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Fig. 1. Mixture of Volumetric Primitives (MVP) inherits the strengths of both volumetric as well as primitive-based approaches, while avoiding many of their

pitfalls. It enables state-of-the-art results for rendering dynamic objects in terms of rendering quality and runtime performance.

Real-time rendering and animation of humans is a core function in games,

movies, and telepresence applications. Existing methods have a number of

drawbacks we aim to address with our work. Triangle meshes have di�culty

modeling thin structures like hair, volumetric representations like Neural

Volumes are too low-resolution given a reasonable memory budget, and

high-resolution implicit representations like Neural Radiance Fields are too

slow for use in real-time applications. We present Mixture of Volumetric

Primitives (MVP), a representation for rendering dynamic 3D content that

combines the completeness of volumetric representations with the e�ciency

of primitive-based rendering, e.g., point-based or mesh-based methods. Our

approach achieves this by leveraging spatially shared computation with a

convolutional architecture and by minimizing computation in empty regions

of space with volumetric primitives that can move to cover only occupied

regions. Our parameterization supports the integration of correspondence

and tracking constraints, while being robust to areas where classical tracking

fails, such as around thin or translucent structures and areas with large

topological variability. MVP is a hybrid that generalizes both volumetric and

primitive-based representations. Through a series of extensive experiments

we demonstrate that it inherits the strengths of each, while avoiding many
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of their limitations. We also compare our approach to several state-of-the-art

methods and demonstrate that MVP produces superior results in terms of

quality and runtime performance.
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1 INTRODUCTION

Photo-realistic rendering of dynamic 3D objects and scenes from
2D image data is a central focus of research in computer vision
and graphics. Volumetric representations have seen a resurgence
of interest in the graphics community in recent years, driven by
impressive empirical results attained using learning-based meth-
ods [Lombardi et al. 2019; Mildenhall et al. 2020]. Through the use of
generic function approximators, such as deep neural networks, these
methods achieve compelling results by supervising directly on raw
image pixels. Thus, they avoid the often di�cult task of assigning
geometric and radiometric properties, which is typically required by
classical physics-inspired representations. Leveraging the inherent
simplicity of volumetric models, much work has been dedicated
to extending the approach for modeling small motions [Park et al.
2020], illumination variation [Srinivasan et al. 2020], reducing data
requirements [Trevithick and Yang 2020; Yu et al. 2020], and learn-
ing e�ciency [Tancik et al. 2020]. All these methods employ a soft
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volumetric representation of 3D space that helps them model thin
structures and semi-transparent objects realistically.

Despite the aforementioned advances in volumetric models, they
still have to make a trade-o�; either they have a large memory
footprint or they are computationally expensive to render. The large
memory footprint drastically limits the resolution at which these
approaches can operate and results in a lack of high-frequency detail.
In addition, their high computational cost limits applicability to real-
time applications, such as VR telepresence [Orts-Escolano et al. 2016;
Wei et al. 2019]. The ideal representation would be memory e�cient,
can be rendered fast, is drivable, and has high rendering quality.
Neural Volumes [Lombardi et al. 2019] is a method for learning,

rendering, and driving dynamic objects captured using an outside-in
camera rig. The method is suited to objects rather than scenes as
a uniform voxel grid is used to model the scene. This grid’s $ (=3)

memory requirement prevents the use of high resolutions, even on
high-end graphics cards. Since much of the scene is often comprised
of empty space, Neural Volumes employs a warp �eld to maximize
the utility of its available resolution. The e�cacy of this, however, is
limited by the resolution of the warp and the ability of the network
to learn complex inverse-warps in an unsupervised fashion.

Neural Radiance Fields (NeRF) [Mildenhall et al. 2020] addresses
the issue of resolution using a compact representation. NeRF only
handles static scenes. Another challenge is runtime, since a multi-
layer perceptron (MLP) has to be evaluated at every sample point
along the camera rays. This leads to billions of MLP evaluations to
synthesize a single high-resolution image, resulting in extremely
slow render times around thirty seconds per frame. E�orts to miti-
gate this rely on coarse-to-�ne greedy selection that can miss small
structures [Liu et al. 2020]. This approach can not easily be extended
to dynamics, since it relies on a static acceleration structure.

In this work, we present Mixture of Volumetric Primitives (MVP),
an approach designed to directly address the memory and compute
limitations of existing volumetric methods, while maintaining their
desirable properties of completeness and direct image-based super-
vision. It is comprised of a mixture of jointly-generated overlapping
volumetric primitives that are selectively ray-marched, see Fig. 1.
MVP leverages the conditional computation of ray-tracing to elim-
inate computation in empty regions of space. The generation of
the volumetric primitives that occupy non-empty space leverages
the shared computation properties of convolutional deep neural
networks, which avoids the wasteful re-computation of common
intermediate features for nearby areas, a common limitation of re-
cent methods [Liu et al. 2020; Mildenhall et al. 2020]. Our approach
can naturally leverage correspondences or tracking results de�ned
previously by opportunistically linking the estimated placement of
these primitives to the tracking results. This results in good motion
interpolation. Moreover, through a user-de�ned granularity param-
eter, MVP generalizes volumetric [Lombardi et al. 2019] on one end,
and primitive-based methods [Aliev et al. 2019; Lombardi et al. 2018]
on the other, enabling the practitioner to trade-o� resolution for
completeness in a straightforward manner. We demonstrate that
our approach produces higher quality, more driveable models, and
can be evaluated more quickly than the state of the art. Our key
technical contributions are:

• A novel volumetric representation based on a mixture of
volumetric primitives that combines the advantages of volu-
metric and primitive-based approaches, thus leading to high
performance decoding and e�cient rendering.

• A novel motion model for voxel grids that better captures
scene motion, minimization of primitive overlap to increase
the representational power, and minimization of primitive
size to better model and exploit free space.

• A highly e�cient, data-parallel implementation that enables
faster training and real-time rendering of the learned models.

2 RELATED WORK

In the following, we discuss di�erent scene representations for
neural rendering. For an extensive discussion of neural rendering
applications, we refer to Tewari et al. [2020].

