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Abstract

The Speaker Recognition community that participates in
NIST evaluations has concentrated on designing gender- and
channel-conditioned systems. In the real word, this condition-
ing is not feasible. Our main purpose in this work is to propose
a mixture of Probabilistic Linear Discriminant Analysis mod-
els (PLDA) as a solution for making systems independent of
speaker gender. In order to show the effectiveness of the mix-
ture model, we first experiment on 2010 NIST telephone speech
(det5), where we prove that there is no loss of accuracy com-
pared with a baseline gender-dependent model. We also test
with success the mixture model on a more realistic situation
where there are cross-gender trials. Furthermore, we report re-
sults on microphone speech for the detl, det2, det3 and det4
tasks to confirm the effectiveness of the mixture model.

Index Terms: i-vectors, speaker recognition, mixture model

1. Introduction

The series of NIST Speaker Recognition Evaluations [1] has
had a strong influence on research in text-independent speaker
recognition for more than a decade. In these evaluations, the
canonical speaker detection task has always prescribed trials
where (i) genders are not mixed and (ii) the genders of the
speakers involved are given. Although this task definition has
allowed researchers to concentrate on certain core aspects of the
technology, it has also encouraged system designs that cannot
function as is in more realistic environments where males and
females may be mixed and where no gender labels are given.
In this paper we propose a system design for a speaker detec-
tor that can function without gender labels and we demonstrate
that we do not lose accuracy when we compare it with a gender-
dependent baseline where such labels are provided.

The i-vector is a low-dimensional representation of an en-
tire speech segment [2, 3, 4]. In recent work we showed that i-
vectors respond well to generative modelling [5, 6]. In those pa-
pers, we used separate male and female i-vector extractors, fol-
lowed by separate male and female generative modelling stages,
choosing between them by using the gender labels provided
by NIST. In this paper, we use a gender-independent i-vector
extractor and combine male and female models in a mixture,
where the gender label is treated as a hidden variable.

Handling cross-gender trials is tricky for traditional speaker
verification systems, including those based on joint factor anal-
ysis, because some sort of score normalization such as zt-norm
is essential. (For each trial, z-norm and t-norm imposter co-
horts have to be selected for both the hypothesized speaker and
the test segment using a gender detector.) However as shown in

[5, 7], score normalization heuristics are not generally needed
for a PLDA based speaker verification system. We will show
how this makes it possible to handle cross gender trials by a
straightforward application of the rules of probability, using a
mixture of male and female PLDA models (but no explicit gen-
der detection) to perform speaker recognition.

The remainder of this paper is organized as follows. In the
next section we present the generative model used for speaker
detection. We will focus on the mixture solution proposed to
deal with the gender dependent problem. The third section re-
ports experimental results on NIST 2010 telephone and micro-
phone speech. The last section presents concluding remarks.

2. Generative Model for Speaker Detection

Here we define speaker detection and present our generative
model for this problem.

2.1. Speaker detection

In a speaker detection trial, two speech segments are given,
each assumed to have been produced by a single speaker and
the question is asked whether the segments were produced by
the same speaker, or by two different speakers. We use the
convention that the same-speaker hypothesis is called a target
trial and the different speaker hypothesis a non-target trial. The
speaker detector processes the given speech segments and out-
puts a scalar score, where a more positive value favours the tar-
get hypothesis and a more negative value favours the non-target
hypothesis.

Note that by definition, target trials cannot have mixed gen-
der, but non-target trials may be male, female or mixed. In
the NIST evaluations, there are no trials of mixed gender and
male/female labels are provided for each trial. In this paper, we
are interested in the case where there may be mixed non-target
trials and where no gender labels are provided.

In what follows, we assume that every speech segment is
mapped to an i-vector, which lives in D-dimensional Euclidean
space. (We used D = 800.) This mapping is done with an
i-vector extractor, as explained in [4, 5, 6]. In those papers,
we used separate male and female extractors. In this work, we
train a single extractor on pooled male and female data and then
apply it to all evaluation speech segments regardless of gender.

The consequence of the single i-vector mapping is that the
input data of every detection trial is just a pair of i-vectors. (If
one follows tradition, denoting the two speech segments of the
detection trial as enrollment and test, then the two i-vectors may
also labelled as such. However, the i-vector recipe is symmetric



in its inputs, so that there is no real difference between enroll-
ment and test. Below we simply number the two segments as 1
and 2.)

