clustering of actors in the network. The clusters discovered in the
network are explored and explained by examining the actor attributes that were not used
in the clustering process. We endorse the use of mixture of experts models to provide a
principled framework for clustering actors in a social network when concomitant covariate
information is available for the actors.

In Section 1.6, a mixture of experts model for social network data is employed to explore
the organizational structure within a northeastern USA corporate law firm.

1.3 Mixture Models

Let y1, y2, . . . , yN be an iid sample of outcome variables from a population that is modeled
by a probability density p(·). The mixture model assumes that the population consists of G
components or sub-populations. The probability of component g occurring is τg and each
component is modeled using a probability density p(yi|θg), for g = 1, 2, . . . , G. Hence, the
overall model for a member of the population is of the form

p(yi) =
G∑

g=1

τgp(yi|θg).

In many mixture modeling contexts, an augmented form of the mixture model which
includes the unknown sub-population membership vectors li for i = 1, . . . , N , greatly assists
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computations. The augmented model is

p(yi, li) =
G∏

g=1

[τgp(yi|θg)]
lig

where lig = 1 if observation i comes from sub-population g and lig = 0 otherwise.
Inference for the mixture model is usually implemented by maximum likelihood using the

EM algorithm (Dempster et al. 1977) or in a Bayesian framework using Markov Chain Monte
Carlo (Diebolt and Robert 1994). The clustering of observations is based on the posterior
probability of component membership for each observation,

P(lig = 1|yi) = E(lig|yi) =
τgp(yi|θg)∑G

g′=1 τg′p(yi|θg′)
.

The maximum a posteriori estimate of cluster membership assigns each observation to its
most probable group, thus achieving a clustering of the observations.

Amongst the most commonly studied and applied mixture models are the Gaussian mixture
model (e.g. Fraley and Raftery 2002) and the Latent Class Analysis model, which is a mixture
of products of independent Bernoulli models (Lazarsfeld and Henry 1968). Extensive reviews
of mixture models and their application are given in Everitt and Hand (1981), Titterington et
al. (1985), McLachlan and Basford (1988), McLachlan and Peel (2000), Fraley and Raftery
(1998, 2002) and Melnykov and Maitra (2010).

Software for fitting mixture models in R (R Development Core Team 2009) include
mclust (Fraley and Raftery 2006), mixtools (Benaglia et al. 2009) and flexmix (Leisch 2004)
amongst others. Other software for mixture modeling includes MIXMOD (Biernacki et al.
2006) and EMMIX (McLachlan et al. 1999).

1.4 Mixture of Experts Models
The mixture of experts model (Jacobs et al. 1991) extends the mixture model by allowing the
parameters of the model to be functions of an observation’s concomitant covariates wi:

p(yi|wi) =
G∑

g=1

τg(wi)p(yi|θg(wi)). (1.1)

Bishop (2006, Chapter 14.5) refers to the mixture of experts model as a conditional mixture
model, as for a given set of concomitant covariates wi the distribution of yi is a mixture
model.

The terminology used in the mixture of experts model literature calls the p(yi|θg(wi))
densities ‘experts’ and the τg(wi) probabilities ‘gating networks’. In its original formulation
in Jacobs et al. (1991), the model for τ1(wi), τ2(wi), . . . , τG(wi) is a multinomial logistic
regression model and p(yi|θg(wi)) is a general linear model.

Figure 1.1 illustrates a graphical model representation of the mixture of experts model.
This representation aids the interpretation of the full mixture of experts model (in which
all model parameters are functions of covariates (Figure1.1(d))) and the special cases where
some of the model parameters do not depend on the covariates (Figures1.1(a)-1.1(c)). The
four models detailed in Figure 1.1 have the following interpretations:
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(a) in the mixture model, the outcome variable distribution depends on the latent cluster
membership variable li and the model is independent of the covariates wi.

(b) in the expert network mixture of experts model, the outcome variable distribution
depends on both the covariates wi and the latent cluster membership variable li; the
distribution of the latent variable is independent of the covariates.

(c) in the gating network mixture of experts model, the outcome variable distribution
depends on the latent cluster membership variable li and the distribution of the latent
variable depends on wi.

(d) in the full mixture of experts model, the outcome variable distribution depends on both
the covariates wi and on the latent cluster membership variable li. Additionally the
distribution of the latent variable li depends on the covariates wi.

