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Abstract—This letter proposes a background subtraction
method for Bayer-pattern image sequences. The proposed method
models the background in a Bayer-pattern domain using a
mixture of Gaussians (MoG) and classifies the foreground in an
interpolated red, green, and blue (RGB) domain. This method
can achieve almost the same accuracy as MoG using RGB color
images while maintaining computational resources (time and
memory) similar to MoG using grayscale images. Experimental
results show that the proposed method is a good solution to obtain
high accuracy and low resource requirements simultaneously.
This improvement is important for a low-level task like back-
ground subtraction since its accuracy affects the performance of
high-level tasks, and is preferable for implementation in real-time
embedded systems such as smart cameras.

Index Terms—Background subtraction, Bayer color filter ar-
ray, mixture of Gaussians (MoG), visual surveillance.

I. Introduction

Moving object segmentation is an active research topic in
a visual surveillance area. Background subtraction is one of
the most widely used techniques to segment moving objects
for static cameras [1]–[3]. Since background subtraction is
a low-level task, it should consider two aspects: accuracy
and computational resources (time and memory). First, its
accuracy is critical because the output of the background
subtraction is used for other high-level tasks, such as tracking
and recognition. Erroneous output will affect the performances
of these high-level tasks. Second, computational resources
used for background subtraction are critical since the resources
remaining after this low-level task should be used for high-
level tasks, and is preferable as a means of implementing this
task in real-time embedded systems such as smart cameras [4],
[5]. Therefore, it is important for the background subtraction
method to obtain high accuracy and low resource requirements
at the same time.

Background subtraction performance depends mainly on the
background modeling technique [6]. Extensive research has
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been carried out regarding this task [1]–[3], [6], [7]. Of this
research, a mixture of Gaussians (MoG) using online K-means
approximation [7] is one of the most popular methods [1]–[3]
since it can cope with global changes (illumination or cam-
era jitter) and periodic disturbances (swaying vegetation or
flickering monitors). The method in [7] can be divided into
two steps: background modeling and foreground classification.
This method has been applied mostly to red, green, and blue
(RGB) color and grayscale images. In cases using RGB color
images, both background modeling and foreground classifi-
cation are conducted in the RGB domain. Since these two
steps are conducted in 3-D space (RGB), its computational
cost and memory requirement are relatively large. However,
it can achieve high foreground segmentation accuracy due
to its color information. In cases using grayscale images,
both background modeling and foreground classification are
conducted in the grayscale domain. Since these two steps
are conducted in 1-D space (intensity), its computational cost
and memory requirement are relatively small. However, the
foreground segmentation accuracy inevitably decreases due to
the loss of color information.

To solve the problem of accuracy and resource require-
ments, this letter proposes a background subtraction method by
using Bayer-pattern image sequences. The proposed method
conducts background modeling in a Bayer-pattern domain
using MoG and foreground classification in an interpolated
RGB domain. By using this approach, we achieve almost
the same accuracy as the method in [7] using RGB color
images while maintaining computational resources similar to
the method in [7] using grayscale images. Maintaining a good
performance while reducing the computational resources of
the method in [7] is important since its limitations in terms of
computational resources are addressed in many papers, espe-
cially for real-time embedded systems [8], [9], and numerous
researchers dealing with high-level tasks are still frequently
using it [10]–[13]. There has been an attempt to use Bayer-
pattern images for background subtraction [14], but it does not
provide the detailed method description, explicit performance
evaluation and analysis.

The main difference between the method in [7] using RGB
color images and the proposed method is that the former con-
ducts both background modeling and foreground classification
in the RGB domain, although the latter conducts background
modeling in a Bayer-pattern domain and foreground classifica-
tion in an interpolated RGB domain. In this interpolated RGB
domain, a pixel is classified by combining the information of

1051-8215/$26.00 c© 2010 IEEE



366 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 3, MARCH 2011

Fig. 1. Example of a Bayer CFA pattern.

three 1-D spaces (R, G, and B) rather than a single 3-D space
(RGB). Due to this fact, the proposed method has two proper-
ties. First, this method has more chances to classify foreground
as background because the background model includes false
RGB combinations. However, the probability that a foreground
pixel falls into these false background distributions is quite
low when considering the whole 3-D RGB space. Second, this
method can separately estimate variances of RGB components
without increasing computational cost because one pixel has
only one color component in Bayer-pattern images. This
makes background modeling more accurate compared to the
method in [7] which assumes that the variances of RGB
components are the same for computational reasons.

