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1. Framework

In classical Gaussian mixture models, the density is modeled by

sK,υ,Σ,w(y) =

K∑

k=1

πw,kΦυk,Σk
(y),

where K ∈ N \ {0} is the number of mixture components, Φυ,Σ is the Gaussian
density with mean υ and covariance matrix Σ,

Φυ,Σ(y) =
1√

(2π)p|Σ|
e

−1
2 (y−υ)′Σ−1(y−υ)

and πw,k are the mixture weights, that can always be defined from a K-tuple
w = (w1, . . . , wK) with a logistic scheme:

πw,k =
ewk

∑K
k′=1 e

wk′
.

In this article, we consider such a model in which the mixture weights as well
as the means can depend on a, possibly multivariate, covariate.

More precisely, we observe n pairs of random variables ((Xi, Yi))1≤i≤n where
the covariates Xis are independent while the Yis are conditionally independent
given the Xis. We assume that the covariates are in some subset X of Rd and the
Yis are in R

p. We want to estimate the conditional density s0(·|x) with respect
to the Lebesgue measure of Y given X . We model this conditional density by a
mixture of Gaussian regressions with varying logistic weights

sK,υ,Σ,w(y|x) =
K∑

k=1

πw(x),kΦυk(x),Σk
(y),

where υ = (υ1, . . . , υK) and w = (w1, . . . , wK) are now K-tuples of functions
chosen, respectively, in a set ΥK and WK . Our aim is then to estimate those
functions υk and wk, the covariance matrices Σk as well as the number of classes
K so that the error between the estimated conditional density and the true
conditional density is as small as possible.
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The classical Gaussian mixture case has been extensively studied (McLach-
lan and Peel, 2000). Nevertheless, theoretical properties of such model have
been less considered. In a Bayesian framework, asymptotic properties of the
posterior distribution are obtained by Choi (2008), Genovese and Wasserman
(2000), Van der Vaart and Wellner (1996) when the true density is assumed to
be a Gaussian mixture. AIC/BIC penalization scheme are often used to select
a number of clusters (see Burnham and Anderson (2002) for instance). Non
asymptotic bounds are obtained by Maugis and Michel (2011) even when the
true density is not a Gaussian mixture. All these works rely heavily on a brack-
eting entropy analysis of the models, that will also be central in our analysis.

When there is a covariate, the most classical extension of this model is a mix-
ture of Gaussian regressions, in which the means υk are now functions. It is well
studied as described in McLachlan and Peel (2000). In particular, in a Bayesian
framework, Viele and Tong (2002) have used bracketing entropy bounds to prove
the consistency of the posterior distribution. Models in which the proportions
vary have been considered by Antoniadis et al. (2009). Using an idea of Kolaczyk
et al. (2005), they have considered a model in which only proportions depend
in a piecewise constant manner from the covariate. Their theoretical results
are nevertheless obtained under the strong assumption they exactly know the
Gaussian components. This assumption can be removed as shown by Cohen and
Le Pennec (2013). Models in which both mixture weights and means depend on
the covariate are considered by Ge and Jiang (2006), but in a mixture of logis-
tic regressions framework. They give conditions on the number of components
(experts) to obtain consistency of the posterior with logistic weights. Note that
similar properties are studied by Lee (2000) for neural networks.

Although natural, mixture of Gaussian regressions with varying logistic weights
seems to be mentioned first by Jordan and Jacobs (1994). They provide an algo-
rithm similar to ours, based on EM and Iteratively Reweighted Least Squares,
for hierarchical mixtures of experts but no theoretical analysis. Young and
Hunter (2010) choose a non-parametric approach to estimate the weights, which
are not supposed logistic anymore, using kernels and cross-validation. They also
provide an EM-like algorithm and some convincing simulations. This work has
an extension in a series of papers (Hunter and Young, 2012), (Huang and Yao,
2012). Young (2014) considers mixture of regressions with changepoints but
constant proportions. More recently, Huang et al. (2013) have considered a non-
parametric modeling for the means, the proportions as well as the variance for
which they give asymptotic properties as well as a numerical algorithm. Closer
to our work, Chamroukhi et al. (2010) consider the case of piecewise polynomial
regression model with affine logistic weights. In our setting, this corresponds to
a specific choice for ΥK and WK : a collection of piecewise polynomials and a
set of affine functions. They use a variation of the EM algorithm and a BIC
criterion and provide numerical experiments to support the efficiency of their
scheme.

Young (2014) provides a relevant example for our analysis. The ethanol data
set of Brinkman (1981) (Figure 1(a)) shows the relationship between the equiv-
alence ratio, a measure of the air-ethanol mix used as a spark-ignition engine
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(a) Raw Ethanol data set
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(b) Clustering deduced from the esti-
mated conditional density by a MAP
principle

(c) 3D view of the resulting condi-
tional density showing the 4 regres-
sion components

(d) 2D view of the same conditional
density. The different variances are
visible as well as the connectedness of
the two topmost clusters

Fig 1. Estimated density with 4 components based upon the NO data set.

fuel in a single-cylinder automobile test, and the engine’s concentration of ni-
trogen oxide (NO) emissions for 88 tests. Using the methodology described in
this paper, we obtain a conditional density modeled by a mixture of four Gaus-
sian regressions. Using a classical maximum likelihood approach, each point of
the data set can be assigned to one the four class yielding the clustering of
Figure 1(b). The use of logistic weight allows a soft partitioning along the NO
axis while still allowing more than one regression for the same NO value. The
two topmost classes seem to correspond to a single population whose behavior
changes around 1.7 while the two bottom-most classes appear to correspond to
two different populations with a gap around 2.6–2.9. Such a result could not
have been obtained with non varying weights.

The main contribution of our paper is a theoretical result: an oracle inequality,
a non asymptotic bound on the risk, that holds for penalty slightly different from
the one used by Chamroukhi et al. (2010).

In Section 2, we recall the penalized maximum likelihood framework, intro-
duce the losses considered and explain the meaning of such an oracle inequality.
In Section 3, we specify the models considered and their collections, state our
theorem under mild assumptions on the sets ΥK and WK and apply this result
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to polynomial sets. Those results are then illustrated by some numerical exper-
iments in Section 4. Our analysis is based on an abstract theoretical analysis
of penalized maximum likelihood approach for conditional densities conducted
in Cohen and Le Pennec (2011) that relies on bracketing entropy bounds. Ap-
pendix A summarizes those results while Appendix B contains the proofs specific
to this paper, the ones concerning bracketing entropies.

2. A model selection approach

2.1. Penalized maximum likelihood estimator

We will use a model selection approach and define some conditional density
models Sm by specifying sets of conditional densities, taking the shape of mix-
tures of Gaussian regressions, through their number of classes K, a structure
on the covariance matrices Σk and two function sets ΥK and WK to which be-
long respectively the K-tuple of means (υ1, . . . , υK) and the K-tuple of logistic
weights (w1, . . . , wK). Typically those sets are compact subsets of polynomials
of low degree. Within such a conditional density set Sm, we estimate s0 by the
maximizer ŝm of the likelihood

ŝm = argmax
sK,υ,Σ,w∈Sm

n∑

i=1

ln sK,υ,Σ,w(Yi|Xi),

or more precisely, to avoid any existence issue since the infimum may not be
unique or even not be reached, by any η-minimizer of the negative log-likelihood:

n∑

i=1

− ln ŝm(Yi|Xi) ≤ inf
sK,υ,Σ,w∈Sm

n∑

i=1

− ln sK,υ,Σ,w(Yi|Xi) + η.

Assume now we have a collection {Sm}m∈M of models, for instance with dif-
ferent number of classes K or different maximum degree for the polynomials
defining ΥK and WK , we should choose the best model within this collection.
Using only the log-likelihood is not sufficient since this favors models with large
complexity. To balance this issue, we will define a penalty pen(m) and select
the model m̂ that minimizes (or rather η′-almost minimizes) the sum of the
negative log-likelihood and this penalty:

K∑

k=1

− ln ŝm̂(Yi|Xi) + pen(m̂) ≤ inf
m∈M

K∑

k=1

− ln ŝm(Yi|Xi) + pen(m) + η′.

2.2. Losses

Classically in maximum likelihood context, the estimator loss is measured with
the Kullback-Leibler divergence KL. Since we work in a conditional density
framework, we use a tensorized version of it. We define the tensorized Kullback-
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Leibler divergence KL⊗n by

KL⊗n(s, t) = E

[
1

n

n∑

i=1

KL(s(.|Xi), t(.|Xi))

]

which appears naturally in this setting. Replacing t by a convex combination be-
tween s and t and dividing by ρ yields the so-called tensorized Jensen-Kullback-
Leibler divergence, denoted JKL⊗n

ρ ,

JKL⊗n
ρ (s, t) = E

[
1

n

n∑

i=1

1

ρ
KL(s(.|Xi), (1− ρ)s(.|Xi) + ρt(.|Xi))

]

with ρ ∈ (0, 1). This loss is always bounded by 1
ρ ln

1
1−ρ but behaves as KL

when t is close to s. This boundedness turns out to be crucial to control the loss
of the penalized maximum likelihood estimate under mild assumptions on the
complexity of the model and their collection.

