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Abstract—We propose a new learning algorithm for regression
modeling. The method is especially suitable for optimizing neural
network structures that are amenable to a statistical description
as mixture models. These include mixture of experts, hierarchical
mixture of experts (HME), and normalized radial basis functions
(NRBF). Unlike recent maximum likelihood (ML) approaches, we
directly minimize the (squared) regression error. We use the prob-
abilistic framework as means to define an optimization method
that avoids many shallow local minima on the complex cost
surface. Our method is based on deterministic annealing (DA),
where the entropy of the system is gradually reduced, with the
expected regression cost (energy) minimized at each entropy level.
The corresponding Lagrangian is the system’s “free-energy,”
and this annealing process is controlled by variation of the
Lagrange multiplier, which acts as a “temperature” parameter.
The new method consistently and substantially outperformed
the competing methods for training NRBF and HME regression
functions over a variety of benchmark regression examples.

Index Terms—Deterministic annealing, mixture of experts, neu-
ral networks, regression.

I. INTRODUCTION

I N RECENT years, the study of neural networks has been
enriched by an infusion of ideas from diverse fields, in-

cluding statistics and probability theory, information theory,
physics, and biology. These ideas have led to reinterpretation
of existing network structures; proposals of new network struc-
tures; and novel learning algorithms based on optimization
techniques, principles, and criteria from these fields. A prime
example, which is the focus of the present paper, is the
development of neural network models that are inspired by
mixture models from statistics [26], [38]. This class includes
the structures known as “mixture of experts” [16] and “hier-
archical mixture of experts” [17], as well as normalized radial
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basis functions [28]. We will refer to this class generally as
mixture of experts(ME) models. ME’s have been suggested
for a variety of problems, including classification [13], [16],
control [15], [17], and regression tasks [17], [39], [40].

The main focus of this paper is the regression problem:
Given a training set of input–output pairs ,
where are drawn from an unknown
underlying distribution, design a mapping that
minimizes the expected regression error, which, in the case
of squared error, is given by . To formulate
the ME model for regression problems, we define the “local
expert” regression function , where is the set of
model parameters for local model. Here, may be
constant, linear, polynomial, or some other simple nonlinear
function of . The ME regression function is defined as

(1)

where is a nonnegative weight of association between
input and expert that effectively determines the degree
to which expert contributes to the overall model output. In
the literature, these weights are often calledgating units[16].
We further impose , which leads to the natural
interpretation of the weight of association or gating unit as a
probability of association. We restrict ourselves to the impor-
tant case where is a parametric function determined by
a parameter set . We then obtain the following statistical
interpretation of the model. Input–output pair is
generated by first randomly sampling according to some
input density and then randomly selecting a local model
according to the probability mass function . For the
chosen model , the output is then generated as a random
variable whose mean is . From this viewpoint,
in (1) is interpreted as the expected value of the output, given
input . It is important to note the well-known fact that the
conditional expectation is the minimum mean-squared error
(MMSE) estimator.

There are several additional advantages to the ME structure.
One is the fact that ME is an effective compromise between
purely local, piecewise models such as classification and
regression trees (CART) [1] and “global” models such as the
multilayer perceptron (MLP) [37]. By “purely local, piece-
wise,” it is meant that the input space is hard partitioned to
regions, each with its own exclusive expert model. Effectively,
the piecewise regression function is composed of a patchwork
of local regression functions that collectively cover the input
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space. In addition to partitioning the input space, the model
parameter set is partitioned into submodels that are only
“active” for a particular local input region. By contrast, in
global models such as MLP’s, there is a single regression
function that must fit the data well everywhere with no explicit
partitioning of the input space nor subdivision of the parameter
set. One advantage of piecewise solutions lies in the ease
of their interpretation—in particular, the role of individual
parameters and individual submodels is easily discerned. This
is not the case for global models, where it is more difficult to
ascertain the role of individual parameters.

The connection between ME models and local piecewise
models such as CART is easily seen by noting that piecewise
models are the special case of (1), where is restricted
to the values , i.e., the limiting case of zero randomness.
Like the pure piecewise models, the ME structure effectively
decomposes the regression problem into learning a set of
(expert) models, each of which fits the data well in some local
region. However, none has exclusive ownership of a region.
In this (somewhat fuzzified) “divide-and-conquer” sense [17],
these structures simplify the learning and modeling problem.
Moreover, this type of regression fitting generally yields
parsimonious solutions, with parameters added only when they
are required to improve the fit in a local region. Parsimonious
models are known to yield improved generalization.