In this experiment, the performance of the proposed method
was quantitatively evaluated and compared with the method
in [7] using three types of images (RGB color, grayscale, and
Bayer-pattern images). The experimental results show that the
proposed method produces similar or slightly higher accuracy
compared to the method in [7] using RGB color images and
requires almost the same computational resources as the case
using grayscale images.

II. Method Description

A. Bayer-Pattern Image

A color image consists of three channels per pixel. Using
three spatially aligned sensors to acquire color images has sev-
eral disadvantages; it increases camera size and cost, and re-
quires complicated pixel registration procedure. Consequently,
most digital color cameras use a single image sensor with a
color filter array (CFA) in front [15]. When using the CFA,
each pixel measures only one color and spatially neighboring
pixels which correspond to different colors are used to estimate
unmeasured colors.

Among CFA patterns, the Bayer CFA pattern is one of the
most widely used patterns [16]. As shown in Fig. 1, the Bayer
CFA pattern is a 2 × 2 pattern which has two green com-
ponents in diagonal locations and red and blue components
in the other locations. An image produced by this pattern is
called a Bayer-pattern image and the interpolation process to
obtain a full-color image is called “demosaicing.” One of the
simplest demosaicing methods is bilinear demosaicing [17].
This method uses a bilinear interpolation to produce a full-
color image. If this method is applied to the pixel location at
(2, 2) in Fig. 1, green and blue values (G̃2,2 and (B̃2,2) at this
pixel location are estimated by using

G̃2,2 =
(
G1,2 + G2,1 + G2,3 + G3,2

)
/4

B̃2,2 = (B1,1 + B1,3 + B3,1 + B3,3)/4. (1)

B. Mixture of Gaussian-Based Background Subtraction

This section briefly describes a mixture of the Gaussians-
based background subtraction method proposed in [7]. This
method describes the probability of observing a pixel value,
Xt , at time t as follows:

P(Xt) =
k∑

i=1

ωi,tη
(
Xt, µi,t, �i,t

)
(2)

where K is the number of Gaussians, which is usually set to
be between 3 and 5. ωi, t , µi, t , and �i, t are weight, mean,
and the covariance matrix of the ith Gaussian in the mixture
at time t, respectively. For computational efficiency, RGB
pixel values are assumed to be independent and have the
same variances. To update this model, the following online
K-means approximation is used. Every new pixel value is
checked against the K Gaussian distributions to determine
whether this value is within 2.5 standard deviation of one of
them. If none of the distributions includes this pixel value, the
least probable distribution is replaced with a distribution whose
mean, variance, and weight are set to the current pixel value,
predetermined high variance, and low weight, respectively. The
weights of the K distributions at time t are updated as follows:

ωk,t = (1 − α)ωk,t−1 + αMk,t (3)

where α is a learning rate, and Mk, t is 1 for the distribution
which includes the current pixel value within its 2.5 standard
deviation and 0 for the other distributions. After updating
the weights, they are renormalized to make their summation
become one. The parameters of the distribution which includes
the current pixel value within its 2.5 standard deviation are
updated as follows:

µk,t = (1 − ρ)µk,t−1 + ρXt,

σ2
k,t = (1 − ρ)σ2

k,t−1 + ρ(Xt − µk,t)
T (Xt − µk,t) (4)

where ρ is a learning factor for adapting distributions. The
parameters of the other distributions remain the same. To
decide whether Xt is included in the background distributions,
the distributions are ordered by the value of ωk, t/σk, t and
the first B distributions which satisfy (5) are chosen as the
background distributions as follows:

B = arg min
b

(
b∑

k=1

ωk,t > T

)

(5)

where T is a measure of the minimum portion of the data that
should be accounted for by the background. If Xt is within 2.5
standard deviation of one of these B distributions, it is decided
as a background pixel.