Mixture of experts models have been employed in a wide range of modeling settings —
Peng et al. (1996) use a mixture of experts model and a hierarchical mixture of experts model
in speech recognition applications. Thompson et al. (1998) use a mixture of experts model
for studying the diagnosis of diabetic patients. Rosen and Tanner (1999) develop a mixture
of experts proportional hazards model and analyze a multiple myeloma data set. Hurn et
al. (2003) use MCMC to fit a mixture of regressions model which is a special case of the
mixture of experts model, but where the mixing proportions don’t depend on the covariates
wi. Carvalho and Tanner (2007) use a mixture of experts model for non-linear time-series
modeling. Geweke and Keane (2007) use a model similar to the mixture of experts model,
but where the gating network has a probit structure, in a number of econometric applications.

Further details on mixture of experts models are given in McLachlan and Peel (2000,
Chapter 5.13), Tanner and Jacobs (2001) and Bishop (2006, Chapter 14.5), where extensions
including the hierarchical mixture of experts model (Jordan and Jacobs 1994) are discussed.
Software for fitting mixture of experts models in the R programming environment (R
Development Core Team 2009) include hme (Evers 2007), mixtools (Benaglia et al. 2009)
and integrativeME (Cao 2010).

1.5 A Mixture of Experts Model for Ranked Preference Data
The current President of Ireland, Mary McAleese, was first elected in 1997 under the
Single Transferable Vote electoral system. Under this system voters rank, in order of their
preference, some or all of the electoral candidates. The vote counting system which results
in the elimination of candidates and the subsequent election of the President is an intricate
process involving the transfer of votes between candidates as specified by the voters’ ballots.
Details of the electoral system, the counting process and the 1997 Irish presidential election
are given in Coakley and Gallagher (2004), Sinnott (1995), Sinnott (1999) and Marsh (1999).

The 1997 presidential election race involved five candidates: Mary Banotti, Mary
McAleese, Derek Nally, Adi Roche and Rosemary Scallon. Derek Nally and Rosemary
Scallon were independent candidates while Mary Banotti and Adi Roche were endorsed by
the then current opposition parties Fine Gael and Labour respectively. Mary McAleese was
endorsed by the Fianna Fáil party who were in power at that time. In terms of candidate type,
McAleese and Scallon were deemed to be conservative candidates with the other candidates
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Figure 1.1 The graphical model representation of the mixture of experts model. The differences
between the four special cases are due to the presence or absence of edges between the covariates
w and the parameters τ and θ.
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Table 1.1 Covariates recorded for each respondent in the Irish Marketing
Surveys poll.

Age Area Gender Government Marital Social
satisfaction status class

– City Housewife Satisfied Married AB
Town Non-housewife Dissatisfied Single C1
Rural Male No opinion Widowed C2

DE
F50+
F50-

regarded as liberal. Gormley and Murphy (2008a,b, 2010a) provide further details on the
1997 presidential election and on the candidates.

One month prior to election day a survey was conducted by Irish Marketing Surveys on
1083 respondents. Respondents were asked to list some or all of the candidates in order of
preference, as if they were voting on the day of the poll. In addition, pollsters gathered data
on attributes of the respondents as detailed in Table 1.1.

Interest lies in determining if groups of voters with similar preferences (i.e. voting blocs)
exist within the electorate. If such voting blocs do exist, the influence the recorded socio-
economic variables may have on the clustering structure and/or on the preferences which
characterize a voting bloc is also of interest. Jointly modeling the rank preference votes and
the covariates through a mixture of experts model for rank preference data when clustering
the electorate provides this insight.