Although ME models bear similarity to the piecewise mod-
els, there are also important differences. Unlike strictly piece-
wise regression, which produces a function that is discon-
tinuous at region boundaries, the mixture of expert func-
tions is smooth everywhere due to the averaging in (1).
Furthermore, the learning methods employed for piecewise
regression function design are typically greedy and suboptimal
because of the difficulty of jointly optimizing all the model
parameters. Learning for mixture of experts, on the other
hand, does naturally involve joint optimization of the entire
model. In this sense, the ME model is closer to global models
such as multilayer perceptrons, where learning is based on
backpropagation [37] or other descent methods over the entire
parameter set.

The natural learning criterion for regression is the squared-
error cost, which is commonly referred to as the regression
error. However in [16] and [17], a maximum likelihood (ML)
criterion was preferred. This choice was justified by improved
performance (even in the sense of squared-error), ease of
optimization, certain desirable properties of the solution, and
by the applicability of the popular expectation-maximization
(EM) algorithm [5] to the design. In this paper, we reason that
the superiority of ML methods is mainly due to the complexity
of the squared-error cost “surface,” which requires more
powerful optimization methods than direct gradient descent
to ensure good results. Thus, rather than abandon the squared
regression error training criterion, we propose a better method
for its minimization. Like the ML-based approach, our method
capitalizes on a probabilistic description of the ME model.
However, we only use this probabilistic framework to develop
a powerful optimization method for minimizing the original
objective. This method is based on the deterministic annealing
approach to clustering [34]–[36] and its extensions.

The rest of this paper is organized as follows. Section II
reviews and discusses the basic learning approaches for ME
design, with emphasis on the central issues related to the
choice of learning criterion. In Section III, we derive the
proposed optimization method for the general ME model and
specialize it for the NRBF and HME structures. Experimental
results presented in Section IV demonstrate the substantial
improvements in performance of the DA method over existing
methods on real-world and synthetic data sets.

II. ML VERSUS SQUARED ERROR

In the last section, it was noted that for the ME structures
in [16] and [17], an ML training criterion was chosen, even
though the possibility of training based on the squared-error
cost was recognized [16]. We note that while several different
criteria may be appropriate, depending on the particular ap-
plication, the most common, ultimate objective for regression
is to minimize the expected squared error between the true
output and the output of the approximating function, i.e.,

, where the expectation is over the joint pdf
of input–output pairs . In practice, joint statistics are
not directly available, and we must instead use finite-length
training and test sets that may not fully characterize the joint
statistics.

Given a training set , the
squared-error objective is restated as the minimization of

(2)

over the set of model parameters and assignment
probability parameters . The ML training criterion [16], [17]
consists of maximizing

(3)

over , , and the variance parameter . The choice of
the ML objective for training was justified from several
standpoints in [16]. The authors made a surprising but valid
observation that ML training led to better performance in the
sense of the squared-error criterion. They further noted that
ML training was faster than squared-error training. Finally,
it was observed that ML training yielded ME models that
could be qualitatively categorized as “competitive,” whereas
squared-error training led to solutions that were more “cooper-
ative.” Competitive models can be understood as ME solutions
that more closely resemble local piecewise models than global
models. In these, only a few experts are strongly activated for
any given input. In cooperative models, on the other hand,
the representation is far more distributed, with many experts
potentially contributing to a given output. In [16], competitive
models were favored based on the advantages of a localized
representation. In addition to the justification given in [16],
ML-based training is also attractive because it can be realized
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by the popular EM algorithm [5], [17]. The EM algorithm
has useful convergence properties as described in [17]. It also
affords an interesting interpretation to the regression problem
by essentially hypothesizing that the data was in fact generated
by a local piecewise model but with the partitioning of the
inputs to experts considered to be unknown or “missing data.”
The gating units then measure the expected values of this
missing data.

The use of ML estimation and the EM algorithm for the
mixture of experts structure has stimulated renewed interest
in the learning problem for neural networks, opening up an
alternative statistical perspective on neural network training.
This approach has been successfully applied in several learning
contexts [17], [39], [41]. However, despite these promising
results and the justification given in [16], we will reason here
that the squared-error cost that directly measures the regression
error is a more appropriate training criterion.