C. Proposed Method

The method in [7], mentioned in Section II-B, consists of
two steps: background modeling and foreground classifica-
tion. The proposed method conducts background modeling
in a Bayer-pattern domain and foreground classification in
an interpolated RGB domain. First, the background modeling
procedure of this method is the same as the method in [7]
except it is conducted in a Bayer-pattern domain so that Xt
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and µi, t in (2) are scalar values rather than 3-D vectors.
Second, the foreground classification procedure is conducted
as follows. The means (µb, t) and standard deviations (σb, t)
of B distributions which satisfy (5) are chosen at each pixel
location. The index (N) which gives a minimum Mahalanobis
distance between Xt and µb, t is selected as follows:

N = arg min
b

{
abs

(
Xt − µb,t

) /
σb,t

}
. (6)

After finding the index, the signed Mahalanobis distance
(Dt) at that pixel location is calculated as follows:

Dt =
(
Xt − µN,t

)
/σN,t. (7)

The signed distance is calculated because it will be used for
interpolation. Since each pixel has only one color component
in Bayer-pattern images, Dt can be more explicitly notated by
DR

t , DG
t or DB

t depending on its pixel location. If Dt is
assumed to be calculated at the pixel location assigned for the
red channel, it can be represented by DR

t . After obtaining the
distance of the red channel DR

t , the distances of the other two
channels (D̃G

t and D̃B
t) are estimated by interpolating the

distances calculated from spatially neighboring pixels which
correspond to different color channels (green and blue). For
this interpolation process, the bilinear demosaicing technique
mentioned in Section II-A is used. Finally, the pixel location
of Xt is classified as background if the absolute values of all
three signed distances (DR

t , D̃G
t , and D̃B

t ) are not larger than
a predetermined threshold (TH = 2.5) as in (8). Otherwise, it
is classified as foreground as follows:

Xt =

{
background, abs

(
DR

t

)
≤ TH ∧ abs D̃G

t ≤ TH ∧ absD̃B
t ≤ TH

foreground, otherwise.

(8)

In this method, the Mahalanobis distance can be considered
as the “backgroundness” of Xt from a view point of one
channel. The backgroundness of this pixel from view points
of the other two channels is estimated by interpolating the
backgroundness of the spatially neighboring pixels.

The main difference between the method in [7] using RGB
color images and the proposed method is that the former con-
ducts the background modeling and foreground classification
in an RGB domain, but the latter conducts the background
modeling in a Bayer-pattern domain and foreground classifi-
cation in an interpolated RGB domain. This difference can
be explained in detail by using Fig. 2. In this figure, for
convenience sake, the blue channel is omitted and the number
of Gaussians which represents background distributions [B
in (5)] is assumed to be two. Fig. 2(a) and (b) shows the
background modeling results in the red-green domain and
the interpolated red-green domain, respectively. As shown in
Fig. 2(a), in the former case, combinations of red and green
channels are known so that the background is modeled with
two 2-D Gaussians. However, this combination cannot be
known in the latter case since each pixel has a MoG for only
one color and information of the other colors at that pixel
location is interpolated from spatially neighboring pixels. Due
to this fact, it can be said that the background is modeled
with two 1-D Gaussians in each channel as shown in Fig. 2(b).

Fig. 2. Background distributions and decision boundaries. (a) In red-green
domain. (b) In interpolated red-green domain.

Therefore, the decision boundary of the former case is defined
with two circles as shown in Fig. 2(a) with solid lines, and
that of the latter case is defined with four rectangles as shown
in Fig. 2(b) with solid and dashed lines. The reason why
the shape of the decision boundary is rectangle rather than
square in Fig. 2(b) is because the variance of each channel is
separately estimated in the proposed method. From this figure,
two properties of the proposed method can be noticed: one is
negative and the other is positive. The negative property is that
this method produces false background regions as shown in
Fig. 2(b) with two dashed rectangles. These regions are caused
by incorrect combinations of 1-D Gaussians. Because of this
property, the proposed method has more chances to classify
the foreground as background. However, the probability that a
foreground pixel falls into the false background regions is quite
low when considering the whole 3-D RGB space because the
variances of the Gaussians chosen as background distribution
are usually quite small due to the Gaussian ordering and selec-
tion based on the value of ωk, t/σk, t and (5). Also, experimental
results show that the performance of the proposed method
is almost the same as that of the method in [7] using RGB
color images. The positive property of the proposed method is
that it can separately estimate the variances of RGB channels
without increasing computational costs. This can make the
decision boundary of the proposed method more accurate than
that of the method in [7] using RGB color images where
these variances are assumed to be the same for computational
reasons. Due to this property, the proposed method shows a
slightly better performance compared to the method in [7]
using RGB color images in the experiments.