Furthermore JKL⊗n
ρ (s, t) ≤ KL⊗n

ρ (s, t). If we let d2⊗n be the tensorized ex-
tension of the squared Hellinger distance d2, Cohen and Le Pennec (2011) prove
that there is a constant Cρ such that Cρd

2⊗n(s, t) ≤ JKL⊗n
ρ (s, t). Moreover, if

we assume that for any m ∈ M and any sm ∈ Sm, s0dλ≪ smdλ, then

Cρ

2 + ln ‖s0/sm‖∞
KL⊗n(s0, sm) ≤ JKL⊗n

ρ (s0, sm)

with Cρ = 1
ρ min(1−ρ

ρ , 1)(ln(1 + ρ
1−ρ )− ρ) (see Cohen and Le Pennec (2011)).

2.3. Oracle inequality

Our goal is now to define a penalty pen(m) which ensures that the maximum
likelihood estimate in the selected model performs almost as well as the max-
imum likelihood estimate in the best model. More precisely, we will prove an
oracle type inequality

E
[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1 inf

m∈M

(
inf

sm∈Sm

KL⊗n(s0, sm) +
pen(m)

n
+
η + η′

n

)
+
C2

n

with a pen(m) chosen of the same order as the variance of the corresponding
single model maximum likelihood estimate.

The name oracle type inequality means that the right-hand side is a proxy
for the estimation risk of the best model within the collection. The Kullback-
Leibler term infsm∈Sm KL⊗n

λ (s0, sm) is a typical bias term while pen(m)
n plays

the role of the variance term. We have three sources of loss here: the constant
C1 can not be taken equal to 1, we use a different divergence on the left and

on the right and pen(m)
n is not directly related to the variance. Under a strong

assumption, namely a finite upper bound on supm∈M supsm∈Sm
‖s0/sm‖∞, the

two divergences are equivalent for the conditional densities considered and thus
the second issue disappears.
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The first issue has a consequence as soon as s0 does not belong to the best
model, i.e. when the model is misspecified. Indeed, in that case, the correspond-
ing modeling bias infsm∈Sm KL⊗n(s0, sm) may be large and the error bound
does not converge to this bias when n goes to infinity but to C1 times this bias.
Proving such an oracle inequality with C1 = 1 would thus be a real improvement.

To our knowledge, those two first issues have not been solved in penalized
density estimation with Kullback-Leibler loss but only with L2 norm or aggre-
gation of a finite number of densities as in Rigollet (2012).

Concerning the third issue, if Sm is parametric, whenever pen(m) can be
chosen approximately proportional to the dimension dim(Sm) of the model,

which will be the case in our setting, pen(m)
n is approximately proportional to

dim(Sm)
n , which is the asymptotic variance in the parametric case. The right-

hand side matches nevertheless the best known bound obtained for a single
model within such a general framework.

3. Mixtures of Gaussian regressions and penalized conditional
density estimation

3.1. Models of mixtures of Gaussian regressions

As explained in introduction, we are using candidate conditional densities of
type

sK,υ,Σ,w(y|x) =
K∑

k=1

πw,k(x)Φυk(x),Σk
(y),

to estimate s0, where K ∈ N \ {0} is the number of mixture components, Φυ,Σ

is the density of a Gaussian of mean υ and covariance matrix Σ, υk is a function
specifying the mean given x of the k-th component while Σk is its covariance
matrix and the mixture weights πw,k are defined from a collection ofK functions
w1, . . . , wK by a logistic scheme:

πw,k(x) =
ewk(x)

∑K
k′=1 e

wk′ (x)
.

We will estimate s0 by conditional densities belonging to some model Sm

defined by

Sm =

{
(x, y) 7→

K∑

k=1

πw,k(x)Φυk(x),Σk
(y)
∣∣(w1, . . . , wK) ∈WK ,

(υ1, . . . , υK) ∈ ΥK , (Σ1, . . . ,ΣK) ∈ VK

}

whereWK is a compact set of K-tuples of functions from X to R, ΥK a compact
set of K-tuples of functions from X to R

p and VK a compact set of K-tuples
of covariance matrices of size p × p. From now on, we will assume that those
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sets are parametric subsets of dimensions respectively dim(WK), dim(ΥK) and
dim(VK). The dimension dim(Sm) of the now parametric model Sm is thus
nothing but dim(Sm) = dim(WK) + dim(ΥK) + dim(VK).

Before describing more precisely those sets, we recall that Sm will be taken
in a model collection S = (Sm)m∈M, where m ∈ M specifies a choice for each
of those parameters. Within this collection, the number of components K will
be chosen smaller than an arbitrary Kmax, which may depend on the sample
size n. The sets WK and ΥK will be typically chosen as a tensor product of a
same compact set of moderate dimension, for instance a set of polynomial of
degree smaller than respectively d′W and d′Υ whose coefficients are smaller in
absolute values than respectively TW and TΥ.

The structure of the set VK depends on the noise model chosen: we can
assume, for instance, it is common to all regressions, that they share a similar
volume or diagonalization matrix or they are all different. More precisely, we
decompose any covariance matrix Σ into LPAP ′, where L = |Σ|1/p is a positive
scalar corresponding to the volume, P is the matrix of eigenvectors of Σ and
A the diagonal matrix of normalized eigenvalues of Σ. Let L−, L+ be positive
values and λ−, λ+ real values. We define the set A(λ−, λ+) of diagonal matrices
A such that |A| = 1 and ∀i ∈ {1, . . . , p}, λ− ≤ Ai,i ≤ λ+. A set VK is defined
by

VK = {(L1P1A1P
′
1, . . . , LKPKAKP

′
K)|∀k, L− ≤ Lk ≤ L+, Pk ∈ SO(p),

Ak ∈ A(λ−, λ+)} ,

where SO(p) is the special orthogonal group. Those sets VK correspond to the
classical covariance matrix sets described by Celeux and Govaert (1995).

3.2. A conditional density model selection theorem

The penalty should be chosen of the same order as the estimator’s complexity,
which depends on an intrinsic model complexity and, also, a collection complex-
ity.

We will bound the model complexity term using the dimension of Sm: we
prove that those two terms are roughly proportional under some structural
assumptions on the sets WK and ΥK . To obtain this result, we rely on an
entropy measure of the complexity of those sets. More precisely, for any K-
tuples of functions (s1, . . . , sK) and (t1, . . . , tK), we let

d‖ sup ‖∞
((s1, . . . , sK), (t1, . . . , tK)) = sup

x∈X
sup

1≤k≤K
‖sk(x)− tk(x)‖2,

and define the metric entropy of a set FK , Hd‖ sup ‖∞
(σ, FK ), as the logarithm

of the minimal number of balls of radius at most σ, in the sense of d‖ sup ‖∞
,

needed to cover FK . We will assume that the parametric dimension D of the
set considered coincides with an entropy based definition, namely there exists a
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constant C such that for σ ∈ (0,
√
2]

Hd‖ sup ‖∞
(σ, FK ) ≤ D

(
C + ln

1

σ

)
.

Assumption (DIM) There exist two constants CW and CΥ such that, for
every sets WK and ΥK of the models Sm in the collection S, ∀σ ∈ (0,

√
2],

Hd‖ sup ‖∞
(σ,WK ) ≤ dim(WK)

(
CW + ln

1

σ

)

and

Hd‖ sup ‖∞
(σ,ΥK) ≤ dim(ΥK)

(
CΥ + ln

1

σ

)

Note that one can extend our result to any compact sets for which those as-
sumptions hold for dimensions that could be different from the usual ones.

The complexity of the estimator depends also on the complexity of the collec-
tion. That is why one needs further to control the complexity of the collection
as a whole through a coding type (Kraft) assumption (Barron et al., 2008).

Assumption (K) There is a family (xm)m∈M of non-negative numbers and a
real number Ξ such that

∑

m∈M
e−xm ≤ Ξ < +∞.

We can now state our main result, a weak oracle inequality:

Theorem 1. For any collection of mixtures of Gaussian regressions model S =
(Sm)m∈M satisfying (K) and (DIM), there is a constant C such that for any ρ ∈
(0, 1) and any C1 > 1, there is a constant κ0 depending only on ρ and C1 such
that, as soon as for every index m ∈ M, pen(m) = κ((C + lnn) dim(Sm)+ xm)
with κ > κ0, the penalized likelihood estimate ŝm̂ with m̂ such that

n∑

i=1

− ln(ŝm̂(Yi|Xi)) + pen(m̂) ≤ inf
m∈M

(
n∑

i=1

− ln(ŝm(Yi|Xi)) + pen(m)

)
+ η′

satisfies

E
[
JKL⊗n

ρ (s0, ŝm̂)
]

≤ C1 inf
m∈M

(
inf

sm∈Sm

KL⊗n(s0, sm) +
pen(m)

n
+
κ0Ξ + η + η′

n

)
.

Remind that under the assumption that supm∈M supsm∈Sm
‖s0/sm‖∞ is fi-

nite, JKL⊗n
ρ can be replaced by KL⊗n up to a multiplication by a constant

depending on ρ and the upper bound. Note that this strong assumption is nev-
ertheless satisfied if we assume that X is compact, s0 is compactly supported,
the regression functions are uniformly bounded and there is a uniform lower
bound on the eigenvalues of the covariance matrices.
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As shown in the proof, in the previous theorem, the assumption on pen(m)
could be replaced by the milder one

pen(m) ≥ κ

(
2 dim(Sm)C2 + dim(Sm)

(
ln

n

C2 dim(Sm)

)

+

+ xm

)
.

