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Abstract

Due to the low total cost of production, Photovoltaic energy constitutes an important part of the renewable energy installed 

in the world. However, photovoltaic energy is volatile in nature because it depends on weather conditions, which makes the 

integration, control and exploitation of this type of energy difficult for grid operators. In the traditional grid architecture, 

system operators have accumulated enough experience that enables them to determine how much operating reserves are 

required to maintain system reliability based on statistical tools. Still, with the introduction of renewable energy (wind and 

photovoltaic), the grid structure has changed, and to maintain grid stability, it is becoming fundamental to know renewable 

energy state and production that can be combined with other less variable and more predictable sources to satisfy the energy 

demand. Therefore, renewable energy forecasting is a straightforward way to integrate safely this kind of energy into the cur-

rent electric grid, especially photovoltaic power forecasting, which is still at a relative infancy stage compared to wind power 

forecasting, which has reached a relatively mature stage. The goal of this work is to present, first, a short-term offline fore-

casting model that uses only in-situ (local) collected data. Also, the performances of several pure non-linear auto-regressive 

models are investigated against those of non-linear auto-regressive models with exogenous inputs. For this purpose, two 

well-known statistical learning techniques, namely Feed Forward Neural Network and Least Square Support Vector Regres-

sion, have been used. To test the performance of the models, the results obtained are compared with those of a benchmark 

model. In this paper, we used the persistent model as well as a multivariate polynomial regression model as benchmark.

Keywords Photovoltaic · Power forecasting · Renewable energy integration · Statistical learning techniques · Support 

vector regression · Feed forward neural network

Abbreviations

List of symbols

�(w, b, e)  Empirical risk functional in the feature 

space

N  Number of training instances

b  Bias

w  Sepparation margin

�  Regularization parameter of LSSVM

e  Vector of errors e =

[

e1,… , e
N

]

x  Training data x =

[

x1,… , x
N

]

y  Vector of labels with y =

[

y1,… , yN

]

1
v
  Vector of ones

w
T
w  Inner product of w

�
i
  Lagrange multipliers

(w, b, e, �)  Lagrangian objective function

�  Kernel matrix

K  Bimodal kernel function

�  Nonlinear mapping from input to feature 

space

W  Vector of FFNN weights W =

[

w1,… , wp

]

x
o
  Vector of computed values of output 

neurons

x̂
o
  Vector of required values of output neurons
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NARX  Nonlinear auto-regressive with exogenous 

input

LSSVR  Least squares support vector regression

LSSVM  Least squares support vector machine

FFNN  Feed forward neural network

MPR  Multivariate polynomial regression

MLP  MultiLayer perceptron

MAE  Mean absolute error

MBE  Mean bias error

MSE  Mean squared error

RMSE  Root mean squared error

R
2  Coefficient of determination

SMO  Sequential minimal optimization

RBF  Radial basis function

NN  Neural network

LM  Lavenberg–Marquardt

NMAE%  Normalized mean absolute error

NMAE
p
  Relative sample mean NMAE%

Sp
2  Sample variance

CI  Confidence intervals

ME  Margin error

Irr
t
  Global horizontal solar irradiation at time t

Tc
t
  Photovoltaic module temperature at time t

P
t
  PV power generated at time t

MOD
i
  ith Model

Introduction

Photovoltaic (PV) power has proven to be one of the prom-

ising renewable energies in the recent years. This field has 

witnessed a significant increase in the value of investments; 

the production capacity reached 227 GW in 2015 compared 

to 5.1 GW in 2005. But with the emergence of renewable 

energy as a necessary alternative to the fossil one, new chal-

lenges have emerged, which requires both producers and 

managers to change control methods, distribution methods 

and all the related logistics. The main challenge is still the 

safe integration of renewable energy in the actual grid; it 

is challenging due to the volatile and uncertain nature of 

renewable power caused generally by weather conditions. 

In the traditional grid management, the grid operator must 

maintain the balance between supply and demand at all 

times to avoid security grid problems and economic losses. 

The grid operator uses a planning to ensure that power plants 

produce the right amount of electricity at the right time to 

meet consistently and reliably electric demand. Nowadays, 

the energy mixture has changed giving more place to renew-

able sources, which changed the structure of power grid and 

all traditional control and scheduling procedures. Recently 

photovoltaic power has begun to gain some place over other 

renewables; this is due to the lower total cost of production. 

But from grid management point of view, solar generation 

variability caused generally by clouds can make it more dif-

ficult for the grid operator to predict how much additional 

electric generation will be required to ensure the balance 

between supply and demand. For that reason, renewable 

power forecasting imposes itself as a key solution to effi-

ciently handle renewable energy in power grid and must be 

properly accounted for in the complex decision-making pro-

cesses required to balance supply and demand in the power 

system.

Nowadays renewable power forecast is a key activity for a 

number of reasons. It is used for monitoring the performance 

of the plant, detecting anomalies and faults, making reliable 

dispatching plans for the grid operators, helping operation 

and maintenance scheduling… etc.

In the last years many research works have tried to handle 

the problem of PV power forecasting. The two main chal-

lenges of PV forecasting (this is also the cause of the poor 

penetration rate of PV systems) are variability and uncer-

tainty, namely because the output of PV modules shows 

variability at all-time scales and the fact that this variability 

itself is difficult to predict, this fact subsequently makes the 

PV time series difficult to predict as shown in [36]. Accord-

ing to the state of the art, PV power forecasting models 

can be divided into three types: physical models, statisti-

cal models and hybrid models; Fig. 1. Physical models [14] 

are mathematical models based on a physical analysis of 

the process being studied; this model can contain a limit 

number of adjustable parameters, which have a physical 

meaning: in the case of photovoltaic, physical modeling 

uses mathematical equations that describe all the physical 

phenomena that govern PV conversion. Statistical models 

are used when there is not enough knowledge and informa-

tion about the process and the parameters that influence it. 

Statistical modeling includes time series [1] and statistical 

learning models. Time series modeling aim to collect and 

study the past observations of a time series to fit a model 

which describes their internal structure (such as autocor-

relation, trend or seasonality), the developed model is then 

used to forecast future values of the series, among the most 

used models we mention the AR, ARX, ARIMA models. A 

statistical learning model, called also black box model, is 

established from a set of measured variables X
k
 (inputs) and 

a set of measurements Y
k
 (outputs). We suppose that there is 

a relation between the X
k
 and the Y

k
 , and we try to determine 

a mathematical form of this relation. We say that we try to 

establish a model of the process from the available measures. 

Among statistical Learning tools, artificial neural network is 

the most used technique due to its performance proven over 

time. In the case of PV power forecasting different Neu-

ral Network architectures were used with a multiple choice 

of input parameters, among them we can cite the Elman 

Neural Network (ENN), generalized regression neural net-

work (GRNN) [27], radial basis function neural network 
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(RBFNN), dynamic recurrent neural network (DRNN) [20] 

and the feed-forward neural network (FFNN), Which, in 

most cases, give the best results [20, 27]. In the same cat-

egory as neural networks, another statistical learning tech-

nique named Support Vector machine (SVM) is beginning 

to gain success due to its generalization skills approved in 

several case studies; it has also been used in solar power 

forecasting in many studies, it was used for classification 

[29, 30] and regression [7, 36]. Hybrid models are a class 

of models that can be constructed from any combination of 

physical and statistical models; they can be a combination 

between physical and statistical approaches [34] or purely 

statistical like combining SOM and RBFNN [3], or SOM, 

SVR and fuzzy inference [35], or wavelet transform and 

RBFNN [17] and so on.