Given the rank nature of the outcome variables or votes yi (i = 1, . . . , N = 1083) the
probability density p(·) in the mixture of experts model (1.1) must have an appropriate
form. The Plackett-Luce model (Plackett 1975) (or exploded logit model) for rank data
provides a suitable model; Benter’s model (Benter 1994) provides another alternative. Let
yi = [c(i, 1), . . . , c(i,mi)] denote the ranked ballot of voter i where c(i, j) denotes the
candidate ranked in jth position by voter i and mi is the number of candidates ranked by
voter i. Under the Plackett-Luce model, given that voter i is a member of voting bloc g and
given the ‘support parameter’ pg = (pg1, . . . , pgM ), the probability of voter i’s ballot is

P(yi|pg) =
pgc(i,1)∑M

s=1 pgc(i,s)

·
pgc(i,2)∑M

s=2 pgc(i,s)

· · ·
pgc(i,mi)∑M

s=mi
pgc(i,s)

where M = 5 denotes the number of candidates in the electoral race. The support parameter
pgj (typically restricted such that

∑M
j=1 pgj = 1) can be interpreted as the probability of

ranking candidate j first, out of the currently available choice set. Hence, the Plackett-Luce
model models the ranking of candidates by a voter as a set of independent choices by the
voter, conditional on the cardinality of the choice set being reduced by one after each choice
is made.

In the full mixture of experts model, the parameters of the group densities are modeled as
a function of covariates. Here the support parameters are modeled as a logistic function of
the covariates:

log
[
pgj(wi)
pg1(wi)

]
= γgj0 + γgj1wi1 + · · · + γgjLwiL
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Table 1.2 The model with smallest BIC within each type of the mixture of experts model for
ranked preference data applied to the 1997 Irish presidential election data. In the ‘government
satisfaction’ variable the ‘no opinion’ level was used as the baseline category.

BIC G Covariates

The gating network MoE model 8491 4 τg: Age, Government satisfaction
The full MoE model 8512 3 τg: Age, Government satisfaction

pg: Age
The mixture model 8513 3 –
The expert network MoE model 8528 1 pg: Government satisfaction

where wi = (wi1, . . . , wiL) is the set of L covariates associated with voter i. Note that for
identifiability reasons candidate 1 is used as the baseline choice and γg1 = (0, . . . , 0) for
all g = 1, . . . , G. The intuition behind this version of the model is that a voter’s covariates
may potentially influence their support for each candidate beyond what explained by their
membership of a voting bloc.

In the full mixture of experts model, the gating networks (or mixing proportions) are also
modeled as a function of covariates. In a similar vein to the support parameters, the mixing
proportions are modeled via a multinomial logistic regression model

log
[
τg(wi)
τ1(wi)

]
= βg0 + βg1wi1 + · · · + βgLwiL

where voting bloc 1 is used as the baseline voting bloc. Here, the motivation for this model
term is that a voter’s covariates may influence their voting bloc membership.

Modeling the group parameters and/or the mixing proportions as functions of covariates, or
as constant with respect to covariates, results in the four types of mixture of experts models as
illustrated in Figure 1.1. Each model can be fitted in a maximum likelihood framework using
an EM algorithm (Dempster et al. 1977). Model fitting details for each model are outlined in
Gormley and Murphy (2008a,b, 2010a).

Each of the four mixture of experts models for rank preference data illustrated in Figure
1.1 were fitted to the data from the electorate in the Irish presidential election poll. A range of
groups G = 1, . . . , 5 was considered and a forwards selection method was employed to select
influential covariates. The Bayesian Information Criterion (BIC) (Kass and Raftery 1995;
Schwartz 1978) was used to select the optimal model; this criterion is a penalized likelihood
criterion which rewards model fit while penalizing non-parsimonious models. Small BIC
values indicate a preferable model. Table 1.2 details the optimal models for each type of
mixture of experts model fitted.

Based on the BIC values, the optimal model is a gating network MoE model with four
groups where age and government satisfaction are important covariates for determining
group or voting bloc membership. Under this gating network MoE model, the covariates
are not informative within voting blocs, but only in determining voting bloc membership.
The maximum likelihood estimates of the model parameters are reported in Figure 1.2 and
in Table 1.3.

The support parameter estimates illustrated in Figure 1.2 have an interpretation in the
context of the 1997 Irish presidential election. Voting bloc 1 could be characterized as the
conservative voting bloc due to its large support parameters for McAleese and Scallon. Voting
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Voting bloc 1 Voting bloc 2 Voting bloc 3 Voting bloc 4

Banotti

McAleese

Nally

Roche

Scallon

τ̂1 = 0.19 τ̂2 = 0.16 τ̂3 = 0.35 τ̂4 = 0.3

0.11 (0.01)

0.28 (0.03)

0.15 (0.02)

0.15 (0.04)

0.31 (0.06)

0.13 (0.01)

0.13 (0.01)

0.03 (<0.01)

0.70 (0.01)

0.01 (<0.01)

0.17 (<0.01)

0.72 (0.03)

0.04 (<0.01)

0.06 (<0.01)

0.01 (<0.01)

0.52 (<0.01)

0.14 (0.01)

0.13 (0.01)

0.15 (0.01)

0.05 (<0.01)

Figure 1.2 A mosaic plot representation of the parameters of the group densities of the gating network
mixture of experts model for rank preference data. The width of each block is proportional to the
marginal probability of belonging to that group and the blocks are divided in proportion to the Plackett-
Luce support parameters.