It may be noticed that if (xm)m satisfies Assumption (K), then for any per-
mutation τ (xτ(m))m satisfies this assumption too. In practice, xm should be

chosen such that 2κxm

pen(m) is as small as possible so that the penalty can be seen as

proportional to the two first terms. Notice that the constant C only depends on
the model collection parameters, in particular on the maximal number of com-
ponents Kmax. As often in model selection, the collection may depends on the
sample size n. If the constant C grows no faster than ln(n), the penalty shape
can be kept intact and a similar result holds uniformly in n up to a slightly
larger κ0. In particular, the apparent dependency in Kmax is not an issue: Kmax

only appears in C through a logarithmic term andKmax should be taken smaller
than n for identifiability issues. Finally, it should be noted that the lnn term in
the penalty of Theorem 1 may not be necessary as hinted by a result of Gassiat
and van Handel (2014) for one dimensional mixtures of Gaussian distribution
with the same variance.

3.3. Linear combination of bounded functions for the means and

the weights

We postpone the proof of this theorem to the Appendix and focus on Assump-
tion (DIM). This assumption is easily verified when the function sets WK and
ΥK are defined as the linear combination of a finite set of bounded functions
whose coefficients belong to a compact set. This quite general setting includes
the polynomial basis when the covariable are bounded, the Fourier basis on an
interval as well as suitably renormalized wavelet dictionaries. Let dW and dΥ
be two positive integers, let (ψW,i)1≤i≤dW and (ψΥ,i)1≤i≤dΥ two collections of
functions bounded functions from X → [−1, 1] and define

W =

{
w : [0, 1]d → R

∣∣∣w(x) =
dW∑

i=0

αiψW,i(x) and ‖α‖∞ ≤ TW

}

Υ =

{
υ : [0, 1]d → R

p
∣∣∣∀j ∈ {1, . . . , p},

∀x, υj(x) =
dΥ∑

i=0

α
(j)
i ψΥ,i(x) and ‖α‖∞ ≤ TΥ

}

where the (j) in α
(j)
r is a notation to indicate the link with υj . We will be

interested in tensorial construction from those sets, namely WK = {0}×WK−1

and ΥK = ΥK , for which we prove in Appendix that
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Lemma 1. WK and ΥK satisfy Assumption (DIM), with CW = ln(
√
2+TWdW )

and CΥ = ln(
√
2 +

√
pdΥTΥ), not depending on K.

Note that in this general case, only the functions ψW,i and ψΥ,i need to be
bounded and not the covariate X itself.

For sake of simplicity, we focus on the bounded case and assume X = [0, 1]d.
In that case, we can use a polynomial modeling: ψW,i and ψΥ,i can be chosen as
monomials xr = xr11 . . . xrdd . If we let d′W and d′Υ be two maximum (non negative)
degrees for those monomials and define the sets of WK and ΥK accordingly, the
previous Lemma becomes

Lemma 2. WK and ΥK satisfy Assumption (DIM), with CW = ln(
√
2 +

TW
(
d′
W+d
d

)
) and CΥ = ln(

√
2 +

√
p
(
d′
Υ+d
d

)
TΥ), not depending on K.

To apply Theorem 1, it remains to describe a collection S = (Sm)m∈M and
a suitable choice for (xm)m∈M. Assume, for instance, that the models in our
collection are defined by an arbitrary maximal number of components Kmax, a
common free structure for the covariance matrix K-tuple and a common max-
imal degree for the sets WK and ΥK . Then one can verify that dim(Sm) =

(K − 1 + Kp)
(
d′
W+d
d

)
+ Kpp+1

2 and that the weight family (xm = K)m∈M
satisfy Assumption (K) with Ξ ≤ 1/(e − 1). Theorem 1 yields then an or-
acle inequality with pen(m) = κ((C + ln(n)) dim(Sm) + xm). Note that as
xm ≪ (C + ln(n)) dim(Sm), one can obtain a similar oracle inequality with
pen(m) = κ(C + ln(n)) dim(Sm) for a slightly larger κ. Finally, as explained in
the proof, choosing a covariance structure from the finite collection of Celeux
and Govaert (1995) or choosing the maximal degree for the sets WK and ΥK

among a finite family can be obtained with the same penalty but with a larger
constant Ξ in Assumption (K).

4. Numerical scheme and numerical experiment

We illustrate our theoretical result in a setting similar to the one considered
by Chamroukhi et al. (2010) and on two real data sets. We observe n pairs
(Xi, Yi) with Xi in a compact interval, namely [0, 1] for simulated data and
respectively [0, 5] and [0, 17] for the first and second real data set, and Yi ∈ R

and look for the best estimate of the conditional density s0(y|x) that can be
written

sK,υ,Σ,w(y|x) =
K∑

k=1

πw,k(x)Φυk(x),Σk
(y),

with w ∈ WK and υ ∈ ΥK . We consider the simple case where WK and ΥK

contain linear functions. We do not impose any structure on the covariance
matrices. Our aim is to estimate the best number of components K as well as
the model parameters. As described with more details later, we use an EM type
algorithm to estimate the model parameters for each K and select one using the
penalized approach described previously.
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4.1. The procedure

As often in model selection approach, the first step is to compute the maximum
likelihood estimate for each number of components K. To this purpose, we
use a numerical scheme based on the EM algorithm (Dempster et al., 1977)
similar to the one used by Chamroukhi et al. (2010). The only difference with a
classical EM is in the Maximization step since there is no closed formula for the
weights optimization. We use instead a Newton type algorithm. Note that we
only perform a few Newton steps (5 at most were enough in our experiments) and
ensure that the likelihood does not decrease. We have noticed that there is no
need to fully optimize at each step: we did not observe a better convergence and
the algorithmic cost is high. We denote from now on this algorithm Newton-EM.
Notice that the lower bound on the variance required in our theorem appears
to be necessary in practice. It avoids the spurious local maximizer issue of EM
algorithm, in which a class degenerates to a minimal number of points allowing a
perfect Gaussian regression fit. We use a lower bound shape of C

n . Biernacki and
Castellan (2011) provide a precise data-driven bound for mixture of Gaussian

regressions:
min1≤i<j≤n(Yi−Yj)

2

2χ2
n−2K+1((1−α)1/K)

, with χ2
n−2K+1 the chi-squared quantile function,

which is of the same order as 1
n in our case. In practice, the constant 10 gave

good results for the simulated data.

An even more important issue with EM algorithms is initialization, since
the local minimizer obtained depends heavily on it. We observe that, while the
weights w do not require a special care and can be simply initialized uniformly
equal to 0, the means require much more attention in order to obtain a good
minimizer. We propose an initialization strategy based on short runs of Newton-
EM with random initialization.

We draw randomly K lines, each defined as the line going through two points
(Xi, Yi) drawn at random among the observations. We perform then a K-means
clustering using the distance along the Y axis. Our Newton-EM algorithm is
initialized by the regression parameters as well as the empirical variance on each
of the K clusters. We perform then 3 steps of our minimization algorithm and
keep among 50 trials the one with the largest likelihood. This winner is used as
the initialization of a final Newton-EM algorithm using 10 steps.

We consider two other strategies: a naive one in which the initial lines chosen
at random and a common variance are used directly to initialize the Newton-EM
algorithm and a clever one in which observations are first normalized in order to
have a similar variance along both the X and the Y axis, a K-means on both X
and Y with 5 times the number of components is then performed and the initial
lines are drawn among the regression lines of the resulting cluster containing
more than 2 points.

The complexity of those procedures differs and as stressed by Celeux and
Govaert (1995) the fairest comparison is to perform them for the same amount of
time (5 seconds, 30 seconds, 1 minute...) and compare the obtained likelihoods.
The difference between the 3 strategies is not dramatic: they yield very similar
likelihoods. We nevertheless observe that the naive strategy has an important
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dispersion and fails sometime to give a satisfactory answer. Comparison between
the clever strategy and the regular one is more complex since the difference is
much smaller. Following Celeux and Govaert (1995), we have chosen the regular
one which corresponds to more random initializations and thus may explore
more local maxima.

Once the parameters’ estimates have been computed for each K, we select
the model that minimizes

n∑

i=1

− ln(ŝm(Yi|Xi)) + pen(m)

with pen(m) = κ dim(Sm). Note that our theorem ensures that there exists a
κ large enough for which the estimate has good properties, but does not give
an explicit value for κ. In practice, κ has to be chosen. The two most classical
choices are κ = 1 and κ = lnn

2 which correspond to the AIC and BIC approach,
motivated by asymptotic arguments. We have used here the slope heuristic
proposed by Birgé and Massart (2007) and described for instance in Baudry et al.
(2011). This heuristic comes with two possible criterions: the jump criterion and
the slope criterion. The first one consists in representing the dimension of the
selected model according to κ (Fig. 3), and finding κ̂ such that if κ < κ̂, the
dimension of the selected model is large, and reasonable otherwise. The slope
heuristic prescribes then the use of κ = 2κ̂. In the second one, one computes the
asymptotic slope of the log-likelihood drawn according to the model dimension,
and penalizes the log-likelihood by twice the slope times the model dimension.
With our simulated data sets, we are in the not so common situation in which
the jump is strong enough so that the first heuristic can be used.