The choice of the appropriate technique depends on sev-

eral parameters, in general there is no fixed rule to choose 

the technique to use. According to the current state of the 

art [26], the choice of the technique depends more on the 

horizon, so physical models are used for medium term, sta-

tistical models for very-short and short terms and hybrid 

models for medium and long term. Still, we must report that 

input parameters are also a very important factor that can 

change the final results; different collections of inputs were 

used in the literature. Research has shown that the main vari-

ables influencing PV power are global horizontal irradiation 

(GHI) at PV generator surface [30], plate temperature [30] 

and aerosol index [16], but this does not exclude the other 

parameters like Numerical Weather Predictions (NWP) [20, 

27], Meteorological measurements made in ground stations, 

measurement of GHI and cloud coverage by Satellite [27, 

30], PV power measurements [7, 27], Variables related to 

solar geometry and time (zenith angle, light duration) [30]… 

etc.

In this work we will combine the characteristics of time 

series models and statistical learning models in order to fore-

cast the short term photovoltaic power. This combination 

is beneficial since it allows to merge the simplicity of time 

series models and the non-linear character of black box mod-

els, the result of this fusion is a nonlinear time series model. 

This study will allow us to; First, asses the performance 

of two supervised machine learning techniques for intra-

day PV power forecasting: Feed Forward Neural Network 

(FFNN) and least squares support vector machine regression 

(LSSVR). Second, it attempts to study the influence and suf-

ficiency of in-setu collected data as input parameters to the 

developped models. For this purpose, we compared the per-

formances of several models in order to find the best off-line 

model for PV power forecasting; by off-line we designate a 

model capable of giving accurate short-term forecasts with-

out the need of weather forecasts. This is interesting because 

the majority of existing models use meteorological param-

eters to forecast PV power, especially forecasted parameters 

obtained from numerical weather prediction (NWP) systems 

like, solar irradiation forecasts [1, 36], ambient temperature 

forecasts [8], humidity [14, 27], cloud index [4, 30], wind 

speed [3, 16] and probability of precipitation [13, 35]. The 

problem is that access to NWP information is not given to 

everyone at any time, especially isolated installations. For 

this purpose, off-line models that use only local collected 

information to forecast PV power are of a great importance 

for grid operators as well as for individuals who do not have 

access to weather data and forecasts. To rectify the perfor-

mances of our models we will compare their performances 

Fig. 1  Photovoltaic forecasting approaches
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with an usual benchmark models, the persistent model and 

multivariate polynomial model.

This paper is structured as follows. Section 3 gives a 

brief look at related works; in Sect. 4, we introduce the used 

statistical learning techniques. Section 6 presents models 

development strategy, while result analysis and discussion 

are presented in Sect. 7, and finally a conclusion.

Related work

Photovoltaic power forecasting increasingly attracts the 

attention of researchers. In the last few years, several PV 

power forecasting models have been developed. In [1] an 

ARX model was used to forecast 6 h ahead PV power output 

using historical PV power output and forecast irradiation as 

inputs for the model. In same perspective, [4] uses a recurrent 

neural network to forecast 24-h ahead PV power using also 

Historical PV power and forecast temperature. In [17], wave-

let transformation and radial basis function neural network 

(RBFNN) were combined to generate a one hour ahead PV 

Power forecast; the RBFNN inputs included past PV power 

output, irradiation and temperature. The authors in [27] adopt 

a hybrid modeling approach by applying stepwise regression 

to select meteorological parameters that are strongly corre-

lated with solar power; these variables were used to construct 

an FFNN model for 24-h ahead PV power forecasting. This 

model outperforms five other ones. The authors underline 

that average solar irradiation and average humidity are the 

two most significant parameters to forecast PV power output. 

In [3] the authors analyses the performance of a 24-h ahead 

PV power forecasting tool based on multilayer perceptron 

(MLP) neural network trained with error back propagation 

(EBP) procedure; three types of inputs were used: weather 

forecasts provided by meteorological services, geographical 

coordinates of site, date and time to determine the correct 

position. They propose a procedure to validate the correct-

ness of data and highlight that the method performance is 

strictly related to the historical data pre-process step and to 

the weather forecasting accuracy.

Another interesting approach based on weather type clas-

sification and similar day detection to forecast PV power for 

a horizon up to one day is used in [8] where authors use 

a Recurrent Neural Network with structural elements for 

24-h ahead PV power output forecasting. The inputs used 

include clear sky irradiation and forecasting weather type for 

the forecast days. In [31] the historical power output is clas-

sified into several weather types using forecast irradiation, 

total cloud and low cloud cover as parameters selection; the 

authors uses RBFNN as a technique to produce PV Power 

forecasts with 24-h ahead horizon. In [12] forecasts of high, 

medium and low temperatures are used to classify historical 

PV power output into three weather types. After that, three 

feed forward neural networks (FFNN) were employed to 

generate 24-h ahead forecasts. In [35], the authors present a 

hybrid method to forecast 1-day ahead PV power output; the 

proposed method comprises three stages: data classification 

stage, training stage and forecasting stage. The classifica-

tion stage is developed using self organizing map (SOM) 

and learning vector quantization (LVQ); the objective is to 

classify the historical PV power data into five weather types 

according to the verbal weather forecast of the TCWB (Tai-

wan Center Weather Bureau). In the second stage, support 

vector regression (SVR) is used to construct five forecast-

ing models—one for each weather type. In the last stage, a 

fuzzy inference algorithm is used to select an appropriate 

forecasting model to achieve more accurate results. The work 

presented in [13] proposes a hybrid model for one-day ahead 

hourly PV power forecasting; this work is an extension of 

[35]. The proposed method comprises three stages: data clas-

sification stage, training stage and forecasting updating stage. 

The classification stage is developed using Fuzzy K-Means 

clustering algorithm; the objective is to classify the historical 

PV power data into five weather types according to the ver-

bal weather forecast of the TCWB (Taiwan Center Weather 

Bureau). In the second stage, RBFNN is used to construct 

five forecasting models, one for each weather type, and a 

fuzzy inference algorithm is used to select an appropriate 

forecasting model. In the last stage, the forecasts are updated 

every 3 h to cope with the possible fluctuation of PV power.

As can be seen from this brief state of the art, the major-

ity of existing models use predicted inputs to forecast PV 

power, especially inputs obtained from NWP systems. 

Access to NWP information is not given to everyone at any 

time, especially for the Africa region. For this reason, off-

line models that use only past information to forecast PV 

power are of a great importance. From this perspective, the 

goal of this work is to present, first, a short-term off-line 

forecasting model that uses only in-situ collected data. Also, 

the performances of several pure non-linear auto-regressive 

models are investigated against those of non-linear auto-

regressive models with exogenous inputs. As such, two well-

known statistical learning techniques, namely feed forward 

neural network (FFNN) and least square support vector 

machine (LSSVR), have been used.

