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Abstract: Data variability can be important in microarray data analysis. Thus, when clustering gene
expression profiles, it could be judicious to make use of repeated data. In this paper, the problem of
analysing repeated data in the model-based cluster analysis context is considered. Linear mixed models are
chosen to take into account data variability and mixture of these models are considered. This leads to a
large range of possible models depending on the assumptions made on both the covariance structure of the
observations and the mixture model. The maximum likelihood estimation of this family of models through
the EM algorithm is presented. The problem of selecting a particular mixture of linear mixed models is
considered using penalized likelihood criteria. Illustrative Monte Carlo experiments are presented and an
application to the clustering of gene expression profiles is detailed. All those experiments highlight the
interest of linear mixed model mixtures to take into account data variability in a cluster analysis context.
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1 Introduction

Microarrays are one of the domains in experimental molecular biology that offer the
ability to measure the expression levels of a large amount of genes simultaneously, up to
several thousands (Duggan et al., 1999). Gene expression profiles are used to study gene
function in cellular processes. Because of the large number of genes and the complexity
of biological networks, clustering is often used to find co-regulated and functionally
related groups of genes. Among the most used methods, we can cite hierarchical
classification (Eisen et al., 1998), self-organizing maps (Tamayo et al., 1999) and the
K-means algorithm (Tavazoie et al., 1999). More recently, some authors have based
cluster analysis of gene expression profiles on multivariate Gaussian mixtures (Ghosh
and Chinnaiyan, 2002; Yeung et al., 2001).

Address for correspondence: O Martin, INRA, Unité Protéomique, 2, Place Viala, 34060 Montpellier
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Data sets from multiple experiments are represented by an expression matrix in
which each column represents a single microarray experiment. A row represents the
expression vector for a particular gene and is called the gene expression profile.
Columns can represent different time points in a particular experimental condition or
different factor levels (occurrence of some disease for instance). In most cases, the
logarithm of the expression ratio between the experimental condition and a reference
condition for each gene is computed. As shown in Lee et al. (2000), any single micro-
array experiment is subject to substantial variability and replicate measures are needed
to provide a reliable analysis of gene expression. However, as far as we know, most
clustering studies of gene expression profiles did not take into account the variability of
gene expression profiles and did not consider repeated data to derive genes clusters.

Standard clustering algorithms and finite mixture models are not tailored for taking
into account repeated data. Two common attitudes when facing this variability problem
in cluster analysis of gene expression profiles are the following:

� Neglecting the problem and clustering genes from a single measure of the variables
for each gene.

� Restricting the variability to a mean effect and clustering genes from the mean
values of independent repeated measures for each gene.

Both attitudes can be expected to be unsatisfactory. The first one clearly jeopardizes the
analysis as soon as the variability is important. The second one is assuming that the
variability does not depend on covariates or on the genes and can be unrealistic. A
notable effort to deal with repeated data in a cluster analysis of genes is the software of
Yeung et al. (2003) where several ad hoc procedures are proposed to downweight genes
with noisy measures.

We propose a more formal approach, embedded in the model-based cluster analysis
context. It is aiming to take into account random effects carried by repeated measures in
a proper way. In statistical analysis, variability in data is classically related to random
effects. Linear mixed models (LMM) are devoted to analyse those random effects from
repeated data (Searle et al., 1992). Examples of LMM applications in gene expression
profile analysis are given in Wolfinger et al. (2001) and Efron et al. (2000). In this
article, we propose to take into account the variability of measurements for mixture
distributions with linear mixed models.

Assuming that the measures are repeated R times for a time series of T points and for
each gene i (i 2 f1, . . . , Ig), the repetition r of the log-ratio measure for the ith gene at
time t is denoted yitr. In order to represent the differential expression within a cluster k
and to take into account repeated measures, a possible representation is

yk
itr ¼ bkt þ xk

it þ ek
itr:

In this model, the fixed effect bkt gives the intensity of the differential expression at time
t in cluster k. Owing to the important number of genes the gene effect is considered as a
random effect. The term xk

it represents a random effect, which is added to measures of
gene i at time t in cluster k. This term can be regarded as the variation between gene
expression profiles and the cluster centre. Finally, the error term ek

itr represents the
experimental error.
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This type of approach can lead to numerous models for clustering gene expression
profiles from repeated data. It is considered in this article, which is organized as follows.
Section 2 is devoted to the presentation of linear mixed models. It is focused on models
of interest for analysing gene expression data. Mixture of mixed models and its esti-
mation through the EM algorithm is presented in Section 3, and the EM equations are
detailed for a particular model. Section 4 is devoted to the presentation of illustrative
numerical Monte Carlo experiments and an application on the formation of wood
tissues is detailed. A short concluding section summarizes the main points of this article
and gives some perspectives for future work.

2 Linear mixed models for gene expression profile

To simplify the general presentation of linear mixed models, hereafter abbreviated
LMM, we focus attention in Section 2.1 on a particular linear mixed model. In Section
2.2, alternative LMM are presented.

2.1 An example of LMM

Recall that the rth repetition of an expression log-ratio between two experimental
conditions at time t for gene i is denoted yitr. It is assumed that R repetitions of
expression ratios are recorded at T different times for I independent genes. The linear
mixed model, taking into account a covariance structure in the repetitions we consider
here, is

yitr ¼ bt þ xit þ eitr (2:1)

where bt represents the fixed effect of time, xit � N (0, t2) is the random effect of gene i
at instant t, and eitr � N (0, s2) is the error measure.
It is important to understand that the measurements of two different genes are

supposed to be independent. However, the covariance structure between two log-ratios
is as follows (noting dk0

k ¼ 1 if k¼ k0 and 0 otherwise):

cov(yitr, yi0t0r0) ¼ t2di0

i d
t0

t þ s2di0

i d
t0

t d
r0

r : (2:2)