4.2. Simulated data sets

The previous procedure has been applied to two simulated data sets: one in
which true conditional density belongs to one of our models, a well-specified
case, and one in which this is not true, a misspecified case. In the first situation,
we expect to perform almost as well as the maximum likelihood estimation in the
true model. In the second situation, we expect our algorithm to automatically
balance the model bias and its variance. More precisely, we let

s0(y|x) =
1

1 + exp(15x− 7)
Φ−15x+8,0.3(y) +

exp(15x− 7)

1 + exp(15x− 7)
Φ0.4x+0.6,0.4(y)

in the first example, denoted example WS, and

s0(y|x) =
1

1 + exp(15x− 7)
Φ15x2−22x+7.4,0.3(y)+

exp(15x− 7)

1 + exp(15x− 7)
Φ−0.4x2,0.4(y)

in the second example, denoted example MS. For both experiments, we let X
be uniformly distributed over [0, 1]. Figure 2 shows a typical realization.
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Fig 2. Typical realizations.

(a) Example WS with 2 000 points
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(b) Example MS with 2 000 points

Fig 3. Slope heuristic: plot of the selected model dimension with respect to the penalty coef-
ficient κ. In both examples, κ̂ is of order 1/2.

In both examples, we have noticed that the sample’s size had no significant
influence on the choice of κ, and that very often 1 was in the range of possible
values indicated by the jump criterion of the slope heuristic. According to this
observation, we have chosen in both examples κ = 1.

We measure performances in term of tensorized Kullback-Leibler divergence.
Since there is no known formula for tensorized Kullback-Leibler divergence in
the case of Gaussian mixtures, and since we know the true density, we evaluate
the divergence using Monte Carlo method. The variability of this randomized
approximation has been verified to be negligible in practice.

For several numbers of mixture components and for the selected K, we draw in
Figure 4 the box plots and the mean of tensorized Kullback-Leibler divergence
over 55 trials. The first observation is that the mean of tensorized Kullback-
Leibler divergence between the penalized estimator ŝK̂ and s0 is smaller than
the mean of tensorized Kullback-Leibler divergence between ŝK and s0 over
K ∈ {1, . . . , 20}. This is in line with the oracle type inequality of Theorem 1.
Our numerical results hint that our theoretical analysis may be pessimistic.
A close inspection shows that the bias-variance trade-off differs between the two
examples. Indeed, since in the first one the true density belongs to the model,
the best choice is K = 2 even for large n. As shown on the histogram of Figure 5,
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(c) Example MS with 2 000 data
points
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Fig 4. Box-plot of the Kullback-Leibler divergence according to the number of mixture compo-
nents. On each graph, the right-most box-plot shows this Kullback-Leibler divergence for the
penalized estimator ŝ

K̂
.

this is almost always the model chosen by our algorithm. Observe also that the

mean of Kullback-Leibler divergence seems to behave like dim(Sm)
2n (shown by a

dotted line). This is indeed the expected behavior when the true model belongs
to a nested collection and corresponds to the classical AIC heuristic. In the
second example, the misspecified one, the true model does not belong to the
collection. The best choice for K should thus balance a model approximation
error term and a variance one. We observe in Figure 5 such a behavior: the
larger n the more complex the model and thus K. Note that the slope of the

mean error seems also to grow like dim(Sm)
2n even though there is no theoretical

guarantee of such a behavior.

Figure 6 shows the error decay when the sample size n grows. As expected
in the well-specified case, example W, we observe the decay in t/n predicted
in the theory, with t some constant. The rate in the second case appears to be
slower. Indeed, as the true conditional density does not belong to any model,
the selected models are more and more complex when n grows which slows the
error decay. In our theoretical analysis, this can already be seen in the decay of
the variance term of the oracle inequality. Indeed, if we letm0(n) be the optimal
oracle model, the one minimizing the right-hand side of the oracle inequality,

the variance term is of order
dim(Sm0(n))

n which is larger than 1
n as soon as
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Fig 5. Histograms of the selected K.
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Fig 6. Kullback-Leibler divergence between the true density and the computed density using
(Xi, Yi)i≤N with respect to the sample size, represented in a log-log scale. For each graph, we
added a free linear least-square regression and one with slope −1 to stress the two different
behavior.

dim(Sm0(n)) → +∞. It is well known that the decay depends on the regularity
of the true conditional density. Providing a minimax analysis of the proposed
estimator, as have done Maugis and Michel (2012), would be interesting but is
beyond the scope of this paper.
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Fig 7. Slope heuristic for the ethanol data set.

4.3. Ethanol data set

We explain now with more details the result of Figure 1 for the 88 data point
Ethanol data set of Brinkman (1981). Young (2014) proposes to estimate the
density of the equivalence ratio R conditioned to the concentration inNO and to
use this conditional density to do a clustering of the data set. In our framework,
this amounts to estimate the conditional density by

K̂∑

k=1

πŵk(NO)Φυ̂k(NO),Σ̂k
(R)

with our proposed penalized estimator and to use the classical maximum likeli-
hood approach that associates (NO,R) to the class

arg max
1≤k≤K̂

πŵk(NO)Φυ̂k(NO),Σ̂k
(R)

to perform the clustering.
An important parameter of the method is the lower bound of the variance

used in the estimation for a given number of class. This is required to avoid
spurious maximizers of the likelihood. Here, the value 10−4 chosen by hand
yields satisfactory results.

Since we only have 88 points and roughly 5 parameters per class, the random
initialization may yield classes with too few points to have a good estimation.
We have slightly modified our K-means procedure in order to ensure than at
least 10 points are assigned to each class. In that case, we have verified that the
estimated parameters of the conditional density were very stable.

Note that with this strategy, no more than 8 classes can be considered. This
prevents the use of the jump criterion to calibrate the penalty because the big
jump is hard to define. We use instead the slope heuristic. Figure 7 shows that
this slope is of order 1 and thus the slope heuristic prescribes a penalty of
2 dim(SK), providing an estimate with 4 components.

It is worth pointing out that the maximum of the penalized likelihood is not
sharp, just like in the example MS of simulated data (see figure 5). Indeed, it
is quite unlikely that the true density belongs to our model collection. So, there



1678 L. Montuelle and E. Le Pennec

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

NO

E
qu

iv
al

en
ce

 R
at

io

(a) K=2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

NO

E
qu

iv
al

en
ce

 R
at

io

(b) K=3
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(c) K=4
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(d) K=5

Fig 8. Clustering of NO data set into K classes. The strength of the color of the regression
lines corresponds to the mixture proportion.

may be an uncertainty on the selected number of components between 4, 3 and 5.
Note that AIC penalization would have lead to 7 classes while BIC would also
have lead to 4 classes. Our estimated penalty is nevertheless in the middle of
the zone corresponding to 4 while BIC is nearby the boundary with 3 and thus
we expect this choice to be more stable. In Figure 1(b) of the introduction we
have shown only this clustering with 4 classes. Figure 8 shows that the choices
of 3 or 5 may make sense, even though the choice 5 may seem slightly too
complex. A common feature among all those clusterings is the change of slope
in the topmost part around 1.7. This phenomena is also visible in Young (2014)
in which an explicit change point model is used, ours is only implicit and thus
more versatile

To complete our study, in Figure 9, we have considered the more natural
regression of NO with respect to the equivalence ratio that has not been studied
by Young (2014). Using the same methodology, we have recovered also 4 clusters
corresponding to a soft partitioning of the equivalence ratio value. Note that this
clustering, which is easily interpretable, is very similar to the one obtained with
the previous parameterization.

4.4. ChIP-chip data set

We considere here a second real data set: a Chromatin immunoprecipitation
(ChIP) on chip genomic data set. Chromatin immunoprecipitation (ChIP) is
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Fig 9. Clustering of NO data set into 4 classes, considering the regression of NO with respect
to the equivalence ratio.

a procedure used to investigate proteins associated with DNA. The data set
considered is the one used by Martin-Magniette et al. (2008). In this exper-
iment, two variables are studied: DNA fragments crosslinked to a protein of
interest (IP) and genomic DNA (Input). Martin-Magniette et al. (2008) model
the density of log-IP conditioned to log-Input by a mixture of two Gaussian
regressions with the same variance. One component corresponds to an enriched
one, in which there is more proteins than expected, and the other to a nor-
mal one. They use classical proportions that do not depends on the Input. The
parameters are estimated using the EM algorithm initialized by values derived
from a Principal Component Analysis of the whole data set. The best model
between one and two components is selected according to the BIC criterion.
For the histone modification in Arabidopsis thaliana data set, they select a
two components model similar to the one obtained with logistic weights (Fig-
ure 10).

We have first compare the constant proportions model with K = 2 to the
one proposed in their conclusion in which the proportions depend on the Input.
We have used our affine logistic weight model and observed that this model
greatly improves the log-likelihood. The dimension of this new model is 8 while
the dimension of the original model is 7 so that the log-likelihood increase does
not seem to be due to overfitting. We have also compare our solution to the one
obtained with a constant weight with K = 3 model of dimension 11. The BIC
criterion selects the K = 2 with affine weight solution.