Table 1.3 Odds ratios for the mixing proportion parameters in the gating network MoE model
for rank preference data. The covariates ‘age’ and ‘government satisfaction level’ were selected as
influential.

Age Satisfied Not satisfied
Odds ratio 95% CI Odds ratio 95% CI Odds ratio 95% CI

Voting bloc 2 0.01 [0.00, 0.05] 1.14 [0.42, 3.11] 2.80 [0.77, 10.15]
Voting bloc 3 0.95 [0.32, 2.81] 3.12 [0.94, 10.31] 3.81 [0.90, 16.13]
Voting bloc 4 1.56 [0.35, 6.91] 0.35 [0.12, 0.98] 3.50 [1.07, 11.43]
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bloc 2 has large support for the liberal candidate Adi Roche. Voting bloc 3 is the largest voting
bloc in terms of marginal mixing proportions and intuitively has larger support parameters
for the high profile candidates McAleese and Banotti. These candidates were endorsed by
the two largest political parties in the country at that time. Voters belonging to voting bloc 4
favor Banotti and have more uniform levels of support for the other candidates. A detailed
discussion of this optimal model is also given in Gormley and Murphy (2008b).

Table 1.3 details the odds ratios computed for the mixing proportion (or gating network)
parameters β = (β1, . . . , βG). In the model, voting bloc 1 (the conservative voting bloc) is
the baseline voting bloc. Two covariates were selected as influential: age and government
satisfaction levels. In the government satisfaction covariate, the baseline was chosen to be no
opinion.

Interpreting the odds ratios provides insight to the type of voter which characterizes each
voting bloc. For example, older (and generally more conservative) voters are much less likely
to belong to the liberal voting bloc 2 than to the conservative voting bloc 1 (β21 = 0.01).
Also, voters with some interest in government are more likely to belong to voting bloc
3 (β32 = 3.12 and β33 = 3.81), the bloc favoring candidates backed by large government
parties, than to belong to the conservative voting bloc 1. Voting bloc 1 had high levels of
support for the independent candidate Scallon. The mixing proportions parameter estimates
further indicate that voters dissatisfied with the current government are more likely to belong
to voting bloc 4 than to voting bloc 1 (β43 = 3.50). This is again intuitive as voting bloc 4
favors Mary Banotti who was backed by the main government opposition party, while voting
bloc 1 favors the government backed Mary McAleese. Further interpretation of the mixing
proportion parameters are given in Gormley and Murphy (2008b).

1.5.1 Examining The Clustering Structure

It is important that the clusters found by the mixture of experts model correspond to distinct
voting blocs. Baudry et al. (2010) propose a method to check if mixture components are really
modeling distinct clusters or whether multiple mixture components are being used to model
each cluster because the component density in the mixture model is overly restrictive. Hennig
(2010) proposes an alternative approach to this problem specifically for normal mixture
models.

The method developed by Baudry et al. (2010) uses the estimated a posteriori cluster
membership probabilities

l̂ig =
τ̂g(wi)f(yi|θ̂g(wi))∑G

g′=1 τ̂g′(wi)f(yi|θ̂g′(wi))
.

In particular, suppose the mixture components {1, 2, . . . , G} are partitioned into sets
{ρ1, ρ2, . . . , ρK} where ρk are the mixture components used to model distinct cluster k.
Further, let tik =

∑
g∈ρk

l̂ig be the estimated a posteriori probability of membership in
cluster k. Then, the entropy of a particular clustering is given as

EK = −
N∑

i=1

K∑
k=1

tik log tik.
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A greedy algorithm is used to combine mixture components to reduce K from G to G − 1,
from G − 1 to G − 2 and so on, until K = 1. A plot of EK versus K gives an indication
of the number of clusters in the population, where a large drop in EK when K is decreased
indicates that multiple components are modeling a cluster in the population. The results of
applying the component merging algorithm to the mixture of experts model are shown in
Figure 1.3.
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Figure 1.3 (a) The value of EK plotted as a function of K. (b) A dendrogram representation of the
combination of mixture of experts components when clustered into K clusters. Note that the vertical
scale on both plots is inverted.