Statistical learning techniques

Least squares support vector regression

The least squares support vector machine algorithm (LSSVM) 

is an improved version of the classical support vector machine 

(SVM) used to solve classification problems. Due to equal-

ity type constraints in the formulation, the solution will 

be obtained by solving a set of linear equations, instead of 
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quadratic programming for classical SVM. Vapnik’s SVM for-

mulation [5] was modified in [31] into the following LSSVM 

optimization problem underlying non-linear LSSVM training 

formulated by:

Subject to the equality constraints

This formulation consists of equality instead of inequal-

ity constraints and takes into account a squared error with 

regularization term similar to ridge regression. The solution 

is obtained after constructing the Lagrangian:

where �
i
∈ ℝ are lagrange multipliers that are always 

positive, from the conditions for optimality, one obtains the 

Karush–Kuhn–Tucker (KKT) system:

Note that sparseness is lost, which is clear from the condi-

tion �
i
= �e

i
 . As in standard SVM, we calculate neither w nor 

�

(

x
i

)

 . Therefore, we eliminate w and e yielding according to 

[31].

with y =

[

y1,… , yN

]

 , 1
v
= [1,… , 1] , e =

[

e1,… , e
N

]

 and 

� =

[

�1,… , �
N

]

 . Mercer’s condition is applied within the � 

matrix.

For the kernel function K(., .) , here again, one typically has 

the following choices:

(1)min
w,b,e
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2
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T
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i
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�
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�
,

where d, c, � and � are constants. In the case of least 

squares support vector regression (LSSVR), some changes 

in LSSVM formulation will take place. In this case we try 

to find the best regression function in the form:

with x ∈ ℝ
n,y ∈ ℝ . Given a training set 

{

xi, yi

}N

i=1
 , in this 

case the optimization problem is given by:

Subject to the equality constraints

The resulting dual problem in the case of regression will 

be:

with �ij = �
(

xi

)T
�
(

xj

)

 . The final model will be:

with �
i
= �e

i
.

Feed forward neural network

A neural network is a black box that directly learns the inter-

nal relations of an unknown system, without guessing func-

tions for describing cause-and-effect relationships. It has 

been widely used in PV power forecasting [16, 17, 20, 27]. 

Neural network has the power of a universal approximator 

[12, 21], i.e., it can realize an arbitrary mapping of one vec-

tor space onto another vector space. The main advantage 

of neural networks is that they are able to use some a priori 

unknown information hidden in data (but they are not able to 

extract it). The process of ’capturing’ the unknown informa-

tion is called ’learning’ or the training of neural network. In 

mathematical formalism to learn means to adjust the weight 

coefficients in such a way that some conditions are fulfilled 

[32]. To define a neural network first we introduce the static 

linear model defined as:

where the vector w is the vector of the parameters of the 

model, and where the functions f (x) are non-parameterized 

functions for the variable x. The networks of neurons are 

included in the category of the nonlinear models in their 

(8)y(x) = wT
�(x) + b,

(9)min
w,b,e

�(w, b, e) =
1

2
w

T
w +

�

2

N
∑

i=1

e
2

i
.

(10)yi = wT
�

(

xi

)

+ b + ei.

(11)

[

0

1v

∣
1T

v

�+�−1I

] [

b

�

]

=

[

0

y

]

,

(12)y(x) =

N
∑

i=1

�iK
(

xi, x
)

+ b,

(13)g(x, w) =

P
∑

i=1

wifi(x),
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parameters. The most current form of static network of neu-

rons is a simple extension of the previous relation:

where fi
(

x, w
′
)

 are parameterized functions, called ’neuron’ 

which is presented in Fig. 2. A neuron is a nonlinear function, 

parameterized, with limited values. The variables on which the 

neuron operates are often indicated under the term of inputs 

of the neuron, and the value of the function under the term 

of output [19, 22]. The parameters w
i
 are indicated under the 

name of ’weights’ or ’synaptic weights’, because of the bio-

logical inspiration of the neural networks. The output of neu-

ron is a nonlinear function of a combination of the variables x
i
 

weighted by the parameters w
i
 . The parameter w

0
 is a constant 

term called ’bias’. The function f is called the ’activation func-

tion’. The output of a neuron has as equation:

A neuron realizes a nonlinear function. The advantage 

of the neurons lies in the properties which resulting from 

their association in networks, i.e., of the composition of the 

nonlinear functions fulfilled by each neuron. There is a large 

variety of topologies for this kind of networks; nevertheless, 

the most used topology is the so-called multi-layer percep-

tron (MLP), whose example is represented in Fig. 3. In this 

type of neural networks, the first layer is called ’the input 

layer’, and the last layer is called ’output layer’. The layers 

between are hidden layers; this network carries out N
c
 alge-

braic functions of N variable of the network.

The MLP is mathematically represented by the 

expression:

where x is the vector of variables (of dimension n + 1 ), w
2
 is 

the vector of weights of the second layer (of N
c+1

 dimension) 

(14)g(x, w) =

P
∑

i=1

wifi
(

x, w
�)

,

(15)y = f

[

w
0
+

n
∑

i=1

wixi

]

.

(16)
g(x, w) =

Nc
∑

i=1

[

wNc+1,if

(

n
∑

j=1

wijxj + wi0

)]

+ wNc+1,0

= w2f
(

W1x
)

,

and W
1
 is the matrix of weights of the first layer (of dimension 

( N
c
+ 1, n + 1 ). By convention, the parameter wij designates 

the weight between neuron j towards neuron i. The model 

g(x, w)) is a linear function of the parameters of the last layer, 

and it is a nonlinear function of the parameters of the first layer 

of connections.

In this paper we used a feed forward neural network (FFNN), 

which is a type of MLP, with a network of neurons not buckled. 

In the FFNN, information circulates from the inputs towards 

the outputs without ’feedback’. It can be represented by an 

acyclic graph whose nodes are neurons and the edges ’con-

nections’ between them. Training the network means to adjust 

its parameters. There exist two main types of training process: 

supervised and unsupervised training.In our case, we used a 

supervised learning process which is based upon the variation 

of the threshold coefficients w
i0

 ’bias’ and weight coefficients 

wij to minimize the sum of the squared error. This objective is 

accomplished by minimizing of the objective function:

where x
o
 and x̂

o
 are vectors composed of the computed and 

required values of the output neurons and summation runs over 

all output neurons o [12]. The training mode begins with arbi-

trary values of the weights; the network uses a training algorithm 

and a set of training data to adjust the weights in the direction 

that reduces the error, until achieving the optimal set of values. 

The hope is that the neural network so designed will generalize. 

A network is said to generalize well when the network learns 

to correctly associate input patterns to output patterns, even for 

input–output patterns never used in training stage [12].