We first note the mismatch between ML and squared-error
minimization. The likelihood maximization of (3) improves
the individual fit between output and each expert
rather than the cooperative fit based on the ME output .
Although this approach encourages each expertindividually to
fit the data well in some localized region, there appear to be no
guarantees on the performance of the resulting overall model.

Moreover, we argue that the best regression function is
the one that minimizes the regression error, regardless of
whether the resulting solution is qualitatively competitive or
cooperative. In fact, an important advantage of the ME model
seems to be that it admits both possibilities. Thus, if the
learning algorithm is successful in minimizing the cost, it
should be able to seek either competitive or cooperative results,
depending on which provides a better fit to the given data.

It is important to note that by adopting the squared-error
criterion, we do not discard the probabilistic interpretation of
the model parameters. The weight is indeed interpreted
as the probability of associating input with model . The
function is interpreted as the conditional expectation
of output given that input is assigned to model .
However, the training of these parameters is performed to
minimize the regression error directly rather than maximize
the likelihood objective.

We note that in the closely related problem of pattern
classification, there has been a renewed research interest [7],
[11], [18], [21] in the optimization of the true, yet complex,
cost—misclassification probability—rather than a mismatched
but simpler cost function. This approach has found applications
in various fields, particularly in speech recognition [19], [29].

At this point, we must reconcile our argument with the
finding in [16] that solutions obtained by ML learning are
superior to those trained directly for the squared-error cost. In
fact, with some qualification, our results are not inconsistent
with this finding. More concretely, we have found that ascent
on the likelihood cost surface sometimes leads to better
solutions in the sense of squared error than those obtained by
direct gradient descent on the squared-error cost surface itself.
However, what this primarily suggests is that the squared-
error surface may be more complex than the ML surface, with
numerous poor local optima to trap descent methods. Thus,

rather than abandon the squared-error training criterion, our
proposed line of attack is to seek a better method for its
minimization.

III. D ETERMINISTIC ANNEALING

In recent years, optimization methods grounded in an anal-
ogy to physical and chemical processes have been actively
developed to tackle combinatorial optimization problems such
as the traveling salesman problem [8]. An important stochas-
tic method known as simulated annealing [20] is a general
optimization technique that converges to the globally op-
timal solution in probability. However, the computational
complexity of an implementation assuring this convergence
often exceeds what can be practically realized. The learning
method that we develop here builds on recent approaches
that capture some of the power of the stochastic annealing
optimization method while reducing computational complexity
via a deterministic approximation. Several related methods
have been described as “deterministic annealing” and “mean-
field annealing” and have been developed in different fields.
Our approach builds on the deterministic annealing (DA) ap-
proach for data clustering and related problems [34]–[36] and
its extension to incorporate structural constraints on the data
assignments [27] with particular emphasis on the problems
of statistical classification [27] and piecewise regression [33].
In all the above problems, where DA has already been used
successfully, the common goal was the design of a system
that implements hard assignment of data to groups or classes.
The DA method introduced randomization within the design
phase in order to allow global optimization over probabilities,
ultimately leading to hard assignments as the “temperature” is
lowered to zero.

The mixture of experts regression model bears some similar-
ity to piecewise regression as data is assigned to local models.
However, an important difference in the problem definition is
that each data point is associated in probability with the various
local models. Hence, randomized association is inherent to
the model and does not have to be introduced artificially. We
next derive the deterministic annealing approach for the design
of a general mixture model, followed by specialization to
develop the DA method for the NRBF and the HME regression
architectures.

A. DA Design Method for a General Mixture of Experts Model

Fundamentally, we view the ME design problem as the
problem of optimization of the data assignment rule that
governs the relation between data and local models. However,
unlike hard partitional clustering problems, each data point is
associatedin probability to the local models. In other words,
ME model design does not impose hard data associations but,
rather, seeks the optimal probabilistic assignments
(as well as the model parameter set) that minimize the
squared-error cost

(4)
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where are determined by the parameter set, as
defined for the specific ME structure. The Shannon entropy of
the association between the data and local models is

(5)