These results suggest that the entropy doesn’t decrease substantially when combining the
two closest components (ie, 1 and 3) to form a single cluster. So, the two components are
distinct from each other. Hence, it appears from this analysis that the four components are
modeling distinct clusters in the data. Dean and Nugent (2010) develop a mixture component
tree to visualize the relationship between Gaussian mixture components where the similarity
of mixture components is measured using the minimum density on a path joining the
mixture component means. Following their work, we use the entropy based dendrogram in
Figure 1.3(b) to give a visualization of the connections between the four voting blocs found
in this analysis.

1.6 A Mixture of Experts Latent Position Cluster Model
The latent position cluster model (LPCM) (Handcock et al. 2007) develops the idea of the
latent social space model (Hoff et al. 2002) by extending the model to accommodate clusters
of actors in the latent space. Under the latent position cluster model, the latent location of
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each actor is assumed to be drawn from a finite normal mixture model, each component of
which represents a cluster of actors. In contrast, the model outlined in Hoff et al. (2002)
assumed that the latent positions were normally distributed. Thus, the latent position cluster
model offers a more flexible version of the latent space model for modeling heterogeneous
social networks.

The latent position cluster model provides a framework in which actor covariates may
be explicitly included in the model – the probability of a link between two actors may
be modeled as a function of both their separation in the latent space and of their relative
covariates. However, the covariates may contribute more to the structure of the network
than solely through the link probabilities – the covariates may influence both the cluster
membership of an actor and their link probabilities. A latent position cluster model in which
the cluster membership of an actor is modeled as a function of their covariates lies within the
mixture of experts framework.

Specifically, social network data take the form of a set of relations {yi,j} between a group
of i, j = 1, . . . , N actors, represented by an N × N sociomatrix Y. Here it is assumed that
the relation yi,j between actors i and j is a binary relation, indicating the presence or absence
of a link between the two actors; the mixture of experts latent position cluster model is easily
extended to other forms of relation (such as count data). Covariate data wi = (wi1, . . . , wiL)
associated with actor i is assumed to be available, where L denotes the number of observed
covariates.

Each actor i is assumed to have a location zi = (zi1, . . . , zid) in the d dimensional
latent social space. The probability of a link between any two actors is assumed to be
independent of all other links in the network, given the latent locations of the actors.
Let xi,j = (xij1, . . . , xijL) denote an L vector of dyadic specific covariates where xijk =
d(wik, wjk) is a measure of the similarity in the value of the kth covariate for actors i and j.
Given the link probabilities parameter vector β the likelihood function is then

P(Y|Z,X, β) =
N∏

i=1

∏
j ̸=i

P(yi,j |zi, zj , xi,j , β)

where Z is the N × d matrix of latent locations and X is the matrix of dyadic specific
covariates. The probability of a link between actors i and j is then modeled using a logistic
regression model where both dyadic specific covariates and Euclidean distance in the latent
space are dependent variables:

log
{

P(yi,j = 1)
P(yi,j = 0)

}
= β0 + β1xij1 + · · · + βLxijL − ||zi − zj ||.

To account for clustering of actor locations in the latent space, it is assumed that the latent
locations zi are drawn from a finite mixture model. Moreover, in the mixture of experts latent
position cluster model, the latent locations are assumed drawn from a finite mixture model in
which actor covariates may influence the mixing proportions:

zi ∼
G∑

g=1

τg(wi)MVN(µg, σ
2
gI)
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where

τg(wi) =
exp(τg0 + τg1wi1 + · · · + τgLwiL)∑G

g′=1 exp(τg′0 + τg′1wi1 + · · · + τg′LwiL)

and τ1 = (0, . . . , 0). This model has an intuitive motivation: the covariates of an actor may
influence their cluster membership, their cluster membership influences their latent location,
and in turn their latent location determines their link probabilities.