In this model, the covariance between the repetitions of a gene at the same instant is not
null and is equal to t2. The variance of an observation is t2 þ s2. For any given gene,
the correlation between the measurements at two different instants is null.
As seen in model (2.1), linear mixed models are aiming to analyse the variability that

is evident in data by including both fixed and random effects (Searle et al., 1992). The
general equation of a LMM is

y ¼ Xb|{z}
fixed effects part

þ Ux|{z}
random effects part

þe (2:3)
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where

� y is the random vector of N observations,
� X (N,p) and U (N,q) are known design matrices,

� b is the fixed effect vector, of size p, to be estimated,
� x ¼ (x 0

1, . . . ,x
0

H)
0 is the vector of the H random effects, with xh of size qh for

h ¼ 1, . . . ,H, such that the xh’s are independent, xh � N (0, t2hIdqh
), for

h ¼ 1, . . . ,H, and the variances t2h, h ¼ 1, . . . , H are to be estimated,
� e is a random vector of residuals of size N such that e � N (0,s2IdN) with s2 to be

estimated and e is independent of each xh.

The canonical equation (2.3) applies for model (2.1) with

� y ¼ (y01, . . . , y
0
I)
0 where yi is the random vector of measures for gene i. The size of yi

is RT,
� x ¼ (x11, . . . , x1T , . . . , xI1, . . . , xIT)

0 vector of size IT of random effects (H¼ 1), and
x � N (0, t2IdIT),

� the design matrix

U (N, IT) ¼

1R 0R � � � 0R

0R
. .
.

� � � ..
.

..

.
� � � . .

.
0R

0R
� � � 0R 1R

2
66664

3
77775 (2:4)

where 1R and 0R denote respectively the vectors (1, . . . , 1)0 and (0, . . . , 0)0 of size R,

� e: random vector of errors of size N¼ IRT and e � N (0, s2IdN),
� b: unknown fixed effects vector of size T,
� and the design matrix X (N,T) of the form

X (N,T) ¼

_X
..
.

_X

2
64

3
75 (2:5)

where

_X(RT,T) ¼

1R 0R � � � 0R

0R . .
.

� � � ..
.

..

.
� � � . .

.
0R

0R � � � 0R 1R

2
6664

3
7775: (2:6)

Linear mixed models are incomplete data models where the missing data are the
realizations xit, i ¼ 1, . . . , I; t ¼ 1, . . . ,T of the random effect. The maximum likelihood
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parameter estimates can be derived for instance with the EM algorithm (Dempster et al.,
1977; McLachlan and Krishnan, 1997), which consists of maximizing iteratively the
conditional expectation of the complete likelihood,

l(b, t2, s2jy, x) ¼ �
1

2
(N þ IT) ln (2p)�

1

2
N ln (s2)�

1

2
IT ln (t2)

�
1

2

(y� Xb � Ux)0(y� Xb � Ux)
s2

�
1

2

x 0x
t2

, (2:7)

knowing the observations and a current value of the parameters.
Detailed formulas for the EM algorithm for linear mixed models can be found, for

instance, in Searle et al. (1992, Section 8.3) or in Trottier (1998).

2.2 Alternative models

Model (2.1) introduces a random effect of the gene i at instant t. For a same gene, this
random effect changes at each time. A natural alternative model would be to assume an
additional random effect of a gene not depending of time. Thus a possible genera-
lization of model (2.1) is a two random effects model

yitr ¼ bt þ (xi þ xit)þ eitr (2:8)

where xi � N (0, o2) is the random effect of the gene i on the expression log-ratio.
This model is the most complex linear mixed model that will be considered in this

article. The covariance between two different instants for the same gene is equal to o2.
At a fixed time, the covariance between the repetitions of a gene is o2 þ t2. The
variance of an observation is o2 þ t2 þ s2. This covariance structure is summarized in

cov(yitr, yi0t0r0) ¼ o2di0

i þ t2di0

i d
t0

t þ s2di0

i d
t0

t d
r0

r : (2:9)

On the other side, a simpler model than (2.1) is

yitr ¼ bt þ xi þ eitr: (2:10)

It is a one random effect model assuming that there is specific gene random effect.
The covariance between two measures of any given gene is equal to o2, independently
of time and repetition. The variance of an observation is o2 þ s2. This model assumes
that the correlation between two repeated measures does not depend on time:

cov(yitr, yi0t0r0) ¼ o2di0

i þ s2di0

i d
t0

t d
r0

r : (2:11)
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This assumption can be regarded as unrealistic in many situations.
Finally, several LMM are possible to describe gene expression log-ratios:

� Model E1 described by equation (2.10) with one random effect of gene i;
� Model E2 described by equation (2.1) with one random effect of gene i at time t;
� Model E3 described by equation (2.8) with two random effects,

We can also consider model E0 with no random effect. It is described by the equation

yitr ¼ bt þ eitr: (2:12)

3 Mixture of linear mixed models

In this section, the finite mixture model is extended to the LMM context in order to
propose a model-based cluster analysis tool for repeated data. Since Gaussian mixture is
the most employed mixture model, especially in a cluster analysis context (see for
instance Yeung et al. (2001) and Ghosh and Chinnaiyan (2002) for gene expression
clustering), we restrict attention to this model. In a multivariate Gaussian mixture
model, it is assumed that an observation y is arising from the mixture distribution

f (y) ¼
XK

k¼1

pkj(yjmk, Gk) (3:1)

where pk � 0, k ¼ 1, . . . ,K are the mixing proportions verifying the constraintPK
k¼1 pk ¼ 1, j( � j mk,Gk) being the density of a Gaussian distribution with mean

vector mk and variance matrix Gk. Consequently, knowing the mixture component Ck
from which an observation arises, its conditional distribution is a Gaussian distribution
with mean mk and variance matrix Gk.