The proposed method uses less computational resources
compared to the method in [7] using RGB color images.
In terms of computational costs, the proposed method con-
ducts the background modeling in (4) with 1-D means and
pixel values, but the method in [7] using RGB color images
do the same operation with 3-D means and pixel values.
Consequently, the proposed method requires less than half
the computational costs of the method in [7] using RGB
color images. Specifically, the proposed method requires 5
multiplications and 3 additions while the method in [7] using
RGB color images requires 11 multiplications and 9 additions
during the operation in (4). The computation of the distance
interpolation is not considered here because the same operation
is necessary to obtain RGB images from Bayer-pattern im-
ages. In terms of memory requirements, the proposed method
requires W × H × (3 × K + 2) buffers (W × H for an input
image, W × H × K for means, W × H × K for variances,
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TABLE I

Description of Database

Resolution (pixels) No. of Images No. of Ground truth Environment Source of Database
DB1 360 × 240 500 216 Outdoor http://www.cs.cmu.edu/∼yaser
DB2 320 × 240 1501 194 Outdoor http://web.eee.sztaki.hu/∼bcsaba
DB3 320 × 240 440 170 Outdoor http://web.eee.sztaki.hu/∼bcsaba
DB4 320 × 240 300 113 Indoor http://cvrr.ucsd.edu/aton/shadow
DB5 320 × 240 887 121 Indoor http://web.eee.sztaki.hu/∼bcsaba
DB6 320 × 256 1286 20 Indoor http://perception.i2r.a-star.edu.sg
DB7 320 × 240 2227 7 Outdoor http://vision.gel.ulaval.ca/∼CastShadows
DB8 320 × 240 1800 7 Indoor http://vision.gel.ulaval.ca/∼CastShadows
DB9 320 × 240 300 20 Indoor Our own database
DB10 320 × 240 300 20 Indoor Our own database
DB11 320 × 240 440 170 Outdoor Noise-contaminated version of DB3
DB12 320 × 240 300 113 Indoor Noise-contaminated version of DB4

Fig. 3. Example images of databases. (a)–(h) Example images of DB1 to DB8, respectively. (i) Example image of DB9 and DB10.

TABLE II

FNRs and FPRs (%)

FNR FPR
Proposed RGB Grayscale Pseudo- Proposed RGB Grayscale Pseudo-
Method Color Grayscale Method Color Grayscale

DB1 1.20 2.97 9.09 9.73 3.97 2.47 2.46 2.50
DB2 12.97 16.12 23.51 24.89 8.62 5.69 6.65 6.05
DB3 9.82 10.12 22.87 23.07 11.19 10.89 8.86 8.82
DB4 5.66 9.35 18.09 18.56 2.51 2.79 1.83 1.78
DB5 4.06 5.48 15.03 15.02 8.71 7.75 6.73 6.68
DB6 6.87 11.04 18.07 20.02 8.23 5.95 6.13 5.91
DB7 1.16 3.21 7.83 9.26 3.14 1.67 2.44 2.42
DB8 15.81 15.07 29.03 29.47 5.64 6.37 4.16 3.98
DB9 6.39 8.02 24.23 21.85 5.93 8.68 3.21 3.81
DB10 7.50 12.66 24.50 22.75 6.52 6.27 3.49 4.06
DB11 12.10 12.28 23.37 23.97 11.65 12.68 9.82 9.78
DB12 9.09 15.34 25.01 24.91 1.96 0.64 1.66 1.68
Average 7.72 10.14 20.05 20.29 6.51 5.99 4.79 4.79

and W × H × K for weights and W × H for Mahalanobis
distances). But the method in [7] using RGB color images
requires W ×H × (5×K + 3) buffers (W ×H ×3 for an input
image, W × H × K × 3 for means, W × H × K for variances,
and W × H × K for weights). W and H are image width and
height, respectively, and K is the number of Gaussians.