We have then tested more complex models with K up to 20 with a penalty
obtained with the slope heuristic. The models chosen are quite complex (K = 10
for constant proportions models and K = 7 for affine logistic weight models,
the later being the overall winner). Although they better explain the data from
the statistical point of view, those models become hard to interpret from the
biological point of view. We think this is due to the too simple affine models
used. Although no conceptual difficulties occur by using more complex function
familie (or going to the multivariate setting), the curse of dimensionality makes
everything more complicated in practice. In particular, initialization becomes
harder and harder as the dimension grows and requires probably a more clever
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(a) K=2, constant propor-
tions, dimension= 7

(b) K=2, affine logistic
weights, dimension= 8

(c) K=3, constant propor-
tions, dimension= 9

(d) K=7, affine logistic
weights, dimension= 33

(e) K=10, constant propor-
tions, dimension= 39

Fig 10. Clustering of ChIP-chip data set into K classes.

treatment than the one proposed here. In the spirit of Cohen and Le Pennec
(2013), we are currently working on a first extension: a numerical algorithm
for a bivariate piecewise linear logistic weights model applied to hyperspectral
image segmentation.

5. Discussion

We have studied a penalized maximum likelihood estimate for mixtures of Gaus-
sian regressions with logistic weights. Our main contribution is the proof that
a penalty proportional, up to a logarithmic factor of the sample size, to the
dimension of the model is sufficient to obtain a non asymptotic theoretical con-
trol on the estimator loss. This result is illustrated in the simple univariate case
in which both the means and the logistic weights are linear. We study a toy
model which exhibits the behavior predicted by our theoretical analysis and
proposes two simple applications of our methodology. We hope that our con-
tribution helps to popularize those mixtures of Gaussian regressions by giving
a theoretical foundation for model selection technique in this area and showing
some possible interesting uses even for simple models.

Besides some important theoretical issues on the loss used and the tightness
of the bounds, the major future challenge is the extension of the numerical
scheme to more complex cases than univariate linear models.

Appendix A: A general conditional density model selection theorem

We summarize in this section the main result of Cohen and Le Pennec (2011)
that will be our main tool to obtain the previous oracle inequality.
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To any model Sm, a set of conditional densities, we associate a complexity
defined in term of a specific entropy, the bracketing entropy with respect to the
square root of the tensorized square of the Hellinger distance d2⊗n. Recall that
a bracket [t−, t+] is a pair of real functions such that ∀(x, y) ∈ X ×Y, t−(x, y) ≤
t+(x, y) and a function s is said to belong to the bracket [t−, t+] if ∀(x, y) ∈
X × Y, t−(x, y) ≤ s(x, y) ≤ t+(x, y). The bracketing entropy H[],d(δ, S) of a
set S is defined as the logarithm of the minimal number N[],d(δ, S) of brackets
[t−, t+] covering S, such that d(t−, t+) ≤ δ. The main assumption on models is
a property that should satisfies the bracketing entropy:

Assumption (H) For every model Sm in the collection S, there is a non-
decreasing function φm such that δ 7→ 1

δφm(δ) is non-increasing on (0,+∞)
and for every σ ∈ R

+,
∫ σ

0

√
H[.],d⊗n(δ, Sm)dδ ≤ φm(σ).

Such an integral is ofter called a Dudley type integral of these bracketing en-
tropies and is commonly used in empirical process theory (Van der Vaart and
Wellner, 1996). The complexity of Sm is then defined as nσ2

m where σm is the
unique square root of 1

σφm(σ) =
√
nσ.

For technical reason, a separability assumption, always satisfied in the setting
of this paper, is also required. It is a mild condition, classical in empirical process
theory (see for instance Van der Vaart and Wellner (1996)).

Assumption (Sep) For every model Sm in the collection S, there exists some
countable subset S′

m of Sm and a set Y ′
m with λ(Y\Y ′

m) = 0 such that for
every t in Sm, there exists some sequence (tk)k≥1 of elements of S′

m such
that for every x ∈ X and every y ∈ Y ′

m, ln(tk(y|x)) −−−−−→
k→+∞

ln(t(y|x)).

The main result of Cohen and Le Pennec (2011) is a condition on the penalty
pen(m) which ensures an oracle type inequality:

Theorem 2. Assume we observe (Xi, Yi) with unknown conditional density s0.
Let S = (Sm)m∈M an at most countable conditional density model collection.
Assume Assumptions (H), (Sep) and (K) hold. Let ŝm be a η minimizer of the
negative log-likelihood in Sm

n∑

i=1

− ln(ŝm(Yi|Xi)) ≤ inf
sm∈Sm

(
n∑

i=1

− ln(sm(Yi|Xi))

)
+ η

Then for any ρ ∈ (0, 1) and any C1 > 1, there is a constant κ0 depending
only on ρ and C1 such that, as soon as for every index m ∈ M,

pen(m) ≥ κ(nσ2
m + xm)

with κ > κ0 and σm the unique square root of 1
σφm(σ) =

√
nσ, the penalized

likelihood estimate ŝm̂ with m̂ such that

n∑

i=1

− ln(ŝm̂(Yi|Xi)) + pen(m̂) ≤ inf
m∈M

(
n∑

i=1

− ln(ŝm(Yi|Xi)) + pen(m)

)
+ η′
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satisfies

E
[
JKL⊗n

ρ (s0, ŝm̂)
]

≤ C1 inf
m∈M

(
inf

sm∈Sm

KL⊗n(s0, sm) +
pen(m)

n

)
+ C1

κ0Ξ + η + η′

n
.

In the next section, we show how to apply this result in our mixture of
Gaussian regressions setting and prove that the penalty can be chosen roughly
proportional to the intrinsic dimension of the model, and thus of the order of
the variance.

Appendix B: Proofs

In Appendix B.1, we give a proof of Theorem 1 relying on several bracketing
entropy controls proved in Appendix B.2.

B.1. Proof of Theorem 1

We will show that Assumption (DIM) ensures that for all δ ∈ (0,
√
2],

H[.],d⊗n(δ, Sm) ≤ dim(Sm)(C+ ln(1δ )) with a common C.
We show in Appendix that if

Assumption (DIM) There exist two constants CW and CΥ such that, for
every model Sm in the collection S,

Hd‖ sup ‖∞
(σ,WK) ≤ dim(WK)

(
CW + ln

1

σ

)

and

Hd‖ sup ‖∞
(σ,ΥK) ≤ dim(ΥK)

(
CΥ + ln

1

σ

)

then, if n ≥ 1, the complexity of the corresponding model Sm satisfies for any
δ ∈ (0,

√
2],

H[.],d⊗n(δ, Sm) ≤ dim(Sm)

(
C+ ln

(
1

δ

))

with dim(Sm) = dim(WK) + dim(ΥK) + dim(VK) and C that depends only on
the constants defining VK and the constants CW and CΥ.

If this happens, Proposition 1 yields the results.

Proposition 1. If for any δ ∈ (0,
√
2], H[.],d⊗n(δ, Sm) ≤ dim(Sm)(Cm + ln(1δ )),

then the function φm(σ) = σ
√

dim(Sm)(
√
Cm +

√
π +

√
ln( 1

min(σ,1))) satisfies

Assumption (H). Furthermore, the unique square root σm of 1
σφm(σ) =

√
nσ

satisfies

nσ2
m ≤ dim(Sm)

(
2(
√
Cm +

√
π)2 +

(
ln

n

(
√
Cm +

√
π)2 dim(Sm)

)

+

)
.
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In other words, if we can control models’ bracketing entropy with a uniform
constant C, we get a suitable bound on the complexity. This result will be obtain
by first decomposing the entropy term between the weights and the Gaussian
components. Therefore we use the following distance over conditional densities:

sup
x
dy(s, t) = sup

x∈X

(∫

y

(√
s(y|x)−

√
t(y|x)

)2
dy

) 1
2

.

Notice that d2⊗n(s, t) ≤ supx d
2
y(s, t).

For all weights π and π′, we define

sup
x
dk(π, π

′) = sup
x∈X

(
K∑

k=1

(√
πk(x)−

√
π′
k(x)

)2
) 1

2

.

Finally, for all densities s and t over Y, depending on x, we set

sup
x

max
k

dy(s, t) = sup
x∈X

max
1≤k≤K

dy(sk(x, .), tk(x, .))

= sup
x∈X

max
1≤k≤K

(∫

y

(√
sk(x, y)−

√
tk(x, y)

)2
dy

) 1
2

.

Lemma 3. Let P = {(πw,k)1≤k≤K

∣∣w ∈WK , and ∀(k, x), πw,k(x) =
ewk(x)

∑
K
l=1 ewl(x) }

and G = {(Φυk,Σk
)1≤k≤K |υ ∈ ΥK ,Σ ∈ VK}. Then for all δ in (0,

√
2], for all m

in M,

H[.],sup
x

dy
(δ, Sm) ≤ H[.],sup

x
dk

(
δ

5
,P
)
+H[.],sup

x
max

k
dy

(
δ

5
,G
)
.

One can then relate the bracketing entropy of P to the entropy of WK

Lemma 4. For all δ ∈ (0,
√
2],

H[.],sup
x

dk

(
δ

5
,P
)

≤ Hd‖ sup ‖∞

(
3
√
3δ

20
√
K
,WK

)

Since P is a set of weights, 3
√
3δ

20
√
K

could be replaced by 3
√
3δ

20
√
K−1

with an

identifiability condition. For example, W ′
K = {(0, w2 − w1, . . . , wK − w1)|w ∈

WK} can be covered using brackets of null size on the first coordinate, lowering
squared Hellinger distance between the brackets’ bounds to a sum of K − 1

terms. Therefore, H[.],sup
x

dk
( δ5 ,P) ≤ Hd‖ sup ‖∞

( 3
√
3δ

20
√
K−1

,W ′
K).