The entropy may be viewed as a measure of the randomness
of the probabilistic assignments. The ultimate objective is
the optimization of the probabilities and model parameters
to minimize whose cost surface is typically riddled with
poor local minima. In this work, we propose to apply an
“annealing” process, whereby a high level of randomness
(entropy) is imposed on the system, and then, the constraint is
gradually reduced. The basic constrained optimization problem
is therefore

subject to (6)

where is the imposed level of randomness. Effectively,
this optimization seeks the best randomized regression model,
given a prescribed level of randomness . The annealing
process involves solving a sequence of optimizations of this
type for decreasing values of . The constrained optimization
is, of course, equivalent to minimization of the Lagrangian

(7)

where is the Lagrange multiplier. It is important to note
that the quantity can also be identified as the Helmholtz
free energy of a system with “energy” , entropy , and
“temperature,” . Thus, the annealing process involves mini-
mizing starting from high and tracking the minimum for a
sequence of decreasing values of. At high , the objective
is, in fact, entropy maximization, which is achieved by the
uniform distribution. As is lowered, increasing emphasis is
placed on minimizing , which also has the effect of reducing
the entropy. At , we seek to minimize regardless of
the level of entropy, which is precisely the ultimate objective.
The annealing process helps to avoid shallow local minima,
as will be demonstrated in the results section.

We can gain some intuition about this annealing process by
noting that solutions with high entropy can be characterized as
highly “cooperative,” whereas solutions with low entropy are
more “competitive.” Thus, the annealing process effectively
conducts a search for the best regression model, starting with
the constraint of a high degree of cooperation, and gradually
relaxing this constraint. Since at there is no constraint
on the entropy, the method ultimately seeks the best regression
solution, regardless of whether the result is “competitive” or
“cooperative.” Note that at a very high temperature ( ),
the uniform distribution implies that all the local models are
identical. The effective model size (number of nondistinct local
models) is one. As is lowered, more emphasis is placed
on reducing the regression error, thereby leading to a gradual
growth in the effective model size. The entropy constrained
formulation, however, ensures that the model size will increase
only if the improvement in the regression error warrants the
decrease in the entropy of the associations.

In practice, the minimization of is achieved by a series
of gradient descent steps on this cost at each temperature.
An “annealing schedule” determines the procedure for
gradually cooling the system. When the system has reached
thermal equilibrium at a temperature, the temperature update

is applied followed by minimization of at the
new temperature. An exponential schedule , where

worked well in all our experiments.
The DA algorithm can be summarized as follows.

1) Set parameters: initial temperature, final temperature,
, and annealing schedule function .

2) Set .
3) Minimize over .
4) Lower temperature: .
5) If , go to Step 3.

Although any standard local optimization method can be
used to minimize the free energy in Step 3, we used a simple
gradient descent method in our experiments.

The DA design approach described in this section is quite
general and can be specialized to any specific mixture of
experts model. Different ME structures simply correspond
to different parametric forms for the association probabili-
ties and the local models . Hence, the
corresponding DA design methods differ only in the gradient
step prescription for the free-energy minimization of Step 3.
We next consider two important ME models—the normalized
radial basis function (NRBF) and the hierarchical mixture of
experts (HME) and rederive the DA design method for these
structures.

B. Normalized Radial Basis Function (NRBF)

The radial basis function (RBF) architecture is an important
class of neural networks. Typically, the RBF network has
two stages. In the lower (first) stage, the “activation” of
each node is determined by a set of RBF’s. In the second
stage, the activations are combined linearly to obtain the
regression estimate. Although there are many possible choices
of RBF’s, perhaps the most important and commonly used are
the Gaussian basis functions

(8)

The vectors are the “centers” or “prototype vectors,” and
is the “bandwidth.” The RBF was suggested for general

interpolation problems [32] and used in the context of neural
networks [2], [28]. RBF’s have some useful properties that
make them particularly attractive for regression applications
[9], [12]. They have been used successfully in a wide variety
of practical applications in regression [3], [6], [30], [31] as
well as in classification [22], [23].

An important extension of the basic RBF architecture is
the normalized RBF (NRBF) shown in Fig. 1. The NRBF
architecture is organized in two layers. In the lower layer,
we compute the hidden outputs via the normalized RBF’s

(9)
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Fig. 1. Normalized radial basis function (NRBF) architecture.