3.1 Mixture model for repeated gene expression data

In this section, we focus attention on Gaussian mixture models related to linear mixed
model E2. To take into account repeated data in the mixture framework, we simply add
the assumption that the repeated measures of a gene belong to the same mixture
component. This natural assumption allows us to embed LMM in the mixture frame-
work. The specific LMM assumptions to be added in the mixture model (3.1) concern
the component mean mk and variance matrix Gk. It is assumed that yk, the vector of
observations arising from mixture component Ck obeys an LMM equation of the form

yk ¼ Xkbk þ Ukxk
þ ek (3:2)

bk being the fixed effect vector, xk the random effect vector, Xk and Uk the design
matrices.
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The observations are arising from one of the K components and those that come from
componentCk define a randomvector yk of sizeNk ¼ IkTRwhere Ik is the numberof genes
belonging to Ck. For E2 model at hand, vectors yk, k ¼ 1, . . . , K, verify the equation

yk
itr ¼ bkt þ xk

it þ Ek
itr: (3:3)

Thus

yk � NNk
(Xkbk, t

2
kU

k(Uk)0 þ s2kIdNk
) (3:4)

where

� Xk
(Nk,T) is a design matrix with the same structure as the design matrix X defined

in (2.5) and (2.6);
� bk is the fixed effect vector of size T for component Ck, bk ¼ (bkt, t ¼ 1, . . . , T);

� Uk
(Nk,IkT) is a design matrix with the same structure as the design matrix U defined

in (2.4);
� t2k is the random effect variance for component Ck;
� s2k is the residual variance specific to each component.

Furthermore, the random effect vector of size T, xk
i ¼ (xk

it, t ¼ 1, . . . , T), and xk are
assumed independent.
In order to estimate the parameters of an LMM mixture, we consider the maximum

likelihood approach. We make use of the EM methodology that takes into account the
incomplete structure of the data. Here missing data are of two types: 1) the indicator
vectors z ¼ (zi, i ¼ 1, . . . , I) of gene memberships to the mixture components:
zi ¼ (z1i , . . . , z

K
i ) with zk

i ¼ 1 if i 2 Ck and 0 otherwise, 2) the random effects
xk

i , i ¼ 1, . . . , I, for each mixture component. The EM algorithm is detailed in the
Appendix for LMM mixture model involving E2.

3.2 Remarks

We have considered above a mixture model where parameters bk, t2k and s2k are
dependent on k. In some situations, it can be useful to constrain the mixture parameters
to be fixed upon components and many alternative mixture models can be considered:

� M1: (bk, k ¼ 1, . . . , K; t2,s2);
� M2: (bk, t

2
k, k ¼ 1, . . . , K; s2);

� M3: (bk, t
2
k, s

2
k, k ¼ 1, . . . , K), namely the above mentioned model.

Deriving the EM formulas for those alternative models does not involve any technical
difficulty (see for instance Celeux et al. (2002) for a presentation of the EM algorithm
with model M2).
Obviously, those three mixture model structures can be considered with different

assumptions on the random effects. Instead of model E2, model E3, E1 or even model
E0 can be considered.
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For choosing both an LMM and a mixture model structure, we favoured the BIC
(Bayesian Information Criterion) criterion (Schwarz, 1978). This criterion has been
proved to be efficient in model selection (Kass and Raftery, 1995) and appears to be one
of the most relevant criteria on a practical ground for choosing the number of
components in a mixture model (Fraley and Raftery, 1998; Roeder and Wasserman,
1997). The BIC criterion has been defined in a noninformative Bayesian framework to
approximate the integrated likelihood of a model. For a model M, BIC (a criterion to be
minimized) is minus maximum log-likelihood for model M plus (nM=2) ln (n),nM being
the number of free parameters in model M, and n the sample size. Another interesting
criterion in the cluster analysis context is the ICL (Integrated Completed Likelihood)
criterion, which is an á la BIC approximation of the integrated complete likelihood
(Biernacki et al., 2000; McLachlan and Peel 2000, Sections 6.10 and 6.11). This
criterion will be considered in the numerical experiments too, as well as the classical
AIC criterion of Akaike (Akaike, 1974).

4 Numerical experiments

In this section, results of numerical experiments on both simulated and real data sets are
reported. Simulation experiments are aiming to assess the ability of the EM algorithm
to correctly estimate LMM mixture parameters. Experiments on a real data set,
concerning wood formation, aim to highlight the interest of LMM mixture model for
gene expression profiles clustering from repeated data.

4.1 Monte Carlo experiments

For each Monte Carlo experiment, we generated 100 samples from each type of
simulated data. Two E2–M2 mixture models, denoted (A) and (B) in the following,
have been simulated. In both cases, I is fixed to 200, the number T of instants was three
and the number R of repetitions is four and a three component E2–M2 mixture model is
considered. The mixing proportions were p1 ¼ 0:3, p2 ¼ 0:5 and p3 ¼ 0:2. Fixed effect
parameters were b1 ¼ (0, 0, 2)0, b2 ¼ (�1, 0,� 1)0 and b3 ¼ (1, 2, 0)0. The random
effect variances were t21 ¼ 0:2, t22 ¼ 0:5 and t23 ¼ 1. Models (A) and (B) only differ by
the error measure variance: for model (A), it is s2(A) ¼ 2 and s2(B) ¼ 3 for model (B).