Point-based Representations. The simplest geometric primitive are
points. Point-based representations can handle topological changes
well, since no connectivity has to be enforced between the points.
Di�erentiable point-based rendering has been extensively employed
in the deep learning community to model the geometry of objects
[Insafutdinov and Dosovitskiy 2018; Lin et al. 2018; Roveri et al.
2018; Yifan et al. 2019]. Di�erentiable Surface Splatting [Yifan et al.
2019] represents the points as discs with a position and orientation.
Lin et al. [Lin et al. 2018] learns e�cient point cloud generation
for dense 3D object reconstruction. Besides geometry, point-based
representations have also been employed extensively to model scene
appearance [Aliev et al. 2019; Kolos et al. 2020; Lassner and Zollhöfer
2020; Meshry et al. 2019; Wiles et al. 2020]. One of the drawbacks of
point-based representations is that there might be holes between the
points after projection to screen space. Thus, all of these techniques
often employ a network in screen-space, e.g., a U-Net [Ronneberger
et al. 2015], to in-paint the gaps. SynSin [Wiles et al. 2020] lifts
per-pixel features from a source image onto a 3D point cloud that
can be explicitly projected to the target view. The resulting feature
map is converted to a realistic image using a screen-space network.
While the screen-space network is able to plausibly �ll in the holes,
point-based methods often su�er from temporal instabilities due
to this screen space processing. One approach to remove holes by
design is to switch to geometry proxies with explicit topology, i.e.,
use a mesh-based model.

Mesh-based Representations. Mesh-based representations explic-
itly model the geometry of an objects based on a set of connected
geometric primitives and their appearance based on texture maps.
They have been employed, for example, to learn personalized avatars
from multi-view imagery based on dynamic texture maps [Lom-
bardi et al. 2018]. Di�erentiable rasterization approaches [Chen et al.
2019; Kato et al. 2018; Laine et al. 2020; Liu et al. 2019; Loper and
Black 2014; Petersen et al. 2019; Ravi et al. 2020; Valentin et al. 2019]
enable the end-to-end integration of deep neural networks with
this classical computer graphics representation. Recently, of-the-
shelf tools for di�erentiable rendering have been developed, e.g.,
TensorFlow3D [Valentin et al. 2019], Pytorch3D [Ravi et al. 2020],
and Nvidia’s nvdi�rast [Laine et al. 2020]. Di�erentiable rendering
strategies have for example been employed for learning 3D face
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models [Genova et al. 2018; Luan Tran 2019; Tewari et al. 2018]
from 2D photo and video collections. There are also techniques that
store a feature map in the texture map and employ a screen-space
network to compute the �nal image [Thies et al. 2019]. If accurate
surface geometry can be obtained a-priori, mesh-based approaches
are able to produce impressive results, but they often struggle if
the object can not be well reconstructed. Unfortunately, accurate
3D reconstruction is notoriously hard to acquire for humans, espe-
cially for hair, eyes, and the mouth interior. Since such approaches
require a template with �xed topology they also struggle to model
topological changes and it is challenging to model occlusions in a
di�erentiable manner.

Multi-Layer Representations. One example of a mixture-based rep-
resentation are Multi-Plane Images (MPIs) [Srinivasan et al. 2019;
Tucker and Snavely 2020; Zhou et al. 2018]. MPIs employ a set of
depth-aligned textured planes to store color and alpha information.
Novel views are synthesized by rendering the planes in back-to-front
order using hardware-supported alpha blending. These approaches
are normally limited to a small restricted view-box, since specular
surfaces have to be modeled via the alpha blending operator. Local
Light Field Fusion (LLFF) [Mildenhall et al. 2019] enlarges the view-
box by maintaining and smartly blending multiple local MPI-based
reconstructions. Multi-sphere images (MSIs) [Attal et al. 2020; Brox-
ton et al. 2020] replace the planar and textured geometry proxies
with a set of textured concentric sphere proxies. This enables 360◦

inside-out view synthesis for VR video applications. MatryODShka
[Attal et al. 2020] enables real-time 6DoF video view synthesis for
VR by converting omnidirectional stereo images to MSIs.

Grid-based Representations. Grid-based representations are sim-
ilar to the multi-layer representation, but are based on a dense
uniform grid of voxels. They have been extensively used to model
the 3D shape of objects [Choy et al. 2016; Kar et al. 2017; Mescheder
et al. 2019; Peng et al. 2020; Tulsiani et al. 2017; Wu et al. 2016]. Grid-
based representations have also been used as the basis for neural
rendering techniques to model object appearance [Lombardi et al.
2019; Sitzmann et al. 2019a]. DeepVoxels [Sitzmann et al. 2019a]
learns a persistent 3D feature volume for view synthesis and em-
ploys learned ray marching. Neural Volumes [Lombardi et al. 2019]
is an approach for learning dynamic volumetric reconstructions
from multi-view data. One big advantage of such representations
is that they do not have to be initialized based on a �xed template
mesh and are easy to optimize with gradient-based optimization
techniques. The main limiting factor for all grid-based techniques
is the required cubic memory footprint. The sparser the scene, the
more voxels are actually empty, which wastes model capacity and
limits resolution. Neural Volumes employs a warping �eld to max-
imize occupancy of the template volume, but empty space is still
evaluated while raymarching. We propose to model deformable
objects with a set of rigidly-moving volumetric primitives.