Platform and statistical metrics

Platform and data

The data used in this research work is collected from 

a hybrid platform located at the Moroccan School of 

(17)E =

∑

o

1

2

(

x
o
− x̂

o

)2
,

Fig. 2  A simple neuron presentation

Fig. 3  Multi-layer perceptron neural network architecture
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Engineering Sciences in Casablanca, Morocco (latitude 

= 33.5415060 and longitude = −7.6735389 ). The platform 

is composed from Photovoltaic and wind installations, the 

photovoltaic installation is a 3.2kw rooftop plant, with an 

inclination of 40
◦ and facing south, the PV plant consists of 

12 modules from the constructor Voltec Solar (six mono-

crystalline and six poly-crystalline), each six modules are 

connected to an SMA SUNNY-BOY inverter. The two 

SMA SUNNY-BOY inverters are connected to an inverter/

charger MultiPlus manufactured by Victron Energy, the 

inverter/charger MultiPlus allow us to control the charge/

discharge of a 3 kw battery park as well as controling the 

injection into the grid. The wind installation is composed 

from a 2.4 kw vertical axis wind turbine (Skystream 3.7) 

and a 2.5 kw Darrieus wind turbine (apple-wind AW). 

Also, the platform contains a small meteorological station 

based on the SMA sunny SensorBox that measures global 

horizontal irradiance GHI, ambient and module tempera-

ture as well as wind speed. The meteorological parameters 

are recorded every 15 min; all measurements are stored via 

an SMA WEbBox. A detailed description of the platform 

is given in [9, 10, 33]. The characteristics of the PV plant 

are presented in Tables 1 and 2.

The used database consists of 6 months records, from 

01 July to 31 December 2014, the records of 5 months, 

from July to October; contain missing data, while the 

records of December are intact. To deal with the problem 

of missing data we use a filling gap procedure. In gen-

eral there is no definitive guide to replacing missing data 

in time-series [2]. In the case of photovoltaoc time serie, 

choosing the appropriate method depends on different fac-

tors such as length of existing data, availability of reliable 

meteorological data and climate of the location [24]. The 

conventional interpolation stills the most used methods [2, 

23, 28] because of their simplicity, but they are not always 

the most efficient. Meany other methods are presented in 

literature, such as regression, ARIMA, Spline, polyno-

mial fitting [2]. Or more sophisticated method like adap-

tive interpolation schemes (AISs) [2], temperature based 

approach (TBA), singular spectrum analysis (SSA), and 

statistically adjusted solar radiation (SASR) methods [24] 

or special methods like METSTAT (meteorological/statis-

tical) solar radiation model [18]. Also statistical learning 

approach can be used in this context as [15] where authors 

adopt Support Vector Machine (SVM) to obtain a nonlin-

ear weather-type classifier based on humidity and tempera-

ture as input variables, the SVM is used to choose the days 

with the same season type, authors impute a missing value 

by the average over a specific set of those similar days. In 

this work we used the conventional interpolation method 

to fill gaps in solar and PV data, we choose this method 

because of its simplicity and also because gap length do 

not exceed 3 h.

Statistical metrics

To evaluate the model accuracy, we must choose the right per-

formance metrics because modeling is an iterative process, 

which consists of going back and forth between the output of 

the model and the desired value. Measuring forecasting error 

is important to validate the model, so it is necessary to use per-

formance criteria that measure how close outputs (forecasts) 

are to the eventual outcomes. For this purpose, well-known 

statistical metrics are used, the mean absolute error (MAE), 

mean bias error (MBE), mean squared error (MSE), root mean 

squared error (RMSE) and R-square error, also called coef-

ficient of determination ( R2 ). These metrics are defined as.

(18)MAE =

1

n

n∑

i=1

|
|ŷi − yi

|
|

(19)MBE =

1

n

n
∑

i=1

(

ŷi − yi

)

(20)MSE =

1

n

n
∑

i=1

(

ŷi − yi

)2

(21)
RMSE =

�

∑n

i=1

�

ŷi − yi

�2

n

(22)R2
=1 −

∑n

i=1

�

ŷi − yi

�2

∑n

i=1

�

ȳi − yi

�2

Table 1  PV cell characteristics

Parameters Description

Manufacturer Voltec Solar

Max power voltage 30.36 V

Max power 255.36 Wp

Max power current 8.40 A

Table 2  Inverter characteristics Parameters Description

Manufacturer SMA

Start voltage 140 V

Max voltage 600 V

Max current 12 A

Power 1600 W

Frequency 50 Hz
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Models development

Training procedures

In this work, we adopted a learning procedure composed 

from three stages, a pre-processing stage, training and vali-

dation stage and finally a test stage. In our case, the pre-

processing stage is constituted by a gap filling procedure 

using linear interpolation method and a scaling procedure 

which consists of scaling data between zero and one. In the 

training stage we tried to find the best settings of the FFNN 

and LSSVR algorithms; for this purpose, we used a general 

work-flow composed from a training algorithm combined 

with 10-folds cross validation procedure based on the mean 

square error (MSE) as a judgment criterion. In the test stage, 

we use data that have not been used in the training stage to 

test the model performances. This procedure was adapted for 

the different algorithms and for all models. So for LSSVR, 

in the training and validation stage, we used the sequential 

minimal optimization (SMO) algorithm to find the param-

eters of radial basis function (RBF), used as kernel function, 

as well as the parameters � from (1) and �2 from (9). The 

best model with the best parameters is used to calculate out-

put forecasts. In the test stage the algorithm is fed with new 

data; the estimated outputs are compared with real outputs, 

and performance metrics are calculated to evaluate model 

accuracy. The best model will be the one that will give us 

the minimum forecasting error, Fig. 4 resume the used pro-

cedure. All simulations were done in the Matlab2015b envi-

ronment; also, we used the standard librarie LS-SVMlab 

[25]. The obtained results are discussed in Sect. 7.

In the case of FFNN, training the neural network amounts 

to adjusting the synaptic weights w
i
 as well as the number of 

hidden layers and the number of neurons in each hidden layer 

without forgetting to choose the right activation function. In 

order to find the optimal value of the synaptic weights, we 

used the lavenberg–Marquardt (LM) algorithm, which is an 

improvement of the classical gradient descent algorithm. For 

the number of hidden layers, we decided to use a single hidden 

layer FFNN since it is a universal approximator [12], therefore, 

the FFNN will consist of an input layer, a hidden layer and an 

output layer. The number of neurons in the input layer depends 

on the number of parameters used in each model, while the 

output layer consists of a single neuron with a linear activation 

function. To find the best number of neurons in the hidden 

Fig. 4  The procedure used in 

the case of LSSVR training
Begin

Gap filling and data scaling

Divide data into 2 groups

Training and validation data

(70%)

Test data (30%)

Divide the data in 10 sub-

groups

Adjust the LSSVR parame-

ters (γ,σ2 ) with SMO algo-

rithm using 9 sub-groups

Validation using the 10th

sub-group

End Cross validation ?

Calculate the forecasts using

T est data

Performance evaluation us-

ing statistical metrics

End

no yes
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layer, a sensitivity analysis was performed using the procedure 

reported in [11].

The final parameter to find is the activation function, the 

choice of activation function is an important design issue, it 

is a vital part of neural network providing nonlinear mapping 

potential and help achieving fast convergence and good gen-

eralization performance. To choose the right activation func-

tion we a asses the performance of the three most used activa-

tion functions in FFNN architecture, the radial basis function 

(RBF), the tangent sigmoid function (Tansig) and the logistic 

sigmoid function (Logsig), we do so for each developed model.