Table 1 displays the mean and, in parentheses, the standard error of the estimate
parameters obtained with the EM algorithm. The EM algorithm has been initiated from
a hierarchical clustering computed with the Ward criterion (Ward, 1963). Table 2
provides the classification error rate using the maximum a posteriori (MAP) decision
rule from the estimate parameter values p̂, q̂ obtained with EM. This decision rule
consists of assigning all the measures of gene i to mixture component k(i) such that

k(i) ¼ argmax
k

ti(k)
z}|{

(4:1)

where ti(k)
z}|{

¼ P(i 2 Ckjyi, p̂, q̂).
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Table 1 shows that sensible estimates of the model parameters are obtained in both
situations (A) and (B). As expected, the estimation accuracy depends on the random
effect variances: the greater the variance, the greater the estimation standard error. In
the same manner, Table 2 shows that the classification error rate increases with the
random effect variances. And, as s2 increases (model (B)), the variance of the parameter
estimates increases even if the mean estimates remain good. In the same way, comparing
the results in Table 2 for models (A) and (B), we note that the classification error rate
increases with s2.
To assess the role of repetitions for estimating LMM mixture models, we carry out

additional Monte Carlo experiments. They consist of 100 replications of model (A) but
the number of repetitions is R¼ 2 instead of R¼ 4. We denoted (A0) this occurrence of
model (A). The results for model (A0) displayed in Table 2 clearly show that the
classification error rate decreases with the number of repetitions. This confirms our
opinion that it is important properly to take into account repetitions to get relevant
clustering structures for highly variable data sets.

Table 1 Parameter estimation values with EM from 100 simulated models (A) and (B)

Parameter Model Component 1 Component 2 Component 3

(1) Fixed effects t¼ 1 b11¼0 b21¼ 71 b31¼ 1
(2) (A): s2

¼2 0.029 (0.124) 71.007 (0.125) 1.071 (0.274)
(2) (B): s2

¼3 0.019 (0.141) 71.044 (0.156) 1.035 (0.420)
(1) Fixed effects t¼ 2 b12¼0 b22¼ 0 b32¼ 2
(2) (A): s2

¼2 70.008 (0.131) 0.004 (0.131) 2.061 (0.373)
(2) (B): s2

¼3 70.009 (0.163) 70.014 (0.163) 2.030 (0.401)
(1) Fixed effects t¼ 3 b13¼2 b23¼ 71 b33¼ 0
(2) (A): s2

¼2 1.994 (0.153) 70.992 (0.123) 0.008 (0.256)
(2) (B): s2

¼3 1.970 (0.208) 70.999 (0.165) 70.037 (0.330)
(1) Proportions p1¼0.3 p2¼ 0.5 p3¼0.2
(2) (A): s2

¼2 0.301 (0.030) 0.501 (0.041) 0.197 (0.045)
(2) (B): s2

¼3 0.308 (0.043) 0.487 (0.060) 0.204 (0.069)
(1) Random effects t1

2
¼0.2 t2

2
¼0.5 t3

2
¼1

(2) (A): s2
¼2 0.211 (0.092) 0.484 (0.117) 0.901 (0.270)

(2) (B): s2
¼3 0.216 (0.134) 0.449 (0.153) 0.866 (0.303)

Error measure
(2) (A): s2

¼2 2.005 (0.069)
(2) (B): s2

¼3 2.995 (0.095)

(1) Simulated parameter values.
(2) Mean and (standard error) for parameter estimations.

Table 2 Classification error rates from 100 simulations for
models (A), (B) and (A’).

Model (A)
R¼4, s2

¼ 2
Model (B)

R¼4, s2
¼ 3

Model (A0)
R¼2, s2

¼2

Cluster 1 8.30 21.57 14.62
Cluster 2 6.38 21.16 13.82
Cluster 3 23.65 28.88 34.55
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4.2 Wood formation DNA microarray analysis

Data we considered in this subsection have been gathered to study the mechanisms
involved in wood formation (Hertzberg et al., 2001). We first give a brief presentation
on biological and technical aspects of the considered data set. More information
concerning biological results, materials and methods can be found in the article of
Hertzberg et al. (2001).

4.2.1 The data

Hertzberg et al. (2001) have studied the developing secondary xylem of poplar by
analysing the profiles of 2995 expressed sequence tags (EST). The high organization of
secondary xylem allows different developmental zones to be distinguished easily and a
unique tissue-specific transcript profile for a well-defined developmental gradient to be
determined. This property of wood-forming tissues allowed five tissue samples (A, B, C,
D, E) and also a phloem sample (Phl) to be collected. The biological description of these
tissues is given in Hertzberg et al. (2001).

Expression profiles for T¼ 6 different tissues (Phl, A, B, C, D, E) with DNA chips are
to be analysed. To determine the steady-state mRNA levels at specific stages during the
ontogeny of wood formation, 30mm thick sections have been sampled through
the wood development region. Those samples have been analysed by using a spotted
cDNA-microarray consisting of the 2995 ESTs. Expressions profiles have been obtained
by incorporating the Cy5 fluorophor in the experiment samples (Phl, A, B, C, D, E)
and the Cy3 fluorophor in the reference sample, namely a mixture of samples A–E. For
each experiment, replications have been carried out in order to obtain four measures for
each gene. Thus, for each gene, we got R¼ 4 repetitions for the couple of measures
(Cy5, Cy3). In the next section, we detail the pretreatment we achieved.

4.2.2 Pretreatment

Before clustering gene expression profiles, two stages appeared to be necessary: data
normalization and gene selection.

� Data normalization. To remove systematic biases from microarray data, due to
technical and biological problems, data must be normalized. For this task, we chose
the well-known approach proposed in Yang et al. (2001). This normalization
allows for a correction depending on intensity level of the spot and is different for
each print-tip used to set down the probes on the glass.

� Gene selection. Cluster analysis is to be performed on the logarithm of the
fluorescent intensities ratios log(Cy5/Cy3) between the two samples. The clustering
is usually performed on a subset of genes showing changes between the experiments
and the control. For instance, in Hertzberg et al. (2001), a hierarchical clustering
is presented on the 539 genes showing at a least 8-fold differential expression. A less
drastic 4-fold level criterion has been used to select 870 genes.

For this data set of 870 genes, the performances of 154 different mixture models have
been compared. They concerned 126 different LMM mixtures, the nine models Ei–Mj,
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for i¼ 1, 2, 3 and j¼ 1, 2, 3 with K¼ 2 to K¼ 15 components, and the 28 models
E0–M1 and E0–M3 with K¼ 2 to K¼ 15 components.