The second layer then performs the linear operation

(10)

This architecture may be interpreted as an ME model where
the weights represent the probabilities of associ-
ation with the corresponding constant local models .
Further, these probabilities are determined by the parameters

. We wish to optimize the parameter set
jointly with the local model parameter set to minimize the
regression error

(11)

One common NRBF design approach was suggested in [28]:
Fix the RBF centers via a clustering algorithm [24], and
then, optimize and to minimize the cost function . A
more powerful version of this algorithm optimizes the entire
NRBF parameter set in the second step. This algorithm
is quick but suboptimal, primarily due to the aforementioned
difficulties with gradient descent on the cost surface.

We propose the DA approach that avoids many poor local
minima on the cost surface. The basic DA optimization step
is the minimization of the regression error at a given level
of entropy (5) or, equivalently, the minimization of the free
energy . This free energy minimization is carried
out for a sequence of decreasing temperatures ending at .
At each temperature , the minimum satisfies the following
conditions.

For the RBF centers

(12)

for the bandwidth parameter

(13)

Fig. 2. Two-level binary tree representing the HME architecture for regres-
sion.

and for the local model

(14)

In the above equations, we make use of the quantities

(15)

and their average over the models

(16)

The gradient expressions above can be viewed as perceptron-
like learning rules. For example, a gradient descent step for
the prototypes based on (12) can be interpreted as a rule that
moves a prototype toward or away from data points, depending
on whether their contribution to the cost increases or decreases
by association with this prototype. The rules for theand
can be interpreted in a similar manner.

C. Hierarchical Mixture of Experts (HME)

In its most general form, the hierarchical mixture of ex-
perts (HME) is organized as a multilevel, multibranch tree.
Although our design method is applicable to this general
structure, for simplicity of presentation, we will restrict dis-
cussion to the simple two-level, binary-tree HME architecture
of Fig. 2.

The leaves of the tree represent simple local regression
models (experts). Starting from the root node, we imagine
choosing a random branch, recursively, until we arrive at one
of the leaves. The conditional distribution for choosing the
branches given a node is computed at that node by a “gate.”
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Specifically, the gate at the root node observesand computes
the conditional distribution1

(17)

Similarly, at node in the lower layer, the gate computes the
conditional distribution

(18)

One may interpret the hierarchy as a soft tree-structured
partition of the input space, based on weight vectors
and .

The conditional distribution over the branches induces a
distribution over the local models. Specifically, the probability
of choosing model is given by . From the
ME viewpoint, we are interested in the weighted average of
the outputs, i.e., the expectation

(19)

where is defined as the term in parenthesis. The straight-
forward way to compute is via the architecture in Fig. 2.
We propagate the estimates provided by the experts by linearly
combining them as we proceed from the leaves to the root
node, where the final regression estimate is produced.

The HME design objective is the optimization of association
probability parameters and the model
parameter set to minimize the regression error

(20)

We are interested in simultaneously controlling the entropy of
association given by

(21)

Equivalently, we minimize the Lagrangian
at a fixed temperature . As in NRBF design, we use a
gradient descent method for the optimization. The free-energy
minimization is repeated for a sequence of decreasing temper-
atures. An important advantage of this approach for the tree
architecture is that the gradients can be computed efficiently
via a backpropagation-like rule that follows from the chain
rule of derivatives. Here, we only write the simpler optimality
conditions for the gradients in the case of the two-level

1Note that although the variables�jk; gj ; gkjj ; hj ; pjk depend onx,
for the sake of notational simplicity, we drop the argumentx. Hence, e.g.,
�jk � �jk(x) unless otherwise stated.

hierarchy. Generalization to larger trees is straightforward. The
optimality conditions are

(22)

(23)

and

(24)

In the equations above, we have made use of the following
additional variables, each associated with a branch in the tree.

(25)

and

(26)

as well as their average values, which have been computed
over branches that terminate at the same node:

(27)

and

(28)

The quantity denotes the conditional entropy

(29)

The above expressions for the gradients offer interesting
perceptron-like interpretations to the gradient-descent algo-
rithm. Viewing the variables as the contribution of each
branch to the cost function, a gradient-descent method based
on (22) and (23) may be interpreted as a perceptron-like rule to
strengthen (weaken) the association of an input with branches
that contribute a cost that is smaller (higher) than the average
over all branches that terminate at the same node.

IV. RESULTS

In this section, we report the results of our experiments com-
paring the deterministic annealing approach with conventional
design methods for NRBF and HME regression functions. The
experiments are performed over some popular benchmark data
sets from the regression literature. Among these data sets, the
first three are real-world applications of regression drawn from
the StatLib data set archive2, whereas the others have been
synthetically generated.