MLP-based Representations. Multi-Layer Perceptrons (MLPs) have
�rst been employed for modeling 3D shapes based on signed dis-
tance [Chabra et al. 2020; Jiang et al. 2020; Park et al. 2019; Saito
et al. 2019a,b] and occupancy �elds [Genova et al. 2020; Mescheder
et al. 2019; Peng et al. 2020]. DeepSDF [Park et al. 2019] is one of

the �rst works that learns the 3D shape variation of an entire object
category based on MLPs. ConvOccNet [Peng et al. 2020] enables
�tting of larger scenes by combining an MLP-based scene represen-
tation with a convolutional decoder network that regresses a grid
of spatially-varying conditioning codes. Afterwards, researchers
started to also model object appearance using similar scene repre-
sentations. Neural Radiance Fields (NeRF) [Mildenhall et al. 2020]
proposes a volumetric scene representaiton based on MLPs. One of
its challenges is that the MLP has to be evaluated at a large number
of sample points along each camera ray. This makes rendering a
full image with NeRF extremely slow. Furthermore, NeRF can not
model dynamic scenes or objects. Scene Representation Networks
(SRNs) [Sitzmann et al. 2019b] can be evaluated more quickly as
they model space with a signed-distance �eld. However, using a sur-
face representation means that it can not represent thin structures
or transparency well. Neural Sparse Voxel Fields (NSVF) [Liu et al.
2020] culls empty space based on an Octree acceleration structure,
but it is extremely di�cult to extend to dynamic scenes. There ex-
ists also a large number of not-yet peer-reviewed, but impressive
extensions of NeRF [Du et al. 2020; Gafni et al. 2020; Gao et al. 2020;
Li et al. 2020; Martin-Brualla et al. 2020; Park et al. 2020; Rebain
et al. 2020; Schwarz et al. 2020; Tretschk et al. 2020; Xian et al. 2020].
While the results of MLP-based models are often visually pleasing,
their main drawbacks are limited or no ability to be driven as well
as their high computation cost for evaluation.

Summary. Our approach is a hybrid that �nds the best trade-o�
between volumetric- and primitive-based neural scene representa-
tions. Thus, it produces high-quality results with �ne-scale detail,
is fast to render, drivable, and reduces memory constraints.

3 METHOD

Our approach is based on a novel volumetric representation for
dynamic scenes that combines the advantages of volumetric and
primitive-based approaches to achieve high performance decoding
and e�cient rendering. In the following, we describe our scene
representation and how it can be trained end-to-end based on 2D
multi-view image observations.

3.1 Neural Scene Representation

Our neural scene representation is inspired by primitive-based meth-
ods, such as triangular meshes, that can e�ciently render high res-
olution models of 3D space by focusing representation capacity on
occupied regions of space and ignoring those that are empty. At the
core of our method is a set of minimally-overlapping and dynami-
cally moving volumetric primitives that together parameterize the
color and opacity distribution in space over time. Each primitive
models a local region of space based on a uniform voxel grid. This
provides two main advantages that together lead to a scene repre-
sentation that is highly e�cient in terms of memory consumption
and is fast to render: 1) fast sampling within each primitive owing
to its uniform grid structure, and 2) conditional sampling during
ray marching to avoid empty space and fully occluded regions. The
primitives are linked to an underlying coarse guide mesh (see next
section) through soft constraints, but can deviate away from the
mesh if this leads to improved reconstruction. Both, the primitives’
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motion as well as their color and opacity distribution are param-
eterized by a convolutional network that enables the sharing of
computation amongst them, leading to highly e�cient decoding.

3.1.1 Guide Mesh. We employ a coarse estimate of the scene’s

geometry {M8 }
#frames
8=1 of every frame as basis for our scene rep-

resentation. For static scenes, it can be obtained via o�-the-shelf
reconstruction packages such as COLMAP [Schönberger and Frahm
2016; Schönberger et al. 2016]. For dynamic scenes, we employ
multi-view non-rigid tracking to obtain a temporally corresponded
estimate of the scenes geometry over time [Wu et al. 2018]. These
meshes guide the initialization of our volumetric primitives, regu-
larize the results, and avoid the optimization terminating in a poor
local minimum. Our model generates both the guide mesh as well
as its weakly attached volumetric primitives, enabling the direct
supervision of large motion using results from explicit tracking.
This is in contrast to existing volumetric methods that parameterize
explicit motion via an inverse warp [Lombardi et al. 2019; Park et al.
2020], where supervision is more challenging to employ.

3.1.2 Mixture of Volumetric Primitives. The purpose of each of the
#prim volumetric primitives is to model a small local region of
3D space. Each volumetric primitive V: = {t: ,R: , s: ,V: } is de-
�ned by a position t: ∈ R3 in 3D space, an orientation given by
a rotation matrix R: ∈ SO(3) (computed from an axis-angle pa-
rameterization), and per-axis scale factors s: ∈ R3. Together, these
parameters uniquely describe the model-to-world transformation
of each individual primitive. In addition, each primitive contains a
payload that describes the appearance and geometry of the associ-
ated region in space. The payload is de�ned by a dense voxel grid

V: ∈ R4×"G×"~×"I that stores the color (3 channels) and opacity
(1 channel) for the"G ×"~ ×"I voxels, with"∗ being the number
of voxels along each spatial dimension. Below, we will assume our
volumes are cubes with"∗ = " unless stated otherwise.

As mentioned earlier, the volumetric primitives are weakly con-
strained to the surface of the guide mesh and are allowed to deviate
from it if that improves reconstruction quality. Speci�cally, their

position t: = t̂: +% t: , rotation R: = %R: · R̂: , and scale s: = ŝ: +%s:
are modeled relative to the guide mesh base transformation (t̂: , R̂: ,
ŝ: ) using the regressed values (% t: , %R: , %s: ). To compute the mesh-
based initialization, we generate a 2D grid in the mesh’s texture
space and generate the primitives at the 3D locations on the mesh
that correspond to the DE-coordinates of the grid points. The ori-
entation of the primitives is initialized based on the local tangent
frame of the 3D surface point they are attached to. The scale of the
boxes is initialized based on the local gradient of the DE-coordinates
at the corresponding grid point position. Thus, the primitives are
initialized with a scale in proportion to distances to their neighbours.