2.2. Generative Model

We construct a speaker detector by using a generative PLDA
model for the pair of i-vectors in a trial. The model ignores
the real-world complexities of speech production, transmission
and processing and instead pretends that the i-vectors were pro-
duced by simple random processes. The model pretends the pair
of i-vectors, denoted z1, z2, is produced as follows:

z1 = Vy1 +x1 z2 = Vy2 + X2 (D)
where the hidden speaker variables, y1,y2, are d-dimensional
vectors sampled from a continuous multivariate between
speaker distribution. For target trials: y; = y2, while for non-
target trials: y; and y2 are sampled independently. The hid-
den channel' variables, x1, x> are D-dimensional and sampled
independently from a continuous multivariate within speaker
distribution. Usually d < D, but in our experiments we use
d = D. The between and within speaker distributions are ei-
ther normal or heavy-tailed [5]. The D-by-d matrix V is a fixed
hyperparameter.

In this model, z1, z2 are the observed variables. There are
two types of hidden variables: (i) the continuous nuisance vari-
ables: x1,X2,¥1,y2 and (ii) the variable of interest to be in-
ferred, i.e. the trial-type, which can have the discrete values far-
get (T) or non-target (N).

2.2.1. Gender modelling

Now we add another pair of discrete hidden variables, namely
g1, g2, which respectively represent the genders of the speakers
that produced z; and z>. These variables take the values male
(M) or female (F). For a target trial, g1 = g2, while and for a
non-target trial they may be different.

The generative model needs priors for all hidden variables.
The priors for the continuous hidden variables are the above-
mentioned within and between speaker distributions. The prior
for the trial type will not be needed in this paper. The priors for
the gender labels are trial-type dependent and are defined as:

Py = P(MM|T) Pr = P(FF|T)
Qrm = PIMM|N) Qrr = P(FF|N)
Qmr = PIMFIN) Qrm = P(FMIN)

where e.g. MF denotes the event: g1 = M and g2 = F. Note
Pm+ Pr =1and Qum + Qrr + Qumr + QFrm = 1.
The gender priors must be supplied by the user of the speaker
detector (we will use equiprobable priors in this work). In the
limiting case of given gender labels, these priors will have val-
ues of O or 1.

2.3. Scoring

For scoring this model in a gender-independent way, we
marginalize over the gender hidden variables. For this
purpose we assume that we have available the follow-
ing gender-dependent likelihoods: For targets, we need
P(z1,22| MM, T), P(z1,22|FF,T) and for non-targets we

!'The synecdoche channel is understood to represent everything that
causes different i-vectors of the same speaker to be different.

need:

P(z1, 22| MM, N') = P(z1|M)P(z2| M) 2)
P(2z1,22| FF,N) = P(2:|F)P(2z2|F) )

When using normal distributions for the continuous hidden vari-
ables, all these likelihoods can be computed in closed form [6],
or when using heavy-tailed distributions, they can be approxi-
mated [5]. These likelihoods can be arranged into the following
likelihood-ratios:

P(Z17Z2‘MM T)
R = P(z1| M) P(z2| M) @
o P(Z1,Z2‘.7'-.7'- T)
B = p(a| F) Plaal 7) ®
P(zi|M)
G = 6
P (2] F) ©

Note that log Raq and log R+ are the usual gender-dependent
speaker detection scores for the male and female models re-
spectively. log GG; can be used as a gender discrimination score
(in experiments with the normal model variant on the telephone
data of NIST SRE2010,> G; gives an equal error-rate (EER) of
below 2% when discriminating gender).

The gender-independent likelihood-ratio score, denoted R,
is obtained by marginalizing (summing) over the gender vari-
ables:

P(z1,22|7)

P(z1,22|N)

_ PmP(21,25| MM, T) + PP (21, 2| FF, T)
- Zgl,gz Qg192 P (21]91) P(22|g2)

R=
@)

where there are four terms in the denominator. Finally, R can
be expressed in terms of the above-defined likelihood-ratios and
gender priors:

— P P
R=—- SuRm+ —2 SrRr 8)
Qrmm QrF
where
Sy = QmmG1G2 ©
QmmG1G2 + QrmG2 + QumrG1+ QFF
Qrr
Sr = 10
d Qrr + QmrG1 + QrmG2 + QumG1G2 (10)
2.3.1. Caveat

The independence assumption in (2) and (3) holds when the
model parameters are assumed known at scoring time [5, 6].
This would not be the case in a more fully Bayesian treatment,
where the uncertainty in the estimates of the model parameters
is taken into account during scoring [8].