Since we have assumed that ∃CW s.t ∀δ ∈ (0,
√
2],

Hd‖ sup ‖∞
(δ,WK) ≤ dim(WK)

(
CW + ln

(
1

δ

))
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Then

H[.],sup
x

dk

(
δ

5
,P
)
≤ dim(WK)

(
CW + ln

(
20

√
K

3
√
3δ

))

To tackle the Gaussian regression part, we rely heavily on the following propo-
sition,

Proposition 2. Let κ ≥ 17
29 , γκ =

25(κ− 1
2 )

49(1+ 2κ
5 )

. For any 0 < δ ≤
√
2 and any

δΣ ≤ 1

5
√

κ2 cosh( 2κ
5 )+ 1

2

δ
p , (υ, L,A, P ) ∈ Υ × [L−, L+] × A(λ−, λ+) × SO(p) and

(υ̃, L̃, Ã, P̃ ) ∈ Υ×[L−, L+]×A(λ−,+∞)×SO(p),Σ = LPAP ′ and Σ̃ = L̃P̃ ÃP̃ ′,
assume that t−(x, y) = (1 + κδΣ)

−pΦυ̃(x),(1+δΣ)−1Σ̃(y) and t+(x, y) = (1 +

κδΣ)
pΦυ̃(x),(1+δΣ)Σ̃(y).

If





∀x ∈ R
d, ‖υ(x)− υ̃(x)‖2 ≤ pγκL−λ−

λ−

λ+
δΣ

2

(1 + 2
25δΣ)

−1L̃ ≤ L ≤ L̃

∀1 ≤ i ≤ p, |A−1
i,i − Ã−1

i,i | ≤ 1
10

δΣ
λ+

∀y ∈ R
p, ‖Py − P̃ y‖ ≤ 1

10
λ−

λ+
δΣ‖y‖

then [t−, t+] is a δ
5 Hellinger bracket such that t−(x, y) ≤ Φυ(x),Σ(y) ≤ t+(x, y).

We consider three cases: the parameter (mean, volume, matrix) is known
(⋆ = 0), unknown but common to all classes (⋆ = c), unknown and possibly
different for every class (⋆ = K). For example, [νK , L0, Pc, A0] denotes a model
in which only means are free and eigenvector matrices are assumed to be equal
and unknown. Under our assumption that ∃CΥ s.t ∀δ ∈ (0,

√
2],

Hd‖ sup ‖∞
(δ,ΥK) ≤ dim(ΥK)

(
CΥ + ln

(
1

δ

))

we deduce:

H[.],maxk supx dy

(
δ

5
,G
)

≤ D
(
C + ln

(
1

δ

))
(1)

where D = Zυ,⋆ + ZL,⋆ +
p(p−1)

2 ZP,⋆ + (p− 1)ZA,⋆ and

C = ln

(
5p

√
κ2 cosh

(
2κ

5

)
+

1

2

)
+
Zυ,⋆CΥ

D +
Zυ,⋆

2D ln

(
λ+

pγκL−λ2−

)

+
ZL,⋆

D ln



4 + 129 ln

(
L+

L−

)

10


+

ZP,⋆

D

(
ln(cU ) +

p(p− 1)

2
ln

(
10λ+
λ−

))

+
ZA,⋆(p− 1)

D ln

(
4

5
+

52λ+
5λ−

ln

(
λ+
λ−

))
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Zυ,K = dim(ΥK), Zυ,c = dim(Υ1), Zυ,0 = 0 ZL,0 = ZP,0 = ZA,0 = 0,

ZL,c = ZP,c = ZA,c = 1, ZL,K = ZP,K = ZA,K = K.

We notice that the following upper-bound of C is independent from the model
of the collection, because we have made this hypothesis on CΥ.

C ≤ ln

(
5p

√
κ2 cosh

(
2κ

5

)
+

1

2

)
+ CΥ +

1

2
ln

(
λ+

pγκL−λ2−

)

+ ln



4 + 129 ln

(
L+

L−

)

10


+

2

p(p− 1)
ln(cU ) + ln

(
10λ+
λ−

)

+ ln

(
4

5
+

52λ+
5λ−

ln

(
λ+
λ−

))
:= C1.

We conclude that H[.],supx dy
(δ, Sm) ≤ dim(Sm)(Cm + ln(1δ )), with

dim(Sm) = dim(WK) +D

Cm =
dim(WK)

dim(Sm)

(
CW + ln

(
20

√
K

3
√
3

))
+

DC1
dim(Sm)

≤ CW + ln

(
20

√
Kmax

3
√
3

)
+ C1 := C

Note that the constant C does not depend on the dimension dim(Sm) of the
model, thanks to the hypothesis that CW is common for every model Sm in the
collection. Using Proposition 1, we deduce thus that

nσ2
m ≤ dim(Sm)

(
2
(√

C+
√
π
)2

+

(
ln

n

(
√
C+

√
π)2 dim(Sm)

)

+

)
.

Theorem 2 yields then, for a collection S = (Sm)m∈M, with M = {(K,WK ,
ΥK , VK)|K ∈ N \ {0},WK ,ΥK , VK as previously defined } for which Assump-
tion (K) holds, the oracle inequality of Theorem 1 as soon as

pen(m) ≥ κ

(
dim(Sm)

(
2
(√

C+
√
π
)2

+

(
ln

n

(
√
C+

√
π)2 dim(Sm)

)

+

)
+xm

)
.

B.2. Lemma proofs

For sake of brevity, some technical proofs are omitted here. They can be found
in an extended version.
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B.2.1. Bracketing entropy’s decomposition

We prove here a slightly more general Lemma than Lemma 3

Lemma 5. Let

P =

{
π = (πk)1≤k≤K

∣∣∀k, πk : X → R
+ and ∀x ∈ X ,

K∑

k=1

πk(x) = 1

}
,

Ψ =

{
(ψ1, . . . , ψK)

∣∣∀k, ψk : X × Y → R
+, and ∀x, ∀k,

∫
ψk(x, y)dy = 1

}
,

C =

{
(x, y) 7→

K∑

k=1

πk(x)ψk(x, y)
∣∣π ∈ P , ψ ∈ Ψ

}
.

Then for all δ in (0,
√
2],

H[.],sup
x

dy
(δ, C) ≤ H[.],sup

x
dk

(
δ

5
,P
)
+H[.],sup

x
max

k
dy

(
δ

5
,Ψ

)
.

The proof mimics the one of Lemma 7 from Cohen and Le Pennec (2011). It
is possible to obtain such an inequality if the covariate X is not bounded, using
the smaller distance d⊗n for the entropy with bracketing of C. More precisely,

Lemma 6. For all δ in (0,
√
2], H[.],d⊗n(δ, C) ≤ H[.],dP

( δ2 ,P) + H[.],dΨ
( δ2 ,Ψ),

with d2P(π
+, π−) = E[ 1n

∑n
i=1 d

2
k(π

+(Xi), π
−(Xi))] and d2Ψ(ψ

+, ψ−) =

E[ 1n
∑n

i=1

∑K
k=1 d

2
y(ψ

+
k (Xi), ψ

−
k (Xi))]. But bounding such bracketing entropies

for P and Ψ becomes much more challenging.

Proof. First we will exhibit a covering of bracket of C.
Let ([πi,−, πi,+])1≤i≤NP be a minimal covering of δ bracket for supx dk of P :

∀i ∈ {1, . . . , NP}, ∀x ∈ X , dk(πi,−(x), πi,+(x)) ≤ δ.

Let ([ψi,−, ψi,+])1≤i≤NΨ be a minimal covering of δ bracket for sup
x

max
k

dy of Ψ:

∀i ∈ {1, . . . , NΨ}, ∀x ∈ X , ∀k ∈ {1, . . . ,K}, dy(ψi,−
k (x, .), ψi,+

k (x, .)) ≤ δ.

Let s be a density in C. By definition, there is π in P and ψ in Ψ such that for
all (x, y) in X × Y, s(y|x) =∑K

k=1 πk(x)ψk(x, y).

Due to the covering, there is i in {1, . . . , NP} such that

∀x ∈ X , ∀k ∈ {1, . . . ,K}, πi,−
k (x) ≤ πk(x) ≤ πi,+

k (x).

There is also j in {1, . . . , NΨ} such that

∀x ∈ X , ∀k ∈ {1, . . . ,K}, ∀y ∈ Y, ψj,−
k (x, y) ≤ ψk(x, y) ≤ ψj,+

k (x, y).



Mixture of Gaussian regressions model with logistic weights 1687

Since for all x, for all k and for all y, πk(x) and ψk(x, y) are non-negatives,
we may multiply term-by-term and sum these inequalities over k to obtain:

∀x ∈ X , ∀y ∈ Y,
K∑

k=1

(
πi,−
k (x)

)
+

(
ψj,−
k (x, y)

)
+
≤ s(y|x) ≤

K∑

k=1

πi,+
k (x)ψj,+

k (x, y).