4.2.3 EM initialization

EM solution can highly depend on its starting position, especially in a multivariate
context. This jeopardizes statistical analysis of mixture. Spurious or insensible estimates
can be derived from some starting values, especially for mixture models involving many
parameters (see for instance McLachlan and Peel, 2000). Thus, the EM algorithm
should be applied from a wide choice of starting values to be ensured to get a sensible
maximum. To attenuate the starting value problem of EM, we made use of a strategy
consisting of ten short runs of EM from different k-means results, followed by a long
run of EM from the ‘short run’ solution providing the highest log-likelihood. By ‘short
run’ of EM, we mean that the EM algorithm is stopped after a few iterations (ten in the
present numerical experiments). This kind of approach has been proved to be efficient
in many cases (Berchtold, 2004; Biernacki et al., 2003).
Figure 1 displays the log-likelihood for the different models in competition. As

expected, the log-likelihood increases with the model complexity. At least, it shows that,
for each considered model, EM is not trapped in a suboptimal or spurious solution.

4.2.4 Model selection

The 154models have been compared with penalized log-likelihood criteria AIC, BIC and
ICL. For simplicity, we do not report their values. All those criteria show a marked
superiority of mixture modelM3, which allows for a different error measure variance for
each mixture component. This fact illustrates the variability problems occurring with
microarray data. Figure 2 displays AIC, BIC and ICL values for the models E0–M3,
E1–M3, E2–M3 and E3–M3. The three criteria strongly support model E2–M3 and
E3–M3. Since they provide quite similar values for both models, we chose the most
parsimonious model E2–M3. From Figure 2, it appears that those criteria, even ICL,
indicate no evidence for a particular number of components. Here, the overlapping of the
groups highlights the difficulty to choose an appropriate number of components. We
chose to focus on the 13 component mixture for the following reason. With 13
components the smallest proportion is equal to 3.8% (33 genes) andwith 14 components,
it is 2.2% (19 genes). Since the vector parameter (pk, bk, tk, sk), associated to component
k is a nine-dimension vector, it did not seem reasonable to select a 14 componentmixture.
The parameter estimations for K¼ 13 are given in Table 3.
Before presenting the clustering associated to the 13 component mixture model

E2–M3, it is of interest to compare models E0–M3 (no random effect) and E2–M3.
Table 4 gives log-likelihood values for the two models E0 and E2 in the no mixture case
(K¼ 1) and in the K¼ 13 component mixture case. Comparing these values with the log-
likelihood of the null model (without fixed effect), which is 734342, it appears clearly
that taking into account random effects leads to a dramatic improvement of the model.
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4.2.5 Cluster analysis

The 13 clusters obtained from the MAP operator (4.1) for model E2-M3 are depicted in
Figure 3. For each cluster and each gene, all the repetitions are represented.

Despite the fact that penalized log-likelihood criteria show that model E0–M3 is
irrelevant for this data set and could lead to unreliable clustering of the genes, since
it does not take into account differences in the gene variability, it is interesting to look at
the results obtained wih this model for K¼ 13 to analyse the consequences of neglecting

Figure 1 Maximum log-likelihood values for the different models with K¼ 2 to 15. The four graphics
represent the log-likelihood for the four models Ei (i¼1, . . .,4) combined with the different mixture models.
In the top left panel, the log-likelihoods for the models E1–M2 and E1–M3 are so close that it is difficult to
distinguish the two curves

12 G Celeux et al.



the possible random effects. The parameter estimations for model E0–M3 are given in
Table 5 and Figure 4 represents the cluster profiles.
Table 6 compares the classifications derived from models E0–M3 and E2–M3. It

gives the percentage of common genes between the clusters of the two classifications.
This table deserves some remarks.

Figure 2 AIC, BIC and ICL criteria for the different models with K¼ 2 to 15. The three graphics represent AIC
(top), BIC (bottom left) and ICL (bottom right) criteria for the different mixture model M3 and for K¼2, . . .,15
components. The values for models E2–M3 and E2–M3 are so close that it is difficult to distinguish the curves
for the three criteria
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� A wide similarity between clusters 1, 2 and 3 for the two models can be noticed. All
these clusters present a small random effect (t1 ¼ 0:462, t2 ¼ 0:356, t3 ¼ 0:183) in
model E2–M3. Thus, neglecting the random effect in these cases would not affect
greatly the composition of the clusters.

� Clusters 4–12 present a weak agreement between the two classifications (percen-
tages of common genes are between 35% and 71%). A more marked random effect
can be observed for these clusters: neglecting the random effects for these clusters
can lead to unreliable results.

� It appears that there is no relation between clusters 13 from models E0–M3 and
E2–M3. Table 3 shows that the cluster 13 from model E2–M3 is the one with the
greatest random effect (t13 ¼ 1:243). This cluster cannot be recovered when

Table 3 Parameter estimations for the 13 component mixture with model E2–M3 for the wood formation
dataset

Component Parameter b Proportion

Random
effect
std. dev.