3. Experiments

We performed experiments on the coreext-coreext condition of
the NIST extended list. We use the Equal Error Rate (EER) and
the (new and old) normalized minimum Detection Cost Func-
tion 2 (DCF) of NIST as metrics. In order to show the effective-
ness of the mixture gender independent model, we first report

2nttp://www.itl.nist.gov/iad/mig//tests/sre/
2010/index.html



results on telephone speech (det5). We also carried out experi-
ments on cross-gender trials by creating our own list. That list
contains the same farget trials as the NIST extended list det5
(3465), and the same number of non-target trials (175873), but
all those non-target trials are cross-gender (i.e. male as model
segment and female as test segment or vice versa, since the scor-
ing is symmetric in our generative model). The reason for using
the cross-gender list is to test our mixture model in a more re-
alistic scenario. We also perform experiments on microphone
speech and we will present results for detl to det4 conditions.

3.1. Feature extraction
3.1.1. Universal Background Model

We use a gender-independent GMM UBM containing 2048
Gaussians. This UBM is trained with the LDC releases of
Switchboard II, Phases 2 and 3; Switchboard Cellular, Parts 1
and 2; and NIST 2004-2005 SRE. Speech parameters are rep-
resented by a 60-dimensional vector of Mel Frequency Cepstral
Coefficients (MFCC) i.e. static MFCC, first and second deriva-
tive of MFCC.

3.1.2. i-vector extractor

We use a gender independent i-vector extractor of dimension
800. Its parameters are estimated on the following data: LDC
releases of Switchboard II, Phases 2 and 3; Switchboard Cellu-
lar, Parts 1 and 2; Fisher data and NIST 2004 and 2005 SRE (i.e.
telephone speech) and all NIST microphone data (i.e. NIST 05,
06 and 08 interview development microphone data).

3.1.3. Linear Discriminant Analysis (LDA) in i-vector space

LDA is a well known supervised method, widely used for di-
mensionality reduction in classification problems. In our work,
LDA is applied to map i-vectors from the 800-dimension space
to a reduced space spanned by the eigenvectors corresponding
to the biggest eigenvalues of the following generalized eigen-
value problem:

Spu = ASyuu (11)

where S, and S, represent respectively the between class and
the within class scatter matrices. Given a set of .S speakers with
speaker s having n, utterances and Zsszl ns = N, the scatter
matrices Sy and .S, are given by the following formulas:

Sy = Zns(zs —2)(z, —2)" 12)

S ng
Sw =33 (2 —2)(z — ) (13)

s=11=1

In practice, the estimation of S, on only telephone data and
Sw on telephone and microphone data works well. An optimal
reduced dimension equal to 200 is also determined empirically.

3.1.4. Length normalization of i-vectors

Recently, in [9],some experimental results on speaker verifica-
tion using i-vectors as features and a PLDA model (without
score normalization) based normal assumption [5], have shown
that the normalization of the length of i-vectors to one, after
LDA projection, gives comparable results to those obtained by
the same PLDA model based heavy-tailed prior distribution [5].

High dimensional data can be Gaussianized by whitening and
projecting onto the unit sphere. For an entertaining discussion
of this curious fact see.’> The advantage behind this normaliza-
tion is the ability to use the Gaussian assumption in the PLDA
model rather than the heavy-tailed assumption, which is more
complicated and time consuming.

3.1.5. PLDA model training

Three PLDA models were trained for our experiments: two
gender-dependent (GD) models and a gender-independent (GI)
model. All models were trained on the same data sets as the i-
vector extractor (i.e. telephone and microphone speech) except
Fisher data. For all three models, the fixed hyperparameter V
is a full rank matrix of dimension d = 200. The mixture (Mix)
model is implemented by combining the GD models (i.e. male
and female models) as shown in section 2.2.

3.2. Test on telephone speech
3.2.1. NIST list

In order to show the effectiveness of the mixture model,
we perform the first series of experiments on only tele-
phone speech. We report male and female results of mixture,
gender-independent and gender-dependent systems as scored on
NIST’s extended list (det5). Observing these results, we can
easily see that the use of the mixture model (see columns 1
and 4 of Table 1) gives almost the same results as the baseline
gender-dependent model (see columns 3 and 6 of Table 1). On
the other hand, we see an improvement of mixture model results
compared with gender-independent model (see columns 2 and
5 of Table 1). In the male case, the improvement is about 9.5%
in EER and the old MinDCF decreases from 0.112 to 0.096.

Table 1: Male and female det5 results for mixture, gender de-
pendent and gender independent models, measured by EER and
normalized minimum DCF.