3.1.3 Opacity Fade Factor. Allowing the volumetric primitives to
deviate from the guide mesh is important to account for de�ciencies
in the initialization strategy, low guide mesh quality, and insu�cient
coverage of objects in the scene. However, allowing for motion is
not enough; during training the model can only receive gradients
from regions of space that the primitives cover, resulting in a lim-
ited ability to self assemble and expand to attain more coverage
of the scene’s content. Furthermore, it is easier for the model to

reduce opacity in empty regions than to move the primitives away.
This wastes primitives that would be better-utilized in regions with
higher occupancy. To mitigate this behavior, we apply a windowing

functionW ∈ R"
3
to the opacity of the payload that takes the form:

W(G,~, I) = exp
{

−U
(

GV + ~V + IV
)}

, (1)

where (G,~, I) ∈ [−1, 1]3 are normalized coordinates within the
primitive’s payload volume. Here, U and V are hyperparameters that
control the rate of opacity decay towards the edges of the volume.
This windowing function adds an inductive bias to explain the
scene’s contents via motion instead of payload since the magnitude
of gradients that are propagated through opacity values at the edges
of the payload are downscaled.We note that this does not prevent the
edges of the opacity payload from being able to take on large values,
rather, our construction forces them to learn more slowly [Karras
et al. 2020], thus favoring motion of the primitives whose gradients
are not similarly impeded. We found U = 8 and V = 8 was a good
balance between scene coverage and reconstruction accuracy and
keep them �xed for all experiments.

3.1.4 Network Architecture. We employ an encoder-decoder net-
work to parameterize the coarse tracked proxy mesh as well as the
weakly linked mixture of volumetric primitives. Our approach is
based on Variational Autoencoders (VAEs) [Kingma and Welling
2013] to encode the dynamics of the scene using a low-dimensional
latent code z ∈ R256. Note that the goal of our construction is only
to produce the decoder. The role of the encoder during training is to
encourage a well structured latent space. It can be discarded upon
training completion and replaced with an application speci�c en-
coder [Wei et al. 2019] or simply with latent space traversal [Abdal
et al. 2019]. In the following, we provide details of the encoder for
di�erent training settings as well as our four decoder modules.

Encoder. The architecture of our encoder is specialized to the data
available for modeling. When coarse mesh tracking is available, we
follow the architecture in [Lombardi et al. 2018], which takes as
input the tracked geometry and view-averaged unwarped texture
for each frame. Geometry is passed through a fully connected layer,
and texture through a convolutional branch, before being fused and
further processed to predict the parameters of a normal distribution
N(-,2), where - ∈ R256 is the mean and 2 ∈ R256 is the standard
deviation. When tracking is not available we follow the encoder
architecture in [Lombardi et al. 2019], where images from  = 1

�xed view is taken as input. To learn a smooth latent space with
good interpolation properties, we regularize using a KL-divergence
loss that forces the predicted distribution to stay close to a standard
normal distribution. The latent vector z ∈ R256 is obtained by sam-
pling from the predicted distribution using the reparameterization
trick [Kingma and Welling 2013].

Decoder. Our decoder is comprised of four modules; two ge-
ometry decoders and two payload decoders. The geometry de-
coders determine the primitives’ model-to-world transformations.

Dmesh : R256 → R3×#mesh predicts the guide mesh M used to ini-
tialize the transformations. It is comprised of a sequence of fully

connected layers. DpRs : R
256 → R

9×#prim is responsible for pre-
dicting the deviations in position, rotation (as a Rodrigues vector),
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Fig. 2. Decoder architecture. We decode latent code z into 1) a slab of volumetric primitives, 2) vertex positions of a guide mesh, which is used to compute a

base transformation for each primitive (t̂: , R̂: , ŝ: ) by computing a rotation matrix from the tangent, bitangent, normal vectors at points evenly distributed in

the UV space of the mesh, and 3) a residual transformation (% t: , %R: , %s: ). The 3D slab is divided into individual primitives, and transformed into world space

by composing the two transformations. We raymarch through the volumetric primitives, accumulating color and opacity, to form the reconstructed image.

Both the reconstructed image and the mesh vertex positions are supervised during training from ground truth data.

and scale (% t: , %R: , %s: ) from the guide mesh initialization. It uses
a 2D convolutional architecture to produces the motion parameters
as channels of a 2D grid following the primitive’s ordering in the
texture’s uv-space described in §3.1.2. The payload decoders deter-
mine the color and opacity stored in the primitives’ voxel grid V: .

DU : R256 → R
1×"3×#prim computes opacity based on a 2D con-

volutional architecture. Drgb : R256+3 → R
3×"3×#prim computes

view-dependent RGB color. It is also based on 2D transposed con-
volutions and uses an object-centric view-vector dview ∈ R3, i.e.,
a vector pointing to the center of the object/scene. The view vec-
tor allows the decoder to model view-dependent phenomena, like
specularities. Unlike the geometry decoders, which employ small
networks and are e�cient to compute, payload decoders present
a signi�cant computational challenge due to the total number of
elements they have to generate. Our architecture, shown in Fig. 2,
addresses this by avoiding redundant computation through the use
of a convolutional architecture. Nearby locations in the output slab
of V: ’s leverage shared features from earlier layers of the network.
This is in contrast to MLP-based methods, such as [Mildenhall et al.
2020], where each position requires independent computation of all
features in all layers, without any sharing. Since our texture space
is the result of a mesh-atlasing algorithm that tends to preserve
the locality structure of the underlying 3D mesh, the regular grid
ordering of our payload V: within the decoded slab (see §3.1.2) well
leverages the spatially coherent structures a�orded by devonvolu-
tion. The result is an e�cient architecture with good reconstruction
capacity.

Background Model. MVP is designed to model objects in a scene
from an outside-in camera con�guration, but the extent of object
coverage is not know a-priori. Thus, we need a mechanism for sepa-
rating objects from the backgrounds in the scene. However, existing
segmentation algorithms can fail to capture �ne details around ob-
ject borders and can be inconsistent in 3D. Instead, we jointly model

the objects as well as the scene’s background. Whereas the objects
are modeled using MVP, we use a separate neural network to model
the background as a modulation of images captured of the empty
scene with the objects absent. Speci�cally, our background model

for the 8th-camera takes the form:

B8 (x) = softplus
{

B̄8 + �\ (c8 , d8 (x))
}

, (2)

where B̄8 is the image of the empty capture space, c8 is the camera
center and d8 is the ray direction for pixel x. The function � is an
MLPwith weights \ that takes position-encoded camera coordinates
and ray directions and produces a rgb-color using an architecture
similar to NeRF [Mildenhall et al. 2020]. The background images of
the empty scene are not su�cient by themselves since objects in the
scene can have e�ects on the background, which, if not accounted
for, are absorbed in to the MVP resulting in hazy reconstructions
as observed in NV [Lombardi et al. 2019]. Examples of these e�ects
include shadowing and content outside of the modeling volume,
like supporting stands and chairs. As we will see in §3.2.2, MVP
rendering produces an image with color, I, and alpha, A, channels.
These are combined with the background image to produce the �nal
output that is compared to the captured images during training

through alpha-compositing: Ĩ8 = A8 I8 + (1 − A8 ) B8 .