Measure
error

1 b1¼ (70.230, 0.347, 0.442, 0.437,
0.433, 71.474)0

p1¼0.077 t1¼ 0.462 s1¼0.224

2 b2¼ (71.749, 70.212, 0.023, 0.082,
0.137, 70.423)0

p2¼0.073 t2¼ 0.356 s2¼0.219

3 b3¼ (0.086, 70.362, 70.246, 0.269,
1.621, 1.005 )0

p3¼0.172 t3¼ 0.183 s3¼0.143

4 b4¼ (70.499, 70.808, 70.122, 1.611,
2.820, 2.253)0

p4¼0.038 t4¼ 0.767 s4¼0.385

5 b5¼ (0.685, 0.541, 0.390, 70.268,
71.465, 0.020)0

p5¼0.078 t5¼ 0.401 s5¼0.274

6 b6¼ (72.214, 70.611, 0.242, 0.933,
0.934, 0.338)0

p6¼0.061 t6¼ 0.786 s6¼0.348

7 b7¼ (2.942, 3.045, 2.907, 0.472,
71.708, 0.795)0

p7¼0.055 t7¼ 0.705 s7¼0.711

8 b8¼ (1.911, 1.847, 1.245, 0.196,
70.940, 70.537)0

p8¼0.075 t8¼ 0.694 s8¼0.212

9 b9¼ (70.287, 70.385, 70.226, 0.343,
1.433, 1.297)0

p9¼0.105 t9¼ 0.531 s9¼0.215

10 b10¼ (1.027, 70.016, 70.524, 70.427,
1.320, 2.378)0

p10¼0.067 t10¼ 0.584 s10¼ 0.373

11 b11¼ (1.328, 0.665, 0.157, 70.452,
70.157, 1.566)0

p11¼0.092 t11¼ 0.790 s11¼ 0.201

12 b12¼ (1.721, 1.598, 1.117, 70.474,
71.567, 0.853)0

p12¼0.063 t12¼ 0.639 s12¼ 0.458

13 b13¼ (1.586, 2.000, 1.730, 1.071,
70.050, 71.343)0

p13¼0.044 t13¼ 1.243 s13¼ 0.432

Std. dev.¼ standard deviation.

Table 4 Log-likelihood values for models E0–M3 and E2–M3 with K¼1 and
K¼ 13 components

Model E0–M3 Model E2–M3

K¼ 1 734257 716267
K¼ 13 718099 710485

14 G Celeux et al.



Figure 3 Gene expression profiles of the 13 clusters for model E2–M3
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random effects are neglected. And, this cluster could be interesting from a genetic
point of view: the more deep the tissues are in the poplar, the more the genes of this
cluster are underexpressed.

Prediction of random effects and cluster expression profiles. We have highlighted
the important role of random effects in the clustering context. Models that do not take
into account random effects can lead to unreliable interpretation. Now, with a mixture
of LMM, it is important to analyse the random effects in each cluster. First, it is
interesting to remove the random effects to see the variability due to error measure in
each cluster. Secondly, it is interesting to predict the gene expression profiles in each
cluster.

Removing the random effects consists of representing the profiles with yitr–x
k
it, if gene

i is assigned to cluster k, rather than yitr. The unknown xk
it’s can be estimated with their

Best Linear Unbiased Predictor (BLUP) x̂k
it (Searle et al., 1992). Figure 5 represents the

resulting 13 profiles for model E2–M3 with all the repetitions for each gene. An
interesting interpretation of the clustering built with a mixture of LMM can be deduced
from examination of Figures 3 and 5. Figure 5 provides a clearer representation of the
cluster expression profiles than Figures 3 and 4. And, comparison of Figure 3 and
Figure 5 throws light on the respective roles of error measurements and random Effects
in the clusters’ variability. For instance, cluster 11 has a marked Profile with a wide
random effect. On the other hand, it appears that cluster 7 has an important measure
error variability, and so on. Moreover, if gene i is assigned to cluster k, a natural
prediction of its differential expression Profile is bk þ x̂it.

Biological comments. By analysing two metabolic pathways related to cell-wall
formation and presented in Hertzberg et al., 2001, page 14 736, we found some similar
results to those described in this article. The first pathway concerns selected steps in the
carbohydrate metabolism. For this pathway, we observed that five genes of the cluster
13 were implied in connected enzymatic reactions (three genes in the reaction

Table 5 Parameters estimation for the 13 components of the mixture model E0–M3

Component Parameter b Proportion
Measure
error

1 b1¼ (70.210, 0.379, 0.461, 0.480, 0.435, 71.498)0 p1¼ 0.083 s1¼0.529
2 b2¼ (71.759, 70.225, 0.007, 0.056, 0.100, 70.388)0 p2¼ 0.081 s2¼0.423
3 b3¼ (0.076, 70.370, 70.256, 0.266, 1.603, 0.971 )0 p3¼ 0.174 s3¼0.228
4 b4¼ (70.598, 70.812, 70.079, 1.682, 3.105, 2.659)0 p4¼ 0.030 s4¼0.813
5 b5¼ (0.763, 0.647, 0.469, 70.277, 71.468, 0.200)0 p5¼ 0.106 s5¼0.533
6 b6¼ (72.275, 70.563, 0.482, 1.358, 1.290, 0.167)0 p6¼ 0.053 s6¼0.954
7 b7¼ (2.870, 3.221, 2.999, 0.824, 71.329, 0.170)0 p7¼ 0.070 s7¼1.112
8 b8¼ (1.708, 1.542, 1.112, 0.282, 70.935, 70.917)0 p8¼ 0.087 s8¼0.681
9 b9¼ (70.008, 70.470, 70.267, 0.530, 1.675, 1.126)0 p9¼ 0.093 s9¼0.517
10 b10¼ (1.043, 0.089, 70.474, 70.431, 1.467, 2.974)0 p10¼ 0.050 s10¼ 0.574
11 b11¼ (1.779, 0.351, 70.205, 70.592, 0.370, 1.127)0 p11¼ 0.054 s11¼ 0.614
12 b12¼ (2.040, 1.971, 1.196, 70.581, 71.374, 1.714)0 p12¼ 0.074 s12¼ 0.685
13 b13¼ (70.641, 70.085, 70.192, 70.288,

0.473, 1.699)0
p13¼ 0.045 s13¼ 0.524
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Figure 4 Gene expression profiles of the 13 clusters for model E0–M3
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EC4.2.2.2, one gene in the reaction EC3.1.1.11 and one gene in the reaction EC3.2.15).
Concerning the metabolic pathway for lignin biosynthesis, the genes implied in the
successive reactions EC1.14.13.11, EC6.2.1.12, EC1.2.1.44 and EC1.1.1.195 were in
cluster 10 or in cluster 6. It could be thought of as surprising that connected reactions
genes belong to clusters with quite different profiles. Our view is that the biological
interpretation of this clustering remains difficult. But, it could be used to infer new
biological hypotheses and new experiments to verify them.