MALE FEMALE
Mix | GI | GD || Mix | GI | GD
EER(%) | 1.81 | 200 | 181 || 246 | 275 | 247
OIdDCF | 0.096 | 0.112 | 0.096 | 0.124 | 0.133 | 0.124
NewDCF | 0.322 | 0.386 | 0.320 || 0.388 | 0.415 | 0387

3.2.2. Cross gender list

To realize cross-gender tests we proceed as follows: First, we
score the cross-gender list that we have created. Then, we
use Oo1q and O, to refer to thresholds used to obtain respec-
tively Old and New minimums of DCF already calculated on
the scored der5 list of NIST (pooled males and females) using
the mixture model. The idea is to use 0,;4 and 0,,¢., to calculate
actual DCFs of the scores of the cross-gender list. Since, both
lists share the same target trials, and also have the same number
of non-target trials, we expect that these actual DCF's should be
at least equal to or less than the minimum DCFs calculated on
the NIST list.

As we expected, the old actual DCF decreases from old
minimum DCF = 0.119 to 0.078 and the new actual DCF de-
creases from new minimum DCF = (0.381 to 0.349 (see Table 2).

3http://ontopo.wordpress.com/2009/03/10/
reasoning-in-higher-dimensions-measure/



Table 2: Pooled male and female det5 results as measured
by EER, Normalized minimum DCF's using mixture model and
pooled gender results as measured by EER, Normalized actual
DCFs scored using mixture model on cross-gender list.

[ NIST list ][ CrossG list ]

EER(%) 2.24 0.40
OldDCF 0.119 0.078
NewDCF 0.381 0.349

3.3. Test on microphone speech

In the previous section we reported results that demonstrate
the effectiveness of the mixture model, at least with telephone
speech. Given the encouraging results obtained in the tele-
phone speech case, we decided to go further and test the mixture
model on microphone data. First, we report in Table 3 results
on interview-interview det2 task of the NIST extended list.

Table 3: Male and female det2 results on mixture, gender de-
pendent and gender independent models, measured by EER and
normalized minimum DCF.

MALE FEMALE

Mix | _GI | GD || Mx | GI | GD
EER(%) | 203 | 2.1 | 2.02 || 3.87 | 3.80 | 3.86
OIdDCF | 0.097 | 0.098 | 0.097 || 0.190 | 0.187 | 0.190
NewDCF | 0365 | 0.397 | 0.363 || 0.541 | 0.536 | 0.543

We can draw two principal conclusions from these results.
First, by comparing Mix (see columns 2 and 5 of Table 3) results
and GD results (see columns 4 and 7 of Table 3), we can see that
there is no loss of accuracy. Thus, the mixture model success-
fully handles microphone speech in the same way as telephone
speech. Second, the comparison between Mix results and G/
(see columns 3 and 6 of Table 3) shows a small anomaly (prob-
ably due to experimental error), since GI results for female are
a bit better than Mix and GD results (see boldface entries of
Table 3).

Finally, we tested the mixture model on the other main
NIST SRE tasks. In order to facilitate comparison, we report
pooled gender results rather than separate gender of detl, det3
and det4 tasks in Table 4. Again, those results confirm that there
is no loss of accuracy when using the mixture model as shown
in the det5 and det2 cases. The boldface entries in Table 4 show
that we again have the same small anomaly as in the det2 case.
However, it is clear that it is not a general problem, since it
doesn’t appear in the whole GI column.

4. Conclusion

In this paper we have shown how to build a speaker recognition
system which is blind with respect to both, the male/female and
telephone/microphone distinctions. Using a mixture of male
and female PLDA models enables us to obtain good results on
the NIST 2010 test data without taking advantage of the gen-
der information provided in the evaluation protocol (Table 1).
We have also shown that our approach works well on cross gen-
der trials (Table 2), a problem which is not encountered in the
NIST evaluations but which is important in real word applica-

Table 4: Pooled male and female detl, det3 and detd results
of mixture, gender dependent and gender independent models,
measured by EER and normalized minimum DCF.

[ Mix | GI | GD |
EER(%) | 1.58 | 144 | 1.58
Detl | OIdDCF | 0.070 | 0.071 | 0.070
NewDCF | 0.246 | 0.262 | 0.246

EER(%) | 2.68 | 2.57 | 2.68
Det3 | OldDCF | 0.125 | 0.124 | 0.126
NewDCF | 0397 | 0.439 | 0.402

EER(%) 2.90 3.05 2.90
Det4 | OldDCF | 0.129 | 0.133 | 0.128
NewDCF | 0.384 | 0.403 | 0.385

tions. The system that we have presented falls short of the ideal
of being fully blind in just one respect; namely that we have to
set the decision thresholds for the various conditions (det1,det2
etc) in a way which takes account of the telephone/microphone
distinction. It remains to find a way of performing score cali-
bration which remedies this defect.
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