To carry out this simulation, we consider a number of neu-

rons varying between 1 and 160, and we used the neural net-

work MATLAB toolbox under Matlab2015b environment. The 

steps we followed are:

 1. Choose the maximum number of neurons in the hidden 

layer “p” ( 1 ≤ p ≤ 160).

 2. Initialize (init) the synaptic weights w
i
 randomly.

 3. Train the FFNN with those settings using the laven-

berg-Marquardt algorithm and 10-folds cross-valida-

tion procedure.

 4. Calculate the “ n
t
 ” forecasts (estimations) obtained after 

training using validation data.

 5. Calculate the Normalized Mean Absolute Error for 

each forecast NMAE% . 

 where P
m
 is the measured value of the output power 

and Pf  the estimated one, C is the net capacity of the 

plant and N is the number of samples.

 6. Repeat from step 2 for a chosen number of times (in 

this study we have repeated the initialization 100 

times).

 7. Calculate the relative sample mean NMAE
p
 as an esti-

mator of all possible NMAE% values. 

 where NMAEi,p is the NMAE% calculated for the i-th 

trial performed by the FFNN with the p-th settings.

 8. Calculate the sample variance Sp
2 and the sample 

standard deviation Sp . 

(23)NMAE% =
1

N⋅C

N∑

i=1

|
|
|
Pm − Pf

|
|
|
⋅ 100,

(24)NMAEp =

1

nt

nt
∑

i=1

NMAEi,p,

(25)Sp
2
=

1

nt − 1

nt
∑

i=1

(

NMAEi,p − NMAEp

)2

 9. Constructs a confidence intervals (CI) helping the esti-

mation of the unknown population mean � defined as: 

 with ME a margin error defined as : 

 with t is set by the relative t student distribution 

according to the degree of freedom equal to n
t
− 1.

 10. After choosing the best settings according to NMAE% 

score, we retrain the FFNN and we use test data to 

evaluate his performances using statistical metrics pre-

sented in Sect. 5. Figure 5 resume the procedure used 

to train the FFNN.

Inputs selection

There are several statistical models that describe the pho-

tovoltaic phenomenon using different weather parameters 

that influence the conversion. According to the state of the 

art, the parameters that influence the most PV forecasting 

are horizontal solar irradiation (Irr) [6, 30], cell temperature 

(Tc) [6, 30], ambient temperature [6], and aerosol index [16]. 

In this work, the data used to forecast photovoltaic power 

are: past PV power generation (P), past measured global 

horizontal solar irradiation (Irr) and past measured photo-

voltaic modules temperature (Tc), collected via the SMA 

WEbBox. The characteristics of these data is that they are 

simple to collect locally and do not require a considerable 

investment. Mathematically, find a one step photovoltaic 

forecasting model is to find a function in the form:

with X vector of input parameters, it can be a vector of 

exogenous parameters or a vector of pure auto-regressive 

parameters. This will give rise to two types of models, a 

non linear auto-regressive with exogenous inputs model and 

a pure non linear auto-regressive model. In this study, we 

focused on the choice of X and its influence on the accuracy 

of the model, (the vector X present the locally (in-situ) meas-

ured parameter). Also, we tested different combinations of 

the three locally measured parameters: the solar irradiation 

(26)Sp =

√

√

√

√

√

nt
∑

i=1

(

NMAEi,p − NMAEp

)2

nt − 1

(27)CI = NMAE
p
± ME,

(28)ME = t �

2

�

Sp
√

nt

�

,

(29)Pt+1 = f (X),



198 International Journal of Energy and Environmental Engineering (2019) 10:189–206

1 3

(Irr), the temperature of the cells (Tc) as well as the PV 

power (P). To compare the accuracy of the obtained models, 

statistical metrics were used. Also, to give more meaning 

to the results, we compared the performances of the mod-

els with two other statistical models used as a benchmark: 

the persistent model as well as a Multivariate Polynomial 

Regression model (MPR).

Results analysis and discussion

In this section, we will discus simulation results that 

describe the performances of several pure non-linear auto-

regressive models (NAR) against those of non-linear auto-

regressive models with exogenous inputs (NARX).

Fig. 5  The procedure used in 

the case of FFNN training
Begin

Gap filling and data scaling

Divide data into 2 groups

Training and validation data

(70%)

Choose a number of hidden

neurons p in the hidden layer

(1 � p ≤ 160)

FFNN Weights initialization

(init)

Divide the data in 10 sub-

groups

Adjust the FFNN weights W

with LM algorithm using 9

sub-groups

Validation using the 10th

sub-group

End Cross validation ?

Test data (30%)

Calculate the nt forecasts

using test data using T est

data

Calculate NMAE%

init = 100 ?

Calculate NMAEp

Construct Confidence inter-

val CI

p = 160 ?

Choose the best model with

the best settings (number of

hidden neurons and weights

W ) according to the best

NMAE%

Performance evaluation us-

ing statistical metrics

End

yes

yes
no

yes

no

no



199International Journal of Energy and Environmental Engineering (2019) 10:189–206 

1 3

Nonlinear auto‑regressive with exogenous inputs 
models (NARX)

In time series modeling, a nonlinear autoregressive 

with  exogenous  inputs model (NARX) is a nonlinear 

autoregressive model which has exogenous inputs. This 

type of models relates the current value of output to both 

past values of the same output and current and past values 

of externally inputs that influence the output of interest. 

Such a model can be formulated as.

where the function F is some nonlinear function, with Y 

is the variable of interest, U is the exogenous variable and 

�
t
 a forecasting error term. In this study we used a combi-

nations of three in-situ measured parameters: the global 

horizontal solar irradiation (Irr) and the temperature of PV 

modules (Tc) as exogenous inputs U, and the PV power (P) 

as variable of interest Y. The first functions to evaluate are:

We used the FFNN and LSSVR approaches to find the 

most accurate function F given in the Eqs. 31–36. The 

simulation results are presented here after.

Least square support vector regression

Using the procedure described in Sect. 6 and the sequential 

minimal optimization (SMO) algorithm to find the param-

eters of radial basis function (RBF) as well as the parameters 

� and �2 , the best founded parameters for LSSVR–NARX 

models are presented in Tables 3 and 4.

The obtained results show interesting characteristics. 

First, all the models give forecasts with sufficient precision. 