The mixture of experts latent position cluster model can be fitted within the Bayesian
paradigm; a Metropolis-within-Gibbs sampler can be employed to draw samples from the
posterior distribution of interest. As is standard in Bayesian estimation of mixture models
(Diebolt and Robert 1994; Hurn et al. 2003) the problem is greatly simplified by augmenting
the observed data with an indicator variable Ki for each actor i where Ki = g if actor
i belongs to cluster g. The indicator variable Ki therefore has a multinomial distribution
with a single trial and probabilities equal to τg(wi) for g = 1, . . . , G. Model issues such
as likelihood invariance to distance preserving transformations of the latent space and label
switching must be be considered during the model fitting process — an approach to dealing
with such model identifiability and full model fitting details are available in Gormley and
Murphy (2010b).

Figure 1.4 illustrates a graphical model representation of the mixture of experts latent
position cluster model. Similarly to Figure 1.1, four different models are available by
allowing or disallowing covariates to influence the mixing proportions and/or the link
probabilities.

An illustrative example of the mixture of experts latent position cluster model methodology
is provided through the analysis of a network data set detailing interactions between a set of
71 lawyers in a corporate law firm in the USA (Lazega 2001). The data include measurements
of the coworker network, an advice network and a friendship network. Covariates associated
with each lawyer on the firm are also included and are detailed in Table 1.4. Interest lies in
identifying social processes within the firm such as knowledge sharing and organizational
structures.

The four mixture of experts latent position cluster models illustrated in Figure 1.4 were
fitted to the advice network; data in this network detail links between lawyers who sought
basic professional advice from each other over the previous twelve months. Gormley and
Murphy (2010b) explore the coworkers network data set and the friendship network data set
using similar methodology. Figure 1.5 illustrates the resulting latent space locations of the
lawyers under each fitted model with (G, d) = (2, 2). These parameter values were selected
using BIC after fitting a range of latent position cluster models (with no covariates) to the
network data only (Handcock et al. 2007). Table 1.5 details the resulting regression parameter
estimates and their associated uncertainty for the four fitted models.

The results of the analysis show some interesting patterns. The model with the highest
AICM (Raftery et al. 2007) value is the model that has covariates in the link probabilities and
in the cluster membership probabilities.

The coefficients of the covariates in the link probabilities are very similar in the models
(b) and (d) in Table 1.5. These coefficients indicate that a number of factors have a positive
or negative effect on whether a lawyer asks another for advice. In summary, lawyers who are
similar in seniority, gender, office location and practice type are more likely to ask each other
for advice. The effects of years and age seem to have a negative effect, but these variables
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Figure 1.4 The graphical model representation of the mixture of experts latent position cluster model.
The differences between the four special cases are due to the presence or absence of edges between the
covariates X and W and the parameters Y and K.



Mixture of Experts Modeling with Social Science Applications 15

−5 0 5

−
6

−
4

−
2

0
2

4
6

Dimension 1

D
im

e
n

s
io

n
 2

(a) Latent position cluster model with no covariates.
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(b) Latent position cluster model with edge covariates.
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(c) Mixture of experts latent position cluster model with covariates
in the cluster memberships.
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(d) Full mixture of experts latent position cluster model.

Figure 1.5 Estimates of clusters and latent positions of the lawyers from the advice network data.
The ellipses are 50% posterior sets illustrating the uncertainty in the latent locations. Lawyers who are
members of the same cluster are illustrated using the same colour and symbol. Observed links between
lawyers are also illustrated.
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Table 1.4 Covariates associated with the 71 lawyers in the
US corporate law firm. The last category in each categorical
covariate is treated as the baseline category in all subsequent
analyses.

Covariate Levels
Seniority 1 = partner

2 = associate
Gender 1 = male

2 = female
Office 1= Boston

2 = Hartford
3 = Providence

Practice 1 = litigation
2 = corporate

Law school 1 = Harvard or Yale
2 = University of Connecticut
3 = other

Years with the firm –
Age –

are correlated with seniority and with each other, so their marginal effects are more difficult
to interpret.

Importantly, the latent positions are very similar in models (a) and (c) which don’t have
covariates in the link probabilties and models (b) and (d) which do have covariates in the
link probabilities. This can be explained because of the different role that the latent space
plays in the models with covariates in the link probabilities and in those that do not have such
covariates. When the covariates are in the link probabilities, the latent space is modeling the
part of the network structure that could not be explained by the link covariates, whereas in
the other case the latent space is modeling much more of the network structure.