([
K∑

k=1

(πi,−
k )+(ψ

j,−
k )+,

K∑

k=1

πi,+
k ψj,+

k

])

1≤i≤NP
1≤j≤NΨ

is thus a bracket covering of C.
Now, we focus on brackets’ size using lemmas from Cohen and Le Pennec

(2011) (namely Lemma 11, 12, 13), To lighten the notations, π−
k and ψ−

k are
supposed non-negatives for all k. Following their Lemma 12, only using Cauchy-
Schwarz inequality, we prove that

sup
x
d2y

(
K∑

k=1

π−
k (x)ψ

−
k (x, .),

K∑

k=1

π+
k (x)ψ

+
k (x, .)

)

≤ sup
x
d2y,k(π

−(x)ψ−(x, .), π+(x)ψ+(x, .))

Then, using Cauchy-Schwarz inequality again, we get by their Lemma 11:

sup
x
d2y,k(π

−(x)ψ−(x, .), π+(x)ψ+(x, .))

≤ sup
x


max

k
dy(ψ

+
k (x, .), ψ

−
k (x, .))

√√√√
K∑

k=1

π+
k (x)

+ dk(π
+(x), π−(x))max

k

√∫
ψ−
k (x, y)dy

)2

According to their Lemma 13, ∀x,∑K
k=1 π

+
k (x) ≤ 1 + 2(

√
2 +

√
3)δ.

sup
x


max

k
dy(ψ

+
k (x, .), ψ

−
k (x, .))

√√√√
K∑

k=1

π+
k (x)

+ dk(π
+(x), π−(x))max

k

√∫
ψ−
k (x, y)dy

)2

≤
(√

1 + 2(
√
2 +

√
3)δ + 1

)2

δ2 ≤ (5δ)2

The result follows from the fact we exhibited a 5δ covering of brackets of C, with
cardinality NPNΨ.
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B.2.2. Bracketing entropy of weight’s families

General case We prove

Lemma 4. For any δ ∈ (0,
√
2],

H[.],supx dk

(
δ

5
,P
)
≤ Hd‖ sup ‖∞

(
3
√
3δ

20
√
K
,WK

)
.

Proof. We show that ∀(w, z) ∈ (WK)2, ∀k ∈ {1, . . . ,K}, ∀x ∈ X , |
√
πw,k(x) −√

πz,k(x)| ≤ F (k, x)d(w, z), with F a function and d some distance. We define

∀k, ∀u ∈ R
K , Ak(u) =

exp(uk)∑K
k=1 exp(uk)

, so πw,k(x) = Ak(w(x)).

∀(u, v) ∈ (RK)2,

∣∣∣
√
Ak(v) −

√
Ak(u)

∣∣∣ =
∣∣∣∣
∫ 1

0

∇
(√

Ak

)
(u + t(v − u)).(v − u)dt

∣∣∣∣

Besides,

∇
(√

Ak

)
(u) =

(
1

2

√
Ak(u)

∂

∂ul
(ln(Ak(u)))

)

1≤l≤K

=

(
1

2

√
Ak(u) (δk,l −Al(u))

)

1≤l≤K

∣∣∣
√
Ak(v)−

√
Ak(u)

∣∣∣

=
1

2

∣∣∣∣∣

∫ 1

0

√
Ak(u + t(v − u))

K∑

l=1

(δk,l −Al(u+ t(v − u))) (vl − ul)dt

∣∣∣∣∣

≤ ‖v − u‖∞
2

∫ 1

0

√
Ak(u+ t(v − u))

K∑

l=1

|δk,l −Al(u+ t(v − u))| dt

Since ∀u ∈ R
K ,
∑K

k=1 Ak(u) = 1,
∑K

l=1 |δk,l −Al(u)| = 2(1−Ak(u))

∣∣∣
√
Ak(v)−

√
Ak(u)

∣∣∣

≤ ‖v − u‖∞
∫ 1

0

√
Ak(u+ t(v − u)) (1−Ak(u+ t(v − u))) dt

≤ 2

3
√
3
‖v − u‖∞

since x 7→ √
x(1 − x) is maximal over [0,1] for x = 1

3 . We deduce that for any

(w, z) in (WK)2, for all k in {1, . . . ,K}, for any x in X , |
√
πw,k(x)−

√
πz,k(x)| ≤

2
3
√
3
maxl ‖wl − zl‖∞.
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By hypothesis, for any positive ǫ, an ǫ-net N of WK may be exhibited. Let
w be an element of WK . There is a z belonging to the ǫ-net N such that
maxl ‖zl − wl‖∞ ≤ ǫ. Since for all k in {1, . . . ,K}, for any x in X ,

|
√
πw,k(x) −

√
πz,k(x)| ≤

2

3
√
3
max

l
‖wl − zl‖∞ ≤ 2

3
√
3
ǫ,

and
K∑

k=1

(√
πz,k(x) +

2

3
√
3
ǫ−

√
πz,k(x) +

2

3
√
3
ǫ

)2

= K

(
4ǫ

3
√
3

)2

,

([(
√
πz − 2

3
√
3
ǫ)2, (

√
πz + 2

3
√
3
ǫ)2])z∈N is a 4ǫ

√
K

3
√
3
-bracketing cover of P . As a

result, H[],supx dk
( δ5 ,P) ≤ Hd‖ sup ‖∞

( 3
√
3

20
√
K
δ,WK).

Case: WK = {0} ⊗WK−1 with W constructed from bounded functions
We remind that

W =

{
w : X → R/w(x) =

dW∑

i=0

αiψW,i and ‖α‖∞ ≤ TW

}

with ‖ψW,i‖∞ ≤ 1.

Proof of Part 1 of Lemma 1. WK is a finite dimensional compact set. Thanks
to the result in the general case, we get

H[.],sup
x

dk

(
δ

5
,P
)

≤ Hd‖ sup ‖∞

(
3
√
3δ

20
√
K − 1

,WK

)

now as for all w, v in WK , maxk ‖wk − vk‖∞ ≤ maxk
∑dW

i=0 |αw
k,i − αv

k,i| ≤
dW maxk,i |αw

k,i − αv
k,i|

≤ H‖.‖∞

(
3
√
3δ

20
√
K − 1dW

,
{
α ∈ R

(K−1)dW /‖α‖∞ ≤ TW

})

≤ (K − 1)dW ln

(
1 +

20
√
K − 1TWdW

3
√
3δ

)

≤ (K − 1)dW

[
ln

(√
2 +

20

3
√
3
TW

√
K − 1dW

)
+ ln

(
1

δ

)]
.

The second Lemma is just a consequence of dW =
(
d′
W+d
d

)
.

B.2.3. Bracketing entropy of Gaussian families

General case We rely on a general construction of Gaussian brackets:
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Proposition. 2. Let κ ≥ 17
29 , γκ =

25(κ− 1
2 )

49(1+ 2κ
5 )

. For any 0 < δ ≤
√
2, any p ≥ 1

and any δΣ ≤ 1

5
√

κ2 cosh( 2κ
5 )+ 1

2

δ
p , let (υ, L,A, P ) ∈ Υ × [L−, L+]×A(λ−, λ+) ×

SO(p) and (υ̃, L̃, Ã, P̃ ) ∈ Υ×[L−, L+]×A(λ−,+∞)×SO(p), define Σ = LPAP ′

and Σ̃ = L̃P̃ ÃP̃ ′,

t−(x, y) = (1 + κδΣ)
−pΦυ̃(x),(1+δΣ)−1Σ̃(y) and

t+(x, y) = (1 + κδΣ)
pΦυ̃(x),(1+δΣ)Σ̃(y).

If





∀x ∈ X , ‖υ(x)− υ̃(x)‖2 ≤ pγκL−λ−
λ−

λ+
δ2Σ(

1 + 2
25δΣ

)−1
L̃ ≤ L ≤ L̃

∀1 ≤ i ≤ p, |A−1
i,i − Ã−1

i,i | ≤ 1
10

δΣ
λ+

∀y ∈ R
p, ‖Py − P̃ y‖ ≤ 1

10
λ−

λ+
δΣ‖y‖

then [t−, t+] is a δ/5 Hellinger bracket such that t−(x, y) ≤ Φυ(x),Σ(y) ≤ t+(x, y).

This statement is similar to Lemma 10 in Cohen and Le Pennec (2011).
Admitting this proposition, we are brought to construct nets over the spaces of
the means, the volumes, the eigenvector matrices and the normalized eigenvalue
matrices. We consider three cases: the parameter (mean, volume, matrix) is
known (⋆ = 0), unknown but common to all classes (⋆ = c), unknown and
possibly different for every class (⋆ = K). For example, [νK , L0, Pc, A0] denotes
a model in which only means are free and eigenvector matrices are assumed to
be equal and unknown.

If the means are free (⋆ = K), we construct a grid GΥK over ΥK , which is
compact. Since

Hd‖ sup ‖∞

(√
pγκL−λ−

λ−
λ+

δΣ,ΥK

)
≤ dim(ΥK)

(
CΥ + ln

(
1√

pγκL−λ−
λ−

λ+
δΣ

))
,

∣∣∣∣∣GΥK

(√
pγκL−λ−

λ−
λ+

δΣ

)∣∣∣∣∣ ≤
(
CΥ + ln

(
1√

pγκL−λ−
λ−

λ+
δΣ

))dim(ΥK)

.