(30)Y
t
= F

(

Y
t−1, Y

t−2,… , Y
t−N

;U
t−1, U

t−2,… , U
t−N

)

+ �
t
,

(31)MOD1 ∶ P
t+1 =F

(

Irr
t
, Tc

t

)

+ �

(32)MOD2 ∶ P
t+1 =F

(

Irr
t
, Tc

t
, P

t

)

+ �

(33)MOD3 ∶ P
t+1 =F

(

Irr
t
, Tc

t
, P

t−1, P
t

)

+ �

(34)MOD4 ∶ P
t+1 =F

(

Irr
t−1, Irr

t
, Tc

t−1, Tc
t
, P

t−1, P
t

)

+ �

(35)MOD5 ∶ P
t+1 =F

(

Irr
t
, Tc

t
, P

t−2, P
t−1, P

t

)

+ �

(36)MOD6 ∶ P
t+1 =F

(

Irr
t
, Tc

t
, P

t−3, P
t−2, P

t−1, P
t

)

+ �,

The classification of the models gives us an idea about 

the influence of output parameters on the precision of the 

results. After the analysis of the simulation results, we found 

that the Irr
t
 and Tc

t
 data alone are not sufficient, since the 

model MOD
1
 gives less precise results than the other mod-

els. Also, according to the results of the model MOD
2
 , we 

have observed that the combination of the parameters Irr
t
 , 

Tc
t
 and P

t
 gives better results than those of MOD

1
 . The 

results obtained by the model MOD
3
 confirm this observa-

tion, since the addition of the parameter P
t−1

 to the model 

MOD
2
 increases the accuracy of forecasts, whereas the addi-

tion of the Irr
t−1

 and Tc
t−1

 parameters to MOD
2
 (which gives 

the model MOD
4
 ) reduces the accuracy and gives results 

that are almost equivalent to those of MOD
1
 . As a first 

remark, we can observe that the use of the Irr
t
 , Tc

t
 param-

eters gives good results, but adding historical power data 

greatly improves model accuracy. To examine this hypoth-

esis, we decided to create other two models in which we will 

increase the number of auto-regressive inputs by adding to 

the model MOD
3
 the input P

t−2
 to create MOD

5
 , and after 

that we added the input P
t−3

 to create MOD
6
 . The two new 

models realize the functions 35 and 36.

According to the simulation results resumed in Table 4, 

it can be concluded that, effectively, adding the past PV 

power values P
t−2

 and P
t−3

 helps to increase the accuracy 

of the offline  forecasting model. The comparison of the 

different models leads us to underline the importance of 

the parameters P in this kind of model. Figure 6 shows the 

graphical results of the models MOD
1
 to MOD

6
 . From the 

results of the LSSVR–NARX models, the conclusion of this 

subsection is that for offline  short-term PV power forecast-

ing, the most influential parameter is the past PV power 

( P
t
,… , P

t−i
 ), while the parameters Irr

t
 , Tc

t
 add precision 

to model forecasts. This is logical, since the parameters P
t−i

 

implicitly contains information concerning the photovoltaic 

phenomenon, such as the effect of irradiation, temperature 

and even geographical parameters.

Feed‑forward neural network

Training the FFNN amounts to adjusting the synaptic 

weights w
i
 , as well as finding the best activation function 

and the best number of neurons in the hidden layer; for this 

Table 3  LSSVR–NARX 

parameters
� �

2

MOD
1

2.58 2.82

MOD
2

48554.86 8.528

MOD
3

261.023 11.99

MOD
4

1051.57 42.43

MOD
5

67117.98 118.51

MOD
6

846.78 32.27

Table 4  LSSVR–NARX models 

results
Model MSE R

2

MOD
1

0.0124 0.8413

MOD
2

0.0090 0.8846

MOD
3

0.0087 0.8889

MOD
4

0.0091 0.8837

MOD
5

0.0089 0.8865

MOD
6

0.0082 0.8956
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purpose, we used the ANN Sizing procedure in a way that 

allowed us to find the best configuration for each model (best 

activation function and best number of hidden neurons). To 

do so, first, for one of the models, we choose an activation 

function and we use the sizing procedure to choose the best 

number of hidden neurons, after that we change the activa-

tion function and we repeat the same procedure to find the 

best number of hidden neurons and so on until finding the 

best activation function and best number of hidden neurons 

for all developed models, of course while using the spe-

cific input parameters of each model. After choosing the 

best number of neurons in the hidden layer, the FFNN was 

re-trained 100 times in such a way that each training is made 

with a synaptic weights w
i
 initialization different from the 

others. At the end of sizing procedure the FFNN that gives 

the minimum NMAE% is considered as the best model. 

This procedure gives a satisfactory results, so we us it to 

choose the best configuration of each one of the models. The 

obtained results are presented in Table 5. Also Fig. 7 shows 

an example of mean NMAE% evolution as well as its confi-

dence interval (CI) during the training of the model MOD
5
.

After analyzing all FFNN–NARX models results pre-

sented in Table 6 and Fig. 8, almost the same remarks as 

those of the LSSVR–NARX are made; the Irr and Tc inputs 

alone are not enough to make accurate forecasting. The 

MOD
1
 model gives the worst results with an MSE = 0.0124. 

The addition of the past PV power as inputs considerably 

improves the accuracy of the models, since in MOD
2
 just the 

addition of the input P
t
 , alone, improved the MSE by almost 

24.6% (MSE = 0.0089). According to the results of the mod-

els MOD
3
 , MOD

3
 and MOD

6
 , we observed that, the more 

we increase the number of used past PV power as input, 

the more we increases the forecasts accuracy. But MOD
4
 

constitutes an aberrant case; normally we tend to think that 

the more we increase the number of inputs, the more we 

Fig. 6  PV power forecasts obtained by the LSSVR–NARX models Fig. 7  Mean normalized mean absolute error NMAE as function of 

number of neurons in the case of MOD
5

Table 5  ANN sizing procedure results for NARX models

Model Best number of hidden neurons Best

RBF Logsig Tansig NMAE%

MOD
1

6 8 5 5.73%

MOD
2

5 7 6 4.72%

MOD
3

37 6 8 4.54%

MOD
4

10 10 10 5.65%

MOD
5

30 8 11 4.61%

MOD
6

36 12 14 4.48%

Table 6  FFNN–NARX models 

Results for the three activation 

functions

Model R
2 (%)

RBF Logsig Tansig

MOD
1

84.39 84.66 84.87

MOD
2

88.57 89.10 88.61

MOD
3

89.36 86.47 89.86

MOD
4

00.2 00.42 87.89

MOD
5

88.2 88.42 88.49

MOD
6

90.63 89.33 90.73
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add precision to our models. Here the MOD
4
 is just the 

MOD
3
 to which has been added the Irr

t−1
 and Tc

t−1
 inputs. 

We expected that MOD
4
 will outperform the MOD

3
 model, 

but the simulations show the opposite, with an increase in 

the forecast error by 20.2% with an MSE = 0.0099. There-

fore, the results obtained are consistent with those of the 

LSSVR–NARX, except that the FFNN–NARX models 

demonstrates a slight superiority over the LSSVR–NARX 

models in 75% of the cases. For the FFNN–NARX  mod-

els, the Tangent sigmoid activation function gives the best 

results in 83% of the cases, with a coefficient of determina-

tion R2 = 90.73% given by MOD
6
.

Nonlinear autoregressive models

In this section, in order to choose the best offline PV power 

forecasting model and to analyze the influence of locally 

collected parameters on model accuracy, we investigate the 

results obtained from four pure nonlinear auto-regressive 

models (NAR). In time series modeling, the nonlinear auto-

regressive model specifies that the output variable non-line-

arly depends on its own previous values and on a forecasting 

error term. This type of models can be formulated as:

To realize those models, we used only the past PV power 

values as input. In this case, we try to realize a pure non-

linear auto-regressive model without exogenous param-

eters. To find the best function F, we used, as for the NARX 

(37)Y
t
= F

(

Y
t−1, Y

t−2,… , Y
t−N

)

+ �
t
.

models, the LSSVR and FFNN approaches. To conduct 

this study, we have developed four models, MOD
7
 , MOD

8
 , 

MOD
9
 and MOD

10
 , which perform the following functions, 

respectively:

here also the � term designates the forecasting error; it has 

different values for the different models.