III. Experiments

A. Experimental Setting

Performance evaluation and comparison were conducted
using 12 video sequences. Table I explains the databases
in detail and Fig. 3 shows example images of them. DB9

and DB10 were acquired at the same location, but under
different illumination conditions. They were taken while the
illumination was flickering and swinging, respectively. DB11
and DB12 were noise-contaminated versions of DB3 and DB4,
respectively (additive Gaussian noise and peak signal-to-noise
ratio = 30 dB). For the experiment, three kinds of images are
generated from the original color images in the databases.
First, grayscale images are generated from the original color
images. Second, Bayer-pattern images are generated from the
original color images. Last, RGB color images are generated
from the Bayer-pattern images via the bilinear demosaic-
ing mentioned in Section II-A. The method in [7] was re-
implemented by authors, and the number of Gaussians (K), the
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TABLE III

Average Processing Time (s)

Proposed Method RGB Color Grayscale Pseudo-Grayscale
0.50 1.25 0.44 0.44

learning rate (α) and the measure of the minimum portion (T )
were set to 4, 0.005, and 0.5, respectively. These parameters
were empirically chosen to have small and balanced false neg-
ative rate (FNR) and false positive rate (FPR). All experiments
were run in MATLAB using a 2.8 GHz Intel Core i7 860
central processing unit.

B. Performance Evaluation

The proposed method was evaluated and compared with
the method in [7] using three types of images: RGB color,
grayscale, and Bayer-pattern images. When the method in [7]
uses Bayer-pattern images, we refer to it as “pseudo-grayscale”
since the Bayer-pattern images are used as grayscale images.
This is to avoid confusion between the proposed method and
the method in [7] using Bayer-pattern images. For performance
evaluation and comparison, we used three criteria: FNR, FPR,
and processing time. FNR and FPR were calculated in the
sense of foreground detection and are shown in Table II, and
the processing time is shown in Table III. These two tables
show that the proposed method achieves similar or slightly
higher accuracy compared to the method in [7] using RGB
color images while maintaining similar computational costs
as when grayscale images are used.

As shown in Table II, the FNR of the proposed method is
less than that of the method in [7] using RGB color images by
2.42% in average. This result shows two things: one is that the
drawback of the proposed method induced by the interpolated
RGB domain mentioned in Section II-C seldom occurs in a
real situation and the other is that the separate variance estima-
tion of RGB components in the proposed method can increase
the foreground detection accuracy. FNRs of the method in [7]
using grayscale and pseudo-grayscale images are quite similar
because these two types of images have only one channel
information for each pixel. However, the FNR of the proposed
method is noticeably less than those of the method in [7] using
grayscale and pseudo-grayscale images by over 12.33% and
12.57%, respectively. FPRs of the proposed method and the
method in [7] using RGB color images are higher than those
of the method in [7] using grayscale and pseudo-grayscale
images. This is because two former methods are likely to
classify shadow and reflection pixels as foreground. Fig. 4
shows receiver operating characteristic (ROC) curves of four
approaches which were drawn by using 12 image sequences.
Fig. 5 shows examples of foreground segmentation results.
It can easily be seen that the proposed method produced less
holes in the foreground regions compared to the other methods.

As shown in Table III, the processing time of the proposed
method is similar to that of the method in [7] using grayscale
and pseudo-grayscale images. There is only a 0.06 s increase
in the processing time caused by the bilinear interpolation
process. However, the processing time of the proposed method

Fig. 4. ROC curves of four approaches.

Fig. 5. Examples of foreground segmentation results.

is on average 2.5 times faster than that of the method in [7]
using RGB color images.

The overall experimental result shows that the proposed
method achieves similar or slightly higher accuracy compared
to the method in [7] using RGB color images while maintain-
ing computational resources similar to the case using grayscale
images.

IV. Conclusion

This letter proposed a background subtraction method for
Bayer-pattern image sequences. The proposed method mod-
eled background in a Bayer-pattern domain and classified
foreground in an interpolated RGB domain. The experimental
results showed that this method is a good solution to obtain
high accuracy and low resource requirements simultaneously.
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