In each experiment, we compare the average squared-error
obtained over the training set using the DA design method and
the alternative design methods. The comparisons are repeated
for different network sizes. The network size refers to the
number of local experts used in the mixture model. For the
case of binary HME trees with levels, , and for
the case of NRBF regression functions, is the number of

2The StatLib data set archive is accessible on the World-Wide Web at
http://lib.stat.cmu.edu/datasets/
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TABLE I
COMPARISON OFREGRESSIONERROR OBTAINED USING DA AND GD

ALGORITHMS FOR NRBF DESIGN FOR THEBOSTON HOME VALUE

PROBLEM. K IS THE NUMBER OF GAUSSIAN BASIS FUNCTIONS

Gaussian basis functions used. Following the most common
implementation, the local models are constant functions in
the NRBF case and linear functions in the HME case. The
alternative design approaches used for comparing our HME
design algorithm are

• “GD,” which is a gradient descent algorithm to simultane-
ously optimize all HME parameters for the squared-error
cost;

• “ML,” which is Jordan and Jacobs’s ML approach [17].

For the NRBF regression function, we have compared the DA
design approach with the gradient descent algorithm, which
is an enhanced version of the method suggested in [28] (as
described in the previous section).

In our implementation of the DA algorithm for both NRBF
and HME design, we adopt an exponential temperature sched-
ule with . Further, the free-energy
minimization at a fixed temperature is performed via a se-
quence of gradient descent steps. Convergence is determined
by comparing the fractional improvement3 in free energy to a
small threshold value .

In our implementation of the GD algorithm for NRBF
design, we randomly initialize all parameters, apply the-
means algorithm [24] to place the RBF centers, and execute a
sequence of gradient descent steps on all parameters. In the GD
algorithm for HME function design, a random initialization of
all parameters is used. The GD algorithms for both architec-
tures terminate when the fractional improvement is smaller
than the threshold,.

In our implementations of all the above methods, we used
an identical improvement threshold () to ensure fairness of
comparison. To implement the ML approach to design HME
functions, we used the algorithm based on iterated recursive
least squares (IRLS), which was suggested in [17]. Starting
from a random initialization of all parameters, we allow 100
epochs of this recursive algorithm for the solution to converge.

For fair comparison, we take a conservative (worst-case)
estimate that the complexity of the DA approach is ten times
greater than that of the competing methods. To compensate for
the complexity, we allow each competing method to generate
results based on ten different random initializations, with the
best result obtained among those runs selected for comparison

3Fractional improvement of a cost function is the ratio between the
improvement in the cost resulting from an iteration and the absolute value
of the cost before the iteration.

TABLE II
COMPARISON OFREGRESSIONERROR OBTAINED USING DA, GD, AND ML

ALGORITHMS FOR HME FUNCTION DESIGN FOR THEBOSTON HOME

VALUE PROBLEM. K IS THE NUMBER OF LEAVES IN THE BINARY TREE

TABLE III
COMPARISON OFREGRESSIONERROR OBTAINED USING DA AND GD

ALGORITHMS FOR NRBF DESIGN FOR THEMORTALITY RATE PREDICTION

PROBLEM. K IS THE NUMBER OF GAUSSIAN BASIS FUNCTIONS

with the DA result. Since the regression function obtained by
DA is generally independent of initialization, a single DA run
sufficed.

First, we considered the Boston home value prediction
problem [10]. Here, we use data from 506 homes in the
Boston area to predict the median price of each home from 13
features that are believed to have some influence on it. Since
the features have different dynamic ranges, we first normalized
each one to unit variance. Using the entire data for training, we
designed NRBF and HME regression functions using DA and
alternative methods. Our results in Tables I and II demonstrate
that for both mixture models, the DA approach achieves a
significantly smaller regression error compared with the other
approaches over a variety of network sizes.

Our second data set, which is taken from the environmental
sciences, has been used by numerous researchers since its
introduction [25] in the early 1970’s. Here, we consider the
problem of predicting the age-adjusted mortality rate per
100 000 people in a locality from 15 factors that may have
possibly influenced it. Since there is data for only 60 localities,
we used the entire set for training. Tables III and IV show
that for both the NRBF and HME regression structures, over
the entire range of network sizes, the DA design approach
significantly improved performance over the competing design
methods.