3.2 E�icient and Di�erentiable Image Formation

The proposed scene representation is able to focus the represen-
tational power of the encoder-decoder network on the occupied
regions of 3D space, thus leading to a high resolution model and
e�cient decoding. However, we still need to be able to e�ciently
render images using this representation. For this, we propose an
approach that combines an e�cient raymarching strategy with a
di�erentiable volumetric aggregation scheme.

3.2.1 E�icient Raymarching. To enable e�cient rendering, our al-
gorithm should: 1) skip samples in empty space, and 2) employ
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e�cient payload sampling. Similar to [Lombardi et al. 2019], the
regular grid structure of our payload enables e�cient sampling via
trilinear interpolation. However, in each step of the ray marching
algorithm, we additionally need to �nd within which primitives the
current evaluation point lies. These primitives tend to be highly
irregular with positions, rotations, and scales that vary on a per-
frame basis. For this, we employ a highly optimized data-parallel
BVH implementation [Karras and Aila 2013] that requires less than
0.1 ms for 4096 primitives at construction time. This enables us
to rebuild the BVH on a per-frame basis, thus handling dynamic
scenes, and provides us with e�cient intersection tests. Given this
data structure of the scene, we propose a strategy for limiting evalua-
tions as much as possible. First, we compute and store the primitives
that each ray intersects. We use this to compute (Cmin, Cmax), the
domain of integration. While marching along a ray between Cmin

and Cmax, we check each sample only against the ray-speci�c list of
intersected primitives. Compared to MLP-based methods, e.g., NeRF
[Mildenhall et al. 2020], our approach exhibits very fast sampling. If
the number of overlapping primitives is kept low, the total sampling
cost is much smaller than a deep MLP evaluation at each step, which
is far from real-time even with a good importance sampling strategy.

3.2.2 Di�erentiable Volumetric Aggregation. We require a di�eren-
tiable image formation model to enable end-to-end training based
on multi-view imagery. Given the sample points in occupied space
extracted by the e�cient ray marching strategy, we employ an ac-
cumulative volume rendering scheme as in [Lombardi et al. 2019]
that is motivated by front-to-back additive alpha blending. During
this process, the ray accumulates color as well as opacity. Given a
ray Ap (C) = op + Cdp with starting position op and ray direction dp,
we solve the following integral using numerical quadrature:

I? =

∫ Cmax

Cmin

Vcol (Ap (C)) ·
3) (C)

3C
· 3C .

) (C) = min
(

∫ C

Cmin

VU (Ap (C)) · 3C, 1
)

.

Here, Vcol and VU are the global color and opacity �eld computed
based on the current instantiation of the volumetric primitives. We
set the alpha value associated with the pixel to A? = ) (Cmax). For
high performance rendering, we employ an early stopping strategy
based on the accumulated opacity, i.e., if the accumulated opacity is
larger than 1.0 − nearly we terminate ray marching, since the rest
of the sample points do not have a signi�cant impact on the �nal
pixel color. If a sample point is contained within multiple volumet-
ric primitives, we combine their values in their BVH order based
on the accumulation scheme. Our use of the additive formulation
for integration, as opposed to the multiplicative form [Mildenhall
et al. 2020], is motivated by its independence to ordering up to the
saturation point. This allows for a backward pass implementation
that is more memory e�cient, since we do not need to keep the full
$ (=2) graph of operations. Thus, our implementation requires less
memory and allows for larger batch sizes during training. For more
details, we refer to the supplemental document.

3.3 End-to-end Training

Next, we discuss how we can train our approach end-to-end based
on a set of 2D multi-view images. The trainable parameters of our

model are Θ. Given a multi-view video sequence {I (8) }
#8<6

8=1 with
#img = #frames · #cams training images, our goal is to �nd the
optimal parameters Θ∗ that best explain the training data. To this
end, we solve the following optimization problem:

Θ
∗
= argmin

Θ

#img−1
∑

8=0

#pixels−1
∑

?=0

L
(

Θ;I
(8)
?

)

.

We employ ADAM [Kingma and Ba 2015] to solve this optimiza-
tion problem based on stochastic mini-batch optimization. In each
iteration, our training strategy uniformly samples rays from each
image in the current batch to de�ne the loss function. We employ a
learning rate ;A = 0.0001 and all other parameters are set to their
default values. Our training objective is of the following from:

L(Θ;I? ) = Lpho (Θ;I? )+Lgeo (Θ)+Lvol (Θ)+Ldel (Θ)+Lkld (Θ) .

It consists of a photometric reconstruction loss Lpho, a coarse ge-
ometry reconstruction loss Lgeo, a volume minimization prior Lvol,
a delta magnitude prior Ldel, and a Kullback–Leibler (KL) diver-
gence prior Lkld to regularize the latent space of our Variational
Autoencoder (VAE) [Kingma and Welling 2013]. In the following,
we provide more details on the individual energy terms.

Photometric Reconstruction Loss. We want to enforce that the
synthesized images look photo-realistic and match the ground truth.
To this end, we compare the synthesized pixels Ī? (Θ) to the ground
truth I? using the following loss function:

Lpho = _pho
1

#P

∑

?∈P

�

�

�

�I? − Ī? (Θ)
�

�

�

�

2
2
.

Here, P is the set of sampled pixels and F? is a per-pixel weight.
We set a relative weight of _photo = 1.0.

Mesh Reconstruction Loss. We also want to enforce that the coarse
mesh proxy follows the motion in the scene. To this end, we compare
the regressed vertex positions to the available ground truth traced
mesh using the following loss function:

Lgeo = _geo
1

#mesh

#mesh
∑

8=0

�

�

�

�v8 − v̄8 (Θ)
�

�

�

�

2
2
.