Least square support vector regression

This subsection presents the obtained simulation results 

using the LSSVR algorithm. After using the sequential mini-

mal optimization (SMO), the best founded � and �2 param-

eters for the LSSVR–NAR models are presented in Table 7. 

Also, the simulation results are resumed in Table 8. 

In the previous subsection, it was concluded that the 

past PV generation is the most important parameter for 

short-term PV power forecasting model. The best NARX 

model, until now, is the model MOD
6
 , which realizes the 

function given by (36). The results resumed in Table 8 

and presented in Fig.  9 allow us to make the follow-

ing remarks. First, all LSSVR–NAR models give good 

results; also, we observe that the more we add past PV 

values as inputs, the more we increase the forecasts accu-

racy. The comparisons between LSSVR–NAR models 

and LSSVR–NARX models revealed that LSSVR–NAR 

models give clearly better results. For example, the model 

MOD
7
 that takes into account the current power P

t
 as input 

gives a satisfactory result with an MSE = 0.0092 , a result 

that is better than those of MOD
1
 . From the accuracy point 

(38)MOD7 ∶ Pt+1 =f
(

Pt

)

+ �,

(39)MOD8 ∶ Pt+1 =f
(

Pt−1, Pt

)

+ �,

(40)MOD9 ∶ Pt+1 =f
(

Pt−2, Pt−1, Pt

)

+ �,

(41)MOD10 ∶ Pt+1 =f
(

Pt−3, Pt−2, Pt−1, Pt

)

+ �,

Fig. 8  PV power forecasts obtained by the FFNN–NARX models

Table 7  LSSVR–NAR best 

parameters
� �

2

MOD
7

25664.51 13.758

MOD
8

80630.94 34.44

MOD
9

15.95 3.70

MOD
10

5.8885 3.1766

Table 8  LSSVR–NAR models 

results
Model MSE R

2

MOD
7

0.0092 0.8827

MOD
8

0.0081 0.8971

MOD
9

0.0072 0.9074

MOD
10

0.0066 0.9152
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of view, we notice that all LSSVR–NAR models give bet-

ter results than the model MOD
6
 (for example MOD

8
 with 

only two inputs gives better results than MOD
6
 that use 

six inputs). We also note that the more we add the past 

PV power terms, the more we increase the accuracy of the 

forecasts obtained. As a result, the model MOD
10

 that real-

izes the function given by the equation (41) gives the best 

results; Fig. 10 shows the PV power forecasts obtained by 

this model. These results are interesting from a practical 

point of view, since the use of this type of model does not 

generate an important cost add: most of the used convert-

ers can record those parameters and their recuperation are 

done in an easy and safe way. As a conclusion, the com-

parison between the different models leads us to underline 

the importance of past PV power as input parameters in 

offline short-term PV power forecasting. Table 9 resume 

all LSSVR based models results.

Feed‑forward neural network

As in the case of the FFNN–NARX models, the FFNN-NAR 

models were trained using the same ANN Sizing procedure; 

the Table 10 summarizes the results obtained by giving the 

best number of neurons in the hidden layer as well as the 

corresponding NMAE%.

The results obtained by the FFNN–NAR models are 

resumed in Table 11 and presented in Fig. 11, the results 

join and rectify, again, those announced in the case of 

LSSVR–NAR case. All NAR models demonstrate superior-

ity compared to NARX models. Again, the FFNN algorithm 

Fig. 9  Forecasting results of LSSVR–NAR models

Table 9  LSSVR all results

MAE MBE MSE RMSE R
2

MOD
1

0.0865 − 0.0240 0.0124 0.111 0.8413

MOD
2

0.0647 0.0093 0.0090 0.0948 0.8846

MOD
3

0.0651 0.0106 0.0087 0.0932 0.8889

MOD
4

0.0721 0.0012 0.0091 0.0953 0.8837

MOD
5

0.0666 0.0114 0.0089 0.0943 0.8865

MOD
6

0.0619 0.0046 0.0082 0.0905 0.8956

MOD
7

0.0730 0.0005 0.0092 0.0959 0.8827

MOD
8

0.0675 − 0.0020 0.0081 0.09 0.8971

MOD
9

0.0622 − 0.0025 0.0072 0.0848 0.9074

MOD
10

0.0561 − 0.0029 0.0066 0.0812 0.9152

Fig. 10  a PV power forecasts obtained by the model LSSVR–MOD
10

 

with error bars

Table 10  ANN sizing procedure results for NAR models

Model Best number of hidden neu-

rons

Best NMAE%

MOD
7

8 4.80%

MOD
8

9 4.31%

MOD
9

6 4.21%

MOD
10

7 4.08%
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results slightly surpasses the results obtained by the LSSVR, 

but if we take into account the execution time things will 

change, since for the FFNN the procedure consumes a very 

important time (almost 17 min) to find the best parameters 

of an FFNN model, while the LSSVR trained with SMO 

consumes only 1 min and 20 s to find the best parameters, 

which is much lower than the time consumed by the FFNN, 

Table 12 resume all FFNN based models results. Now for the 

FFNN–NAR activation function, results demonstrate that 

radial basis activation function gives the best results in 50% of 

cases, with a coefficient of determination R2 = 92.03% given 

by MOD
8
 . Also, in all models, the NAR models outperform 

the NARX models.

Benchmark models

In this subsection, we present the results obtained by the two 

statistical benchmark models: the multivariate polynomial 

regression model and persistent model. The persistent model 

is regarded as a naive predictor (today equals tomorrow), and 

it is the most cost-effective forecasting model which assumes 

that the conditions will not change; as a result, the PV power at 

time t + 1 will be equal to those at time t. In spite of its simplic-

ity, it provides a good benchmark against more sophisticated 

models and still the most popular reference model in short-

term PV power forecasting. On the other hand, the Multivari-

ate Polynomial Regression Model (MPR) is a more sophis-

ticated model. It is an extension of the ordinary polynomial 

regression, in which the relationship between the input vari-

ables x and the output variable y is modeled as an nth degree 

polynomial in x. Equation (42) presents an example of second 

order multiple polynomial regression:

This can again be represented in Matrix form as:

where � is matrix of weights, X is matrix of input param-

eters and Y is the output. The two models are used as a 

benchmark to check the performance of the developed 

models, and subsequently it demonstrated the effectiveness 

of these models in the short-term PV power forecast. The 

(42)y = �
0
+ �

1
x

1
+ �

2
x

2
+ �

11
x

2

1
+ �

22
x

2

2
+ �

12
x

1
x

2
+ �.