The third regression data set is drawn from an application in
the food sciences. The problem is that of efficient estimation
of the fat content of a sample of meat. (Techniques of
analytical chemistry can be used to measure this quantity
directly, but it is a slow and time-consuming process.) The
data set of measurements was obtained by the Tecator Infratec
Food and Feed Analyzer, which estimates the absorption of
electromagnetic waves in 100 different frequency bands and
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TABLE IV
COMPARISON OFREGRESSIONERROR OBTAINED USING DA, GD, AND ML
ALGORITHMS FOR HME DESIGN FOR THEMORTALITY RATE PREDICTION

PROBLEM. K IS THE NUMBER OF LEAVES IN THE BINARY TREE

TABLE V
COMPARISON OFREGRESSIONERROR OBTAINED USING DA AND GD
ALGORITHMS FOR NRBF DESIGN FOR THEFAT CONTENT PREDICTION

PROBLEM. K IS THE NUMBER OF GAUSSIAN BASIS FUNCTIONS. “TR”
AND “TE” R EFER TO TRAINING AND TEST SETS, RESPECTIVELY

TABLE VI
COMPARISON OFREGRESSIONERROR OBTAINED USING DA, GD, AND ML

ALGORITHMS FOR HME FUNCTION DESIGN FOR THEFAT CONTENT

PREDICTION PROBLEM. K IS THE NUMBER OF LEAVES IN THE BINARY TREE.
“TR” AND “TE” R EFER TO TRAINING AND TEST SETS, RESPECTIVELY

the corresponding fat content as determined by analytical
chemistry. As suggested by the data set providers, we divided
the data into a training set of size 173 and a test set of
size 43. Next, we designed the NRBF and HME regression
functions using the DA and conventional design methods for
different network sizes. In Tables V and VI, we compare the
average squared error obtained over the training and test sets.
Again, the DA design approach significantly outperforms the
conventional design methods over both training and test sets
for both HME and NRBF architectures. Note that allowing the
ML approach to use a larger network size does not necessarily
improve the test set performance, although performance on the
training set improves marginally.

The last set of experiments is based on synthetically gen-
erated data. Here, is 2-D, and the training set
is generated according to a uniform distribution in the unit
square. The output is scalar. We created five different data
sets based on the functions [ ] specified
in [4] and [14]. Each function was used to generate both a
training set and test set of size 225. We designed NRBF and
HME regression estimates for each data sets using both DA
and the competitive design approaches. The results shown in

TABLE VII
COMPARISON OFREGRESSIONERROR OBTAINED USING DA AND GD

ALGORITHMS FOR NRBF DESIGN TO APPROXIMATE FUNCTIONS,
f1( ) � � � f5( ). K IS THE NUMBER OF GAUSSIAN BASIS FUNCTIONS.
“TR” AND “TE” R EFER TO TRAINING AND TEST SETS, RESPECTIVELY

TABLE VIII
COMPARISON OFREGRESSIONERROR OBTAINED USING DA, GD, AND ML
ALGORITHMS FOR HME FUNCTION DESIGN TO APPROXIMATE FUNCTIONS

f1( ) � � � f5( ). K IS THE NUMBER OF LEAVES IN THE BINARY TREE.
“TR” AND “TE” R EFER TO TRAINING AND TEST SETS, RESPECTIVELY

Tables VII and VIII show improved performance of the DA
method that is consistent with the results obtained for the other
benchmark sets.

Although, we demonstrate significant improvements in re-
gression performance using the DA design approach, this gain
is obtained at the expense of an increase in complexity. In our
experiments, the increase in complexity is by a factor of 2–10.

V. CONCLUSIONS

We have presented an annealing approach for the design
of regression models based on the mixture of expert archi-
tectures. This class includes the recent hierarchical mixtures
of experts [17] as well as normalized radial basis functions
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[28]. There has been much recent interest in these structures,
prompted mostly by new learning algorithms that emphasize a
probabilistic description of the model and redefine the learning
problem from a statistical perspective as ML estimation.
Although these algorithms have several attractive properties,
including efficient learning based on the EM algorithm, we
have identified two shortcomings, namely, mismatch between
the design objective and the regression error and suscepti-
bility of design methods to poor local minimum traps. The
proposed DA method capitalizes on the probabilistic model
description to directly attack the regression error minimization
criterion while avoiding many shallow local optima of the cost.
Experimental results provide ample evidence of the superior
performance of the DA method.
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