Here, we employ an ℓ2-loss function, v8 is the ground truth position
of the trackedmesh, and v̄8 (Θ) is the corresponding regressed vertex
position. We employ the coarse mesh-based tracking used in the
approach of [Lombardi et al. 2018]. The mesh reconstruction loss
pulls the volumetric primitives, which are weakly linked to it, to
an approximately correct position. Note, the primitives are only
weakly linked to the mesh proxy and can deviate from their initial
positions if that improves the photometric reconstruction loss. We
set a relative weight of _geo = 0.1.

Volume Minimization Prior. We constrain the volumetric primi-
tives to be as small as possible. The reasons for this are twofold: 1)
We want to prevent them from overlapping too much, since this
wastes model capacity in already well explained regions, and 2)
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Fig. 3. Novel view synthesis example. Our novel approach enables high fidelity novel view synthesis of a complete, dynamic, upper body at real-time rates.

Fig. 4. Latent space interpolation example. Our approach enables animating the reconstructions via latent-space interpolation between two keyframes.

Even for extremely challenging facial expressions the interpolated results are highly realistic. The output of our motion model, which produces rotations,

translations, and scales, is e�ectively a forward warp. Such a warp can be sensibly-interpolated whereas inverse warps cannot.

We want to prevent loss of resolution by large primitives overlap-
ping empty space. To this end, we employ the following volume
minimization prior:

Lvol = _vol

#prim
∑

8=1

Prod(s8 ) .

Here, s8 = ŝ8 + %s8 is the vector of side lengths of the primitive and
Prod(•) is the product of the values of a vector, e.g., in our case the
volume of a primitive. We minimize the total volume with a relative
weight of _vol = 0.01.

4 RESULTS

In this section we describe our datasets for training and evaluation,
present results on several challenging sequences, perform ablation
studies over our model’s components, and compare to the state of
the art. We perform both qualitative and quantitative evaluations.

4.1 Training Data

We evaluate our approach on a large number of sequences captured
using a spherically arranged multi-camera capture system with
≈ 100 synchronized color cameras. Each dataset contains roughly
25,000 frames from each camera. The cameras record with a reso-
lution of 2668 × 4096 at 30Hz, and are equally distributed on the
surface of the spherical structure with a radius of 1.2 meters. They
are geometrically calibrated with respect to each other with the
intrinsic and extrinsic parameters of a pinhole camera model. For
training and evaluation, we downsample the images to a resolution
of 667 × 1024 to reduce the time it takes to load images from disk,

keeping images from all but 8 cameras for training, with the remain-
der used for testing. To handle the di�erent radiometric properties
of the cameras, e.g., color response and white balance, we employ
per-camera color calibration based on 6 parameters (gain and bias
per color channel) similar to [Lombardi et al. 2018], but pre-trained
for all cameras once for each dataset. We train each scene for 500,000
iterations, which takes roughly 5 days on a single NVIDIA Tesla
V100.

4.2 �alitative Results

Our approach achieves a high level of �delity while matching the
completeness of volumetric representations, e.g., hair coverage and
inner mouth, see Fig. 3, but with an e�ciency closer to mesh-based
approaches. Our fastest model is able to render binocular stereo
views at a resolution of 896 × 832 at 40Hz, which enables live vi-
sualization of our results in a virtual reality setting; please see the
supplemental video for these results. Furthermore, our model can
represent dynamic scenes, supporting free view-point video appli-
cations, see Fig. 3. Our model also enables animation, which we
demonstrate via latent-space interpolation, see Fig. 4. Due to the
combination of the variational architecture with a forward warp,
our approach produces highly realistic animation results even if the
facial expressions in the keyframes are extremely di�erent.

4.3 Ablation Studies

We perform a number of ablation studies to support each of our
design choices.
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(a) GT (b) NV (c) 8 prim. (d) 512 prim. (e) 32k prim. (f) 256 prim.*

Fig. 5. We evaluate results by comparing models with a varying number of primitives on held out views while keeping the total number of voxels constant (2

million). From le� to right: ground truth, neural volumes, 8 primitives, 512 primitives, and 32768 primitives. We find that hundreds of primitives gives the best

balance of quality and performance, with higher numbers of primitives exhibiting fine detail, but struggling with elaborate motion, e.g., mouth interior. The

last column shows our final model, which uses 256 primitives and 8 million total voxels. (*): only 2D transposed convolutions.

Table 1. �antitative evaluation of number of volumetric primitives. We evaluate quality (MSE, PSNR, SSIM, LPIPS) and execution time (decode time,

raymarch time, and total time in milliseconds) on held out views. �ality generally increases as more primitives are used, as they can more tightly fit the

geometry of the surface. The performance drops for extreme numbers of primitives, since this increases the di�iculty of the learning problem. Raymarching

becomes more costly as more primitives are used, as the overhead of checking if a sample point lies in each primitive dominates the sampling time. Decode

time decreases with number of primitives (note the number of voxels remains constant at 2 million) as the “slab” has less thickness and therefore requires

fewer 3D convolutions, which tend to be more expensive. The rightmost two columns show our final optimized model, which uses 256 primitives, 8 million

voxels, and 2D convolutions exclusively. (*): only 2D convolutions, and (**): smaller raymarching step size.