4.2.6 The software

All the results have been obtained using R software (http://www.r-project.org) and a
library, namely l3m, which has been developed for these mixture models, is available
from the corresponding author upon request. Concerning the computation time, it
depends on the number of genes and on the number of components. For the 870 genes
of our data set, parameter estimations take about 15 minutes for model E2–M3 with
K¼ 13 components. However, a great improvement could be expected by using C
language rather than R language.

The parameters and information criteria are computed in the program l3m(). A
simulated data set, namely dataL3M, of 100 statistical units is available in the library
l3m in order to present the use of different functions. To obtain the parameter
estimation for model E2–M3 with K¼ 3, two commands are necessary. First, the
data set needs to be loaded using the command data(datal3m). Secondly, the model
parameters’ estimation is carried out with the command l3m(datal3m,
model¼ ‘E2.M3’, K¼ 3).

The R command help() provides access to documentation on different functions of
the library. For example, the command help(l3m) gives informations on different
arguments and different results for the function l3m().

Table 6 Confusion table (in percentage) for the classifications derived from models E0-M3 and E2-M3

Model

Model E0–M3 Cluster

Number
E2–M3 1 2 3 4 5 6 7 8 9 10 11 12 13 of genes

1 91.7 0 0 0 0 0 0 0 0 0 0 0 0 66
2 0 90.1 0 0 0 0.9 0 0 0 0 0 0 0 65
3 0 0 89.4 0 0 0 0 0 3.2 0 0 0 0 150
4 0 0 0 70.6 0 1.3 0 0 6.7 0 0 0 0 32
5 0 0 0 0 70.1 0 0 1.4 0 0 0 0 0.9 71
6 0.8 5.2 0 0 0 64.4 0 0 2.4 3.7 0 0 3.5 51
7 0 0 0 0 0 0 63.6 0 0 0 0 4.8 0 47
8 0 0 0 0 4.6 0 5.9 44.8 0 0 0 5.8 0 64
9 0 0 4.2 1.7 0 2.2 0 0 44.5 3.8 0 0 17.9 93
10 0 0 0 0 0 0 0 0 7 43.1 13.8 0 6.5 59
11 0 0 0 0 4.9 0 0 0 0 7 35.5 16.5 8.3 78
12 0 0 0 0 7.9 0 0 11 0 0 1 35.2 0 56
13 4.8 0 0 0 0 3.7 13.8 17.7 0 0 1.2 0 0 38

Number
of genes

72 70 153 26 94 46 61 75 79 44 48 63 39 870
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Figure 5 Cluster expression profiles
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5 Discussion

A mixture of LMM models has been proposed and estimated with the EM algorithm.
It can be useful in situations where repeated measures are available. In a cluster analysis
context, it is expected to lead to more reliable clustering structures than standard
model-based clustering since it allows profiting from the powerful LMM methodology
in the mixture framework. And, in many situations, it can be crucial to distinguish the
observations according to their variability.

In microarray data analysis it could have many applications and could become a
reference method for clustering gene expression profiles when the variability is
important. Moreover, using the BLUP (Best Linear Unbiased Predictor) (Searle et al.,
1992) can be useful to build realistic profiles, providing a precise representation of each
gene in its cluster.

Moreover, the analysis of LMM mixture models that can lead to interesting
interpretations, useful for the practitioners since those models are powerful and
parsimonious models.

As we have seen, the LMM mixture model can lead to numerous models that can be
reliable in specific situations (for instance mixture components can have the same fixed
effects but different random effects). This is the reason why it is important to propose
an efficient way to select a reliable model. In this paper, we have proposed to choose an
LMM mixture with the BIC criterion, or the ICL criterion when cluster analysis is the
main concern. In the application we considered, those penalized log-likelihood criteria
appeared to be useful in selecting a model, but not in selecting a sensible number of
mixture components. The question of defining an appropriate penalized log-likelihood
criterion to select a model would deserve future research. As shown in Vaida and
Blanchard (2003), it is possible that the way of counting the effective number of
parameters has to be modified when the focus is on conditional inference. Also, the
approach proposed in Birgé and Massart (2001) could be of interest, especially in a
moderate sample size setting.

We have presented the EM algorithm for an LMM mixture model using the ML
method for estimating the vector parameter q. An alternative method for estimating the
parameters of an LMM model is the restricted maximum likelihood (REML) method,
which can be regarded as a method of estimation of the variance components by
maximizing the marginal likelihood obtained by integrating the likelihood over the
fixed effect parameter b. In the mixture context, we do not consider REML estimation.
Actually, it seems that there is no sensitive difference between EM and REML estimates
in LMM (Searle et al., 1992, Section 6.7), and considering REML estimation in this
context would involve technical complications without providing the ML estimation of
the fixed effect parameters bk, k ¼ 1, . . . , K. This is a real drawback because the
maximum likelihood value enters the composition of penalized likelihood criteria to
select a parsimonious model. However, considering the REML approach could be of
interest in the mixture context because it can provide more reliable estimates than ML
for small proportion mixture components. Hence, considering the implementation of
the REML approach using stochastic versions of EM (McLachlan and Krishnan 1997,
Section 6.3) could be profitable.
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Appendix: EM algorithm for LMM mixture

We detail the EM algorithm for the LMM mixture model involving E2. We denote
p ¼ (p1, . . . , pK)

0 the mixture proportion vector, qk ¼ (b0
k, t

2
k, s

2
k)

0 the parameter vector

of the LMM associated to component Ck and q ¼ (b0
1, . . . , b

0
K, t

2
1, . . . , t

2
K, s

2
1, . . . , s

2
K)

0.
As noted above, there are two types of missing data: the indicator vectors
z ¼ (zi, i ¼ 1, . . . , I) and the random effects (xk

it mmat ¼ 1, . . . , T), for each gene i in Ck.
The log-likelihood associated to the complete data (y, z, x) for this model is

l(q, pjy, z, x) ¼
XI

i¼1

XK

k¼1

zk
i ln (pkf(yi, x

k
i jqk)) (A:1)

where the vector yi of size TR contains all the measured ratios for gene i and where
xk

i ¼ (xk
i1, . . . , x

k
iT) denotes the random effect vector of gene i in Ck. Knowing that gene i

is in Ck, yi is a realization from a N ( _Xbk, Gk) with Gk ¼ t2k
_U _U 0

þ s2kIdTR where

_U(TR,T) ¼

1R 0R � � � 0R

0R
. .
.