If the means are common and unknown (⋆ = c), belonging to Υ1, we construct

a grid GΥc(
√
pγκL−λ−

λ−

λ+
δΣ) over Υ1 with cardinality at most


CΥ + ln


 1√

pγκL−λ−
λ−

λ+
δΣ






DΥ1

.
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Finally, if the means are known (⋆ = 0), we do not need to construct a grid. In
the end,

∣∣∣∣∣GΥ⋆

(√
pγκL−λ−

λ−
λ+

δΣ

)∣∣∣∣∣ ≤


CΥ + ln


 1√

pγκL−λ−
λ−

λ+
δΣ






Zυ,⋆

,

with Zυ,K = dim(ΥK), Zυ,c = DΥ1 and Zυ,0 = 0.
Then, we consider the grid GL over [L−, L+]:

GL

(
2

25
δΣ

)
=

{
L−

(
1 +

2

25
δΣ

)g

/g ∈ N, L−

(
1 +

2

25
δΣ

)g

≤ L+

}

∣∣∣∣GL

(
2

25
δΣ

)∣∣∣∣ ≤ 1 +
ln
(

L+

L−

)

ln
(
1 + 2

25δΣ
)

Since δΣ ≤ 2
5 , ln(1 +

2
25δΣ) ≥ 10

129δΣ.

∣∣∣∣GL

(
2

25
δΣ

)∣∣∣∣ ≤ 1 +
129 ln

(
L+

L−

)

10δΣ
≤

4 + 129 ln
(

L+

L−

)

10δΣ

By definition of a net, for any P ∈ SO(p) there is a P̃ ∈ GP (
1
10

λ−

λ+
δΣ) such

that ∀y ∈ R
p, ‖Py − P̃ y‖ ≤ 1

10
λ−

λ+
δΣ‖y‖. There exists a universal constant cU

such that |GP (
1
10

λ−

λ+
δΣ)| ≤ cU (

10λ+

λ−δΣ
)

p(p−1)
2 .

For the grid GA, we look at the condition on the p− 1 first diagonal values
and obtain:

∣∣∣∣GA

(
1

10

λ−
λ+

δΣ

)∣∣∣∣ ≤


2 +

ln
(

λ+

λ−

)

ln
(
1 + 1

10
λ−

λ+
δΣ

)




p−1

Since δΣ ≤ 2
5 , ln(1 +

1
10

λ−

λ+
δΣ) ≥ 5

52
λ−

λ+
δΣ, then

∣∣∣∣GA

(
1

10

λ−
λ+

δΣ

)∣∣∣∣ ≤
(
2 +

52

5δΣ

λ+
λ−

ln

(
λ+
λ−

))p−1

≤
(
4 + 52

λ+
λ−

ln

(
λ+
λ−

))p−1(
1

5δΣ

)p−1

Let ZL,0 = ZP,0 = ZA,0 = 0, ZL,c = ZP,c = ZA,c = 1, ZL,K = ZP,K =
ZA,K = K. We define fυ,⋆ from Υ⋆ to ΥK by





0 7→ (υ0,1, . . . , υ0,1) if ⋆ = 0

υ 7→ (υ, . . . , υ) if ⋆ = c

(υ1, . . . , υK) 7→ (υ1, . . . , υK) if ⋆ = K
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and similarly fL,⋆, fP,⋆ and fA,⋆, respectively from (R+)
ZL,⋆ into (R+)

K , from
(SO(p))ZP,⋆ into (SO(p))K and from A(λ−, λ+)ZA,⋆ into A(λ−, λ+)K .

We define

Γ : (υ1, . . . , υK , L1, . . . , LK , P1, . . . , PK , A1, . . . , AK) 7→ (υk, LkPkAkP
′
k)1≤k≤K

and Ψ : (υk,Σk)1≤k≤K 7→ (Φυk,Σk
)1≤k≤K . The image of Υ⋆ × [L−, L+]

ZL,⋆ ×
SO(p)ZP,⋆ ×A(λ−, λ+)ZA,⋆ by Ψ ◦ Γ ◦ (fυ,⋆ ⊗ fL,⋆ ⊗ fP,⋆ ⊗ fA,⋆) is the set G of
all K-tuples of Gaussian densities of type [υ⋆, L⋆, P⋆, A⋆].

Now, we define B:

(υk,Σk)1≤k≤K 7→
(
(1 + κδΣ)

−pΦυk,(1+δΣ)−1Σk
, (1 + κδΣ)

pΦυk,(1+δΣ)Σk

)
1≤k≤K

.

The image of GΥ⋆ ×G
ZL,⋆

L ×G
ZP,⋆

P ×G
ZA,⋆

A by B ◦Γ ◦ (fυ,⋆⊗ fL,⋆⊗ fP,⋆⊗ fA,⋆)
is a δ/5-bracket covering of G, with cardinality bounded by



√
λ+ exp (CΥ)√
pγκL−λ2−δΣ




ZΥ,⋆

×



4 + 129 ln

(
L+

L−

)

10δΣ




ZL,⋆

× c
ZP,⋆

U

(
10λ+
λ−δΣ

) p(p−1)
2 ZP,⋆

×
(
4 + 52

λ+
λ−

ln

(
λ+
λ−

))(p−1)ZA,⋆
(

1

5δΣ

)(p−1)ZA,⋆

.

Taking δΣ = 1

5
√

κ2 cosh( 2κ
5 )+ 1

2

δ
p , we obtain

H[.],supx maxk dy

(
δ

5
,G
)

≤ D
(
C + ln

(
1

δ

))

with D = Zυ,⋆ + ZL,⋆ +
p(p−1)

2 ZP,⋆ + (p− 1)ZA,⋆ and

C = ln

(
5p

√
κ2 cosh

(
2κ

5

)
+

1

2

)
+
Zυ,⋆CΥ

D +
Zυ,⋆

2D ln

(
λ+

pγκL−λ2−

)

+
ZL,⋆

D ln



4 + 129 ln

(
L+

L−

)

10


+

ZP,⋆

D

(
ln(cU ) +

p(p− 1)

2
ln

(
10λ+
λ−

))

+
ZA,⋆(p− 1)

D ln

(
4

5
+

52λ+
5λ−

ln

(
λ+
λ−

))

Case: ΥK generated from bounded functions Using previous work, we
only have to handle ΥK ’s bracketing entropy. Just like for WK , we aim at
bounding the bracketing entropy by the entropy of the parameters’ space

We focus on the case of Lemma 1 where ΥK = ΥK and

Υ =

{
υ : X → R

p
∣∣∣∀j ∈ {1, . . . , p}, ∀x, υj(x) =

dΥ∑

i=0

α
(j)
i ψΥ,i, and ‖α‖∞ ≤ TΥ

}
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We consider for any υ, ν in Υ and any x in [0, 1]d,

‖υ(x)− ν(x)‖22 =

p∑

j=1

(
dΥ∑

i=0

(
α
υ,(j)
i − α

ν,(j)
i

)
ψΥ,j(x)

)2

≤
p∑

j=1

(
dΥ∑

i=0

(
α
υ,(j)
i − α

ν,(j)
i

)2
)(

dΥ∑

i=0

|ψΥ,j(x)|2
)

≤ dΥ

p∑

j=1

dΥ∑

i=0

(
αυ,(j)
r − αν,(j)

r

)2

≤ pd2Υ max
j,i

(
α
υ,(j)
i − αν,(j)

r

)2

So,

Hmaxk supx ‖‖2
(δ,ΥK) ≤ Hmaxk,j,r |.|

(
δ√
pdΥ

,

{(
α(j,k)
r

)
1≤j≤p

|r|≤d′
Υ

1≤k≤K

∣∣∣‖α‖∞ ≤ TΥ

})

≤ pKdΥ ln

(
1 +

√
pdΥTΥ

δ

)

≤ pKdΥ

[
ln
(√

2 +
√
pdΥTΥ

)
+ ln

(
1

δ

)]

≤ dim(ΥK)

(
CΥ + ln

(
1

δ

))

with dim(ΥK) = pK
(
d′
Υ+d
d

)
and CΥ = ln(

√
2 +

√
p
(
d′
Υ+d
d

)
TΥ).

The second part of Lemma 2 is deduced from the fact that if X = [0, 1]d

and Υ is the set of linear combination of monomials of degree less that d′Υ then

dΥ =
(d′

Υ+d
d

)
.

Appendix C: Description of Newton-EM algorithm

In this section, Newton-EM algorithm is detailed. It consists in the classical EM
algorithm in which the update of the weights has been replaced by some Newton
steps. For further details on EM algorithm, refer to the technical report related
to Young and Hunter (2010).

Newton-EM

Initialization Parameters for w, υ and Σ are given.
Newton steps for w Perform at most 5 steps Newton steps for w only while

the like likelihood increases.
Maximization Update of υ and Σ with usual formulas in EM algorithm.
Initialization of Newton-EM

1. Draw K couples of points (Xi, Yi) among data, defining K lines υl.
2. Classify the data: k = argminl |Yi − υl(Xi)|.
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3. Proceed 3 steps of Newton-EM initialized with w = 0 and empirical co-
variance matrices and means.

4. Repeat 50 times the previous steps and choose the set of parameters with
the greatest likelihood among the 50.
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