NV 8 prim. 64 prim. 512 prim. 4k prim. 32k prim. 262k prim. 256 prim.* 256 prim.**

MSE (↓) 49.1535 46.5067 42.2567 41.9601 40.3211 40.6524 43.4307 39.9031 37.0805

PSNR (↑) 31.2153 31.4556 31.8718 31.9024 32.0755 32.0399 31.7528 32.1207 32.4393

SSIM (↑) 0.9293 0.9301 0.9336 0.9333 0.9352 0.9349 0.9308 0.9344 0.9393

LPIPS (↓) 0.2822 0.3151 0.2879 0.2764 0.2755 0.2670 0.2767 0.2921 0.2484

decode (↓) 54.8993 55.3351 57.5364 54.0634 39.3384 39.6899 26.4612 20.5428 18.3311

raymarch (↓) 7.0539 7.3450 8.7660 10.6198 13.3397 19.8951 35.8098 11.0970 36.6212
total (↓) 61.9532 62.6801 66.3024 64.6831 52.6781 59.5850 62.2710 31.6398 54.9523

Number of Primitives. We investigated the in�uence the number
of primitives, #prim, has on rendering quality and runtime perfor-
mance. A quantitative evaluation can be found in Tab. 1. Here, we
compared models with varying number of primitives on held out
views, while keeping the total number of voxels constant (∼ 2 mil-
lion). In total, we compared models with 1, 8, 64, 512, 4096, 32768,
and 262144 primitives. Note that the special case of exactly one
volumetric primitive corresponds to the setting used in Lombardi
et al. [2019]. Our best model uses 256 primitives and 8million voxels.
Fig. 6 shows this data in a scatter plot with PSNR on the x-axis and
total execution time on the y-axis. Fig. 5 shows the qualitative results
for this evaluation. As the results show, if the number of primitives
is too low results appear blurry, and if the number of primitives is
too large the model struggles to model elaborate motion, e.g., in the
mouth region, leading to artifacts.

Primitive Volume Prior. The in�uence of our primitive volume
prior, Lvol in Section 3.3, is evaluated by training models with
di�erent weights, _vol ∈ {0.001, 0.01, 0.1}. We used models with 512
and 32,768 primitives in this evaluation (see Fig. 7 and Tab. 2). Larger

weights lead to smaller scales and reduced overlap between adjacent
primitives. This, in turn, leads to faster runtime performance since
less overlap means that there are fewer primitives to evaluate at
each marching step, as well as having less overall volume coverage.
However, prior weights that are too large can lead to over shrinking,
where holes start to appear in the reconstruction and image evidence
is not su�cient to force them to expand.

Importance of the Opacity Fade Factor. We trained a model with
512 primitives with andwithout the opacity fade factor,W, described
in Section 3.1.3. As shown in Fig. 8, opacity fade is critical for the
primitives to converge to good con�gurations, as it allows gradients
to properly �ow from image to primitive position, rotation, and
scaling. Without opacity fade, the gradients do not account for the
impact of movement in the image plane at primitive silhouette edges.
This results in suboptimal box con�gurations with large overlaps
and coverage of empty space. See the supplemental document for a
quantitative comparison of the opacity fade factor.
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�ality vs. Execution time

Fig. 6. �ality vs. Execution time for varying number of primitives and

model architectures. We show our base model (8-32k primitives with 2

million total voxels) and our optimized model (256 primitives with 8 million

total voxels) compared to Neural Volumes. Our optimized model greatly

improved performance over Neural Volumes in both quality (PSNR) and

total execution time.
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Fig. 7. We evaluate di�erent strengths of the primitive volume prior for 512

primitives and 32768 primitives. A stronger primitive volume prior leads

to less overlap and thus speeds up raymarching. If the prior is too strong,

however, holes appear and the reconstruction error increases.

Impact of Voxel Count and Raymarching Step Size. Fig. 9 and Fig. 10
illustrate the e�ects of di�erent voxel counts and raymarching step
sizes on perceived resolution (see the supplemental document for
the quantitative impact of step size). Here, the same step size is
used both during training and evaluation. Smaller marching step
sizes recover more detail, such as hair and wrinkles, and result
in lower reconstruction error on held out views. Likewise, more
voxels provide sharper results. These gains in accuracy are, however,
attained at the cost of performance. Decoding scales linearly with

Table 2. Ablation of primitive volume prior. The volume prior provides

a trade-o� between quality and performance, with high values causing

primitives to shrink, therefore making raymarching more e�icient, at the

cost of quality.
512 prim.

_vol = 0.001

512 prim.

_vol = 0.01

512 prim.

_vol = 0.1

MSE (↓) 42.3944 41.9601 51.9607
PSNR (↑) 31.8577 31.9024 30.9740
SSIM (↑) 0.9383 0.9333 0.9253
LPIPS (↓) 0.4119 0.2764 0.4928

decode (↓) 55.0023 54.0634 54.3226
raymarch (↓) 16.1322 10.6198 7.8910

total (↓) 71.1345 64.6831 62.2137

32k prim.

_vol = 0.001

32k prim.

_vol = 0.01

32k prim.

_vol = 0.1

MSE (↓) 41.9728 40.6524 48.9140
PSNR (↑) 31.9011 32.0399 31.2365
SSIM (↑) 0.9357 0.9349 0.9238
LPIPS (↓) 0.3810 0.2670 0.4708

decode (↓) 35.8994 39.6899 39.1676
raymarch (↓) 48.3455 19.8951 9.6950

total (↓) 84.2449 59.5850 48.8626

(a) GT (b) No alpha fade (c) With alpha fade
Fig. 8. The opacity fade factor enables proper learning of primitive positions.

We evaluate with and without opacity fade factor applied to the primitives.

No opacity fade factor causes poor primitive positioning, dri�ing very far

from the initialization, to a bad configuration with large primitives and high

overlap because of poor gradients.

dt=8mm 4mm 2mm 1mm 0.5mm

Fig. 9. Here we show single-frame models of 16M voxels. Each model is

trained and tested at the stepsize shown in the insets. Small step sizes are

able to recover more detail, and reduce noise associated with raymarching

at the cost of increased raymarching time.

the number of voxels decoded, and raymarching scales linearly with
step size.
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130k voxels 1M 8M 28M

Fig. 10. E�ect of varying the number of voxels. Here we show a 256 primitive

model at a stepsize of 1mm, trained with 83, 163, 323, and 483 voxels per

primitive, yielding the total number of voxels shown in the insets. Voxel

models of more than 8M voxels are generally too slow to run in realtime on

current hardware.