Interestingly, in the model with the highest AICM value, there are covariates in the
cluster membership probabilities as well as in the link probabilities. This means that the
structure in the latent space, which is modeling what couldn’t be explained directly in the
link probabilities, has structure that can be further explained using the covariates. The office
location, practice and age of the lawyers retain explanatory power in explaining the clustering
found in the latent social space.

The difference in the cluster membership coefficients in models (c) and (d) is due to the
different interpretation of the latent space in these models. However, it is interesting to note
that the signs of the coefficients are identical, this is because the cluster memberships shown
for these models Figure 1.5(c) and Figure 1.5(d) are similar; this phenomenon does not hold
generally (see Gormley and Murphy 2010b, Section 5.3).

The results of this analysis offer a cautionary message in automatically selecting the type
of mixture of experts latent position cluster model for analyzing social network data. The
role of the latent space in the model is very different depending on how the covariates enter
the model. So, if the latent space is to be interpreted as a social space that explains network
structure, then the covariates should not directly enter the link probabilities. However, if the



Mixture of Experts Modeling with Social Science Applications 17

Table 1.5 Posterior mean parameter estimates for the four mixture of experts models fitted to the
lawyers advice data as detailed in Figure 1.5. Standard deviations are given in parentheses. Note
that cluster 1 was used as the baseline cluster in the case of the cluster membership parameters.
Baseline categories for the covariates are detailed in Table 1.4.

(a) (b) (c) (d)

Link Probabilities
Intercept 1.26 (0.10) -2.87 (0.17) 1.23 (0.10) -2.65 (0.17)
Seniority 0.89 (0.11) 0.81 (0.11)
Gender 0.60 (0.09) 0.62 (0.09)
Office 2.02 (0.10) 1.97 (0.10)
Practice 1.63 (0.10) 1.57 (0.10)
Years -0.04 (0.005) -0.04 (0.005)
Age -0.02 (0.004) -0.02 (0.004)

Cluster Memberships
Intercept -1.05 (1.75) 0.94 (0.79) -0.62 (1.23) 1.27 (1.29)
Office (=1) 1.94 (1.02) 2.40 (1.14)
Office (=2) -2.08 (1.09) -0.97 (1.19)
Practice 3.18 (0.85) 2.14 (1.08)
Age -0.09 (0.04) -0.14 (0.06)

Latent Space Model
Cluster 1 mean - 0.50 (0.52) 0.09 (0.19) -1.09 (0.31) -0.54 (0.21)

0.21 (0.58) -0.09 (0.26) 0.40 (0.28) 0.40 (0.20)
Cluster 1 variance 3.35 (1.29) 2.12 (0.77) 3.19 (0.58) 1.25 (0.34)

Cluster 2 mean 1.66 (0.92) -0.24 (0.20) 2.10 (0.30) 1.32 (0.51)
-0.67 (0.58) 0.35 (0.23) -0.77 (0.30) -0.98 (0.47)

Cluster 2 variance 1.29 (1.58) 0.27 (0.68) 1.16 (0.40) 1.63 (0.69)

AICM -3644.24 -3346.87 -3682.71 -3325.95
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latent space is being used to find interesting or anomalous structure in the network that can’t
be explained by the covariates, then one should consider allowing the covariates enter the
link probabilities and cluster membership probabilities.

1.7 Discussion
This chapter has illustrated the utility of mixture of experts models in two social science
clustering applications where concomitant covariate information is available. The mixture of
experts framework provides a systematic method for describing and exploring the clustering
found in the outcome variables.

This inclusion of covariates through the mixture of experts model can give different
clustering results than when a two stage process of clustering followed by cluster
interrogation is taken. This is because both the outcome variables and the concomitant
covariates provide information that is relevant in defining the clustering. The result of the
use of both sources of information is often a clearer clustering structure.

When using the mixture of experts model, it is important to consider how the covariates
enter the model. The interpretation of the latent structure (clustering or other latent variables)
in the mixture of experts model depends heavily on how the covariates enter the model. So,
this choice needs to be directed by the interpretation of the latent structure in the context of
the application.
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