� � � ..
.

..

.
� � � . .
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3
777775 is the design matrix associated to yi:

Therefore, the probability distribution function (pdf) f of component Ck is a
Gaussian distribution with mean

_Xbk

0T

� �
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and variance matrix

Gk t2k
_U

t2k
_U 0 t2kIdT

" #
:

Thus, we have

l(q, pjy, z, x) ¼
XI

i¼1

XK

k¼1

zk
i ln (pk)þ

XI

i¼1

XK

k¼1

zk
i ln (f(yi, x

k
i jqk))

¼
XI

i¼1

XK

k¼1

zk
i ln (pk)þ

XI

i¼1

XK

k¼1

zk
i h(qkjyi, x

k
i )) (A:2)

where

h(qkjyi, x
k
i ) ¼ �

1

2
(TR þ T) ln (2p)�

1

2
TR ln (s2k)�

1

2
T ln (t2k)

�
1

2

(yi �
_Xbk �

_Uxk
i )

0(yi �
_Xbk �

_Uxk
i )

s2k

�
1

2

(xk
i )

0(xk
i )

t2k
: (A:3)

E step

At iteration q> 0, this step consists of computing the expectation of the complete log-

likelihood knowing the observed data and a current value of the parameters q½q�, p½q�, ½q�
denoting the iteration index. In the LMM mixture context it is

Q(q, pjq½q�, p½q�) ¼ E l(q, pjy, z, x)jy, q½q�, p½q�
� �

¼
XI

i¼1

XK

k¼1

t½q�i (k) ln (pk)

þ
XI

i¼1

XK

k¼1

t½q�i (k)E½h(qkjyi, x
k
i )jy, q

½q�� (A:4)

where

t½q�i (k) ¼ P(i 2 Ckjyi, q
½q�, p½q�) ¼

p½q�
k j(yijq

½q�
k )PK

l¼1 p½q�
l j(yijq

½q�
l )

(A:5)
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denotes the conditional probability that yi arises from component Ck.
Since (xk

i )
0(xk

i ) and (yi �
_Uxk

i ), 1� k�K are sufficient statistics for the complete
model (Searle et al., 1992), there is no need to compute the expectation
E(l(q, pjy, z, x)jy, q½q�, p½q�). To proceed to the maximization of Q(q, pjq½q�, p½q�), in the
M step, we only need to compute the conditional expectation of those sufficient
statistics (xk

i )
0(xk

i ) and (yi �
_Uxk

i ), knowing observed data yi and a current value of

the parameters q½q� and p½q� (Dempster et al., 1977).
Following (Trottier, 1998, page 49) and knowing that yi 2 Ck, we obtain easily

E(xk0

i x
k
i jyi, q

½q�) ¼ t4k(yi �
_Xbk)

0G�1
k

_U _U 0G�1
k (yi �

_Xbk)

þ Rt2k � t4ktr(G
�1
k

_U _U) (A:6)

and

E(yi �
_Uxk

i jyi, q
½q�) ¼ _Xbk þ s2G�1

k (yi �
_Xbk): (A:7)

M step

This step consists of finding the values maximizing Q(q, pjq½q�, p½q�). From (A.4),
it leads to

p½qþ1�
k ¼

XI

i¼1

t½q�i (k)

I
, for k ¼ 1, . . . , K, (A:8)

and to solve the following log-likelihood equations for parameters bk, t
2
k, s

2
k, for

k ¼ 1, . . . , K,

XI

i¼1

t½q�i (k)
@E½h(qkjyi, x

k
i )jy, q

½q��

@bk

¼ 0, (A:9)

XI

i¼1

t½q�i (k)
@E½h(qkjyi, x

k
i )jy, q

½q��

@t2k
¼ 0, (A:10)

and

XI

i¼1

t½q�i (k)
@E½h(qkjyi, x

k
i )jy, q

½q��

@s2k
¼ 0: (A:11)
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Using the conditional expectations of the sufficient statistics (A.6) and (A.7), it leads to
the following explicit formulas, for k ¼ 1, . . . ,K,

s2½qþ1�
k ¼

1

TR
PI

i¼1 t½q�i (k)

XI

i¼1

t½q�i (k) s4½q�(yi �
_Xb½q�

k )0
h

G�1½q�
k G�1½q�

k (yi �
_Xb½q�

k )

þ RTs2½q�k � s4½q�k tr (G�1½q�
k )

i
, (A:12)

t2½qþ1�
k ¼

1

T
PI

i¼1 t½q�i (k)

XI

i¼1

t½q�i (k) t4½q�k (yi �
_Xb½q�

k )0
h

G�1½q�
k

_U _U 0G�1½q�
k (yi �

_Xb½q�
k )

þ Tt2½q�k � t4½q�k tr (G�1½q�
k

_U _U 0)
i
, (A:13)

b½qþ1�
k ¼

1PI
i¼1 t½q�i (k)

XI

i¼1

t½q�i (k) s2½q�k ( _X 0 _X)�1 _X 0G�1½q�
k (yi �

_Xb½q�k )þ b½q�
k

h i
: (A:14)
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