Motion Model Architecture. The motion model, DpRs, regresses
position, rotation, and scale deviations of the volumetric primitive

from the underlying guide mesh; {%C: , %': , %sk }
#prim

:=1
. We compared

the convolutional architecture we proposed in Section 3 against a
simpler linear layer that transforms the latent code z to a 9#prim-
dimensional vector, comprising the stacked motion vectors, i.e.,
three dimensions each for translation, rotation and scale. Tab. 3
shows that our convolutional architecture outperforms the simple
linear model for almost all primitive counts, #prim. A visualization
of their di�erences can be seen in Fig. 11, where our convolutional
model produces primitive con�gurations that follow surfaces in the
scene more closely than the linear model, which produces many
more "�y away" zero-opacity primitives, wasting resolution.

4.4 Comparisons

We compared MVP against the current state of the art in neural
rendering for both static and dynamic scenes. As our qualitative
and quantitative results show, we outperform the current state of
the art in reconstruction quality as well as runtime performance.

Neural Volumes. We compare to Neural Volumes (NV) [Lombardi
et al. 2019] on several challenging dynamic sequences, see Fig. 12.
Our approach obtains sharper and more detailed reconstructions,
while being much faster to render. We attribute this to our novel
mixture of volumetric primitives that can concentrate representation
resolution and compute in occupied regions in the scene and skip
empty space during raymarching. Quantitative comparisons are
presented in Tab. 1. As can be seen, we outperform Neural Volumes
(NV) [Lombardi et al. 2019] in terms of SSIM and LPIPS.

Neural Radiance Fields (NeRF). We also compare our approach to
a Neural Radiance Field (NeRF) [Mildenhall et al. 2020], see Fig. 13.
Since NeRF is an approach for novel view synthesis of static scenes,
we trained it using only a single frame of our capture sequence. We
compared it against MVP trained on both the same frame and the
entire sequence of approximately 20,000-frame. A visualization of
the di�erences between NeRF and MVP on the static frame is shown
in Fig. 13. NeRF excels at representing geometric detail, as can be
seen in the teeth, but struggles with planar texture detail, like the

texture on the lips or eyebrows. MVP captures both geometric and
texture details well. Quantitative results comparing the methods
is presented in Tab. 4, where our method outperforms NeRF on
all metrics, even when trained using multiple frames. Finally, our
approach improves over NeRF in runtime performance by three
orders of magnitude.

5 LIMITATIONS

We have demonstrated high quality neural rendering results for
dynamic scenes. Nevertheless, our approach is subject to a few
limitations that can be addressed in follow-upwork. First, we require
a coarse tracked mesh to initialize the positions, rotations, and scale
of the volumetric primitives. In the future, we’d like to obviate
this requirement and allow the primitives to self-organize based
only on the camera images. Second, the approach requires a high-
end computer and graphics card to achieve real-time performance.
One reason for this is the often high overlap between adjacent
volumetric primitives. Thus, we have to perform multiple trilinear
interpolations per sample point, which negatively impacts runtime.
It would be interesting to incorporate regularization strategies to
minimize overlap, which could lead to a signi�cant performance
boost. Finally, the number of employed primitives is prede�ned
and has to be empirically determined for each scene type. It is an
interesting direction for future work to incorporate this selection
process into the optimization, such that the best setting can be
automatically determined. Despite these limitations, we believe that
our approach is already a signi�cant step forward for real-time
neural rendering of dynamic scenes at high resolutions.

6 CONCLUSION

We have presented a novel 3D neural scene representation that han-
dles dynamic scenes, is fast to render, drivable, and can represent
3D space at high resolution. At the core of our scene representa-
tion is a novel mixture of volumetric primitives that is regressed
by an encoder-decoder network. We train our representation based
on a combination of 2D and 3D supervision. Our approach gener-
alizes volumetric and primitive-based paradigms under a uni�ed
representation and combines their advantages, thus leading to high
performance decoding and e�cient rendering of dynamic scenes.
As our comparisons demonstrate, we obtain higher quality results
than the current state of the art. We hope that our approach will be a
stepping stone towards highly e�cient neural rendering approaches
for dynamic scenes and that it will inspire follow-up work.

REFERENCES
Rameen Abdal, Yipeng Qin, and Peter Wonka. 2019. Image2StyleGAN: How to Embed

Images Into the StyleGAN Latent Space?. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV).

Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor Lempit-
sky. 2019. Neural point-based graphics. arXiv preprint arXiv:1906.08240 (2019).

Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian Richardt, and James Tompkin.
2020. MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere
Images. arXiv preprint arXiv:2008.06534 (2020).

Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erickson, Peter Hedman, Matthew
Duvall, Jason Dourgarian, Jay Busch, Matt Whalen, and Paul Debevec. 2020. Immer-
sive Light Field Video with a Layered Mesh Representation. ACM Trans. Graph. 39,
4, Article 86 (July 2020), 15 pages. https://doi.org/10.1145/3386569.3392485

Rohan Chabra, Jan Eric Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven
Lovegrove, and Richard Newcombe. 2020. Deep Local Shapes: Learning Local SDF

ACM Trans. Graph., Vol. 40, No. 4, Article 59. Publication date: August 2021.

https://doi.org/10.1145/3386569.3392485


Mixture of Volumetric Primitives for E�icient Neural Rendering • 59:11

(a) 64 prim. (b) 512 prim. (c) 4k prim. (d) 32k prim. (e) 262k prim.

L
in

ea
r 

M
o
ti

o
n

 A
rc

h
it

ec
tu

re
C

o
n

v.
 M

o
ti

o
n

 A
rc

h
it

ec
tu

re

Fig. 11. We evaluate two di�erent motion models for the primitives. One uses a stack of convolutions, where each output pixel contains 9 channels representing

the scaling, rotation, and translation of the corresponding primitive. The other uses a linear layer from the encoding to produce 9#boxes channels that encode

the scale, rotation, and translation of all primitives. The convolutional motion model produces boxes that closely follow the underlying surface and, as shown

in Tab. 3, results in be�er reconstructions.

Table 3. �antitative evaluation of convolutional motion model vs. linear motion model. The convolutional architecture for producing primitive location,

orientation, and size results in primitives that are more coherent with the mesh surface, which allows it to achieve higher quality and be�er performance than

a linear model.

64 prim.
conv

64 prim

linear
512 prim.
conv

512 prim.

linear
4k prim.
conv

4k prim.
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