(43)Y = �X + �,

Table 11  FFNN–NAR models 

Results
Model R

2 (%)

RBF Logsig Tansig

MOD
7

88.49 88.30 88.52

MOD
8

90.15 90.75 90.59

MOD
9

92.03 91.37 91.26

MOD
10

91.32 91.11 91.20

Fig. 11  PV power forecasts obtained by the FFNN–NAR models

Table 12  FFNN all results

MAE MBE MSE RMSE R
2

MOD
1

0.0792 −0.0127 0.0118 0.1088 0.8487

MOD
2

0.0648 0.0061 0.0089 0.0944 0.8861

MOD
3

0.0588 0.0006 0.0079 0.0891 0.8986

MOD
4

0.0721 0.00712 0.0093 0.0964 0.8789

MOD
5

0.0619 0.0135 0.0090 0.0949 0.8849

MOD
6

0.0540 0.0041 0.0073 0.0852 0.9073

MOD
7

0.0686 0.0034 0.0090 0.0948 0.8852

MOD
8

0.0574 −0.0004 0.0074 0.0858 0.9059

MOD
9

0.0564 0.0052 0.0068 0.0827 0.9126

MOD
10

0.0582 −0.0012 0.0069 0.0830 0.9120

Table 13  MPR and persistent versus LSSVR and FFNN

Metrics MSE

Model LSSVR FFNN MPR Persistent

MOD
1

0.0124 0.0118 0.0128

MOD
2

0.0090 0.0089 0.0089

MOD
3

0.0087 0.0079 0.0090

MOD
4

0.0091 0.0093 0.0095 0.0092

MOD
5

0.0089 0.0090 0.0093

MOD
6

0.0082 0.0073 0.0091

MOD
7

0.0092 0.0090 0.0091

MOD
8

0.0081 0.0074 0.0088

MOD
9

0.0072 0.0068 0.0081

MOD
10

0.0066 0.0069 0.0080
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simulation results are given in Table 13. It is observed that 

the MPR model gives results as close as those of the FFNN 

and LSSVR models; while the persistent model gives an 

MSE = 0.0092 . We will use the persistent model perfor-

mance, with an MSE = 0.0092 , to help us identify the mod-

els that deserve to be used, since they have to give more 

interesting results than those of the persistent model as they 

are more complex. Thus, the models that can be described 

as interesting are those that outperform the persistent model. 

According to this constraint, we observe that the LSSVR and 

FFNN are ranked first because there results outperform those 

of the persistent model except the model LSSVR–MOD
1
 

and FFNN–MOD
1
 . The MPR model also surpasses the per-

sistent model in 70% of cases, but it remains less efficient 

than the LSSVR and FFNN. A simple comparison of the 

results shows the superiority of the two approaches, FFNN 

and LSSVR, in almost all models. Until now the FFNN is 

the best, of course with very high calculation time. How-

ever, the MPR and the LSSVR consume almost the same 

time of calculation but with a superiority of the LSSVR. 

Another observation is that the persistent model gives excel-

lent results in the stable weather conditions (clear day) as 

can be seen in Fig. 12, whereas nonlinear models such as 

LSSVR and FFNN are more efficient under unstable weather 

conditions, Fig. 13, which present the results obtained in 

the case of a cloudy day, demonstrate this observation. So 

according to this comparison we can conclude that the mod-

els proposed for the PV forecast show a superiority over 

the benchmark models, especially the NAR models. Those 

results are very interesting knowing the importance of short-

term forecasts in the integration of photovoltaic sources in 

the energy mix and to guarantee the grid stability. 

Conclusion

In the present contribution offline models have been pro-

posed that allows us to forecast the short-term PV power 

using only information collected from local monitoring 

system, i.e., without the need of weather forecasts. The 

offline models are interesting for grid operators as well as 

for individuals because the majority of existing PV power 

forecasting models uses NWP, the issue is that access to 

NWP information is not given to everyone, especially for 

isolated installations. In the aim of studying the behavior of 

each model and each algorithm, we combined the simplicity 

of time series models (AR and ARX) and the non-linearity 

of statistical learning models (FFNN and LSSVR), also we 

used a different combination of collected data in the aim to 

analyze the influence of different locally collected data on 

forecasts accuracy.

During the simulations, it was observed that the FFNN 

gives different results each time the simulation is repeated, 

which is due to the problem of initialization, whereas the 

LSSVR gives a unique solution, which constitutes the opti-

mal one (As long as there is sufficient training database). 

To improve the FFNN results and to avoid over-fitting and 

local-minima problems during FFNN learning a sizing pro-

cedure have been proposed, by using the ANN sizing pro-

cedure we observe that the performance of FFNN models 

have improved. The choice of the right activation function 

Fig. 12  a PV power forecasts obtained by all best models and b fore-

casting error
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is an important design issue, according to simulation results 

we found that tangent sigmoid function (Tansig) gives the 

best results in 70% of the cases, and even if logistic sigmoid 

(Logsig) and radial basis (RBF) functions outperforms the 

Tansig in 30% of the cases, the Tansig still the best activa-

tion function according the global performances. Prior to 

training the proposed models, the data used was subjected 

to a pre-processing procedure which consists of filling the 

gaps using a linear interpolation method and scaling data 

between zero and one.

The comparison between all FFNN based models and 

LSSVR based models indicate that the FFNN algorithm 

slightly outperforms the LSSVR algorithm. But if we take 

into account the execution time things will change, since for 

the FFNN the procedure consumes a very important time 

(almost 17 min) to find the best parameters of an FFNN 

model, while the LSSVR trained with SMO consumes only 

1 min and 20 s to find the best parameters, which is much 

lower than time consumed by the FFNN.

To test the performance of the proposed models, the 

results obtained are compared with those of the persistent 

model as well as a multivariate polynomial regression model 

(MPR) as benchmark. Comparison demonstrate the superi-

ority of FFNN and LSSVR against MPR and persistent mod-

els, simulation results indicates that the FFNN–MOD
9
 with 

RBF activation function and LSSVR–MOD
10

 give the 

best results and outperform all other models with an 

MSE = 0.0065 and MSE = 0.0069 , respectively. Also results 

of the persistent technique and statistical techniques (MPR, 

FFNN and LSSVR) offer evidence regarding the advantage 

of using non-linear forecasting models over a trivial forecast. 

To not underestimate the persistent model, we underline 

that the persistent model gives excellent results in the stable 

weather conditions (clear day), whereas nonlinear models 

(in addition to stable conditions) are more efficient under 

unstable weather conditions.

The comparison of our results with other works will 

not be fair, since the data used and the weather conditions 

change from one country to another and from one instal-

lation to another. what we can do is to compare our main 

findings with another work, to do so we choose [1] as main 

reference. According to simulation results it was observed 

that the NAR models give better results than NARX mod-

els. These results seem contradictory with those of [1] in 

which ARX models outperform the AR models, the dif-

ference is that authors in [1] uses NWP of global solar 

irradiation as input for NARX model, in our work we try 

to avoid the use of NWP parameters and using only locally 

collected data. Moreover, the present contribution dem-

onstrates that the use of past photovoltaic power produc-

tion as input improves the accuracy of forecasting models, 

and the use of past generated power data only is enough 

to have an accurate and acceptable short-term PV power 

forecasts. This result confirm the findings of [1] where 

authors indicates that solar power is most important input 

for making forecasts of horizon shorter than 2 h.

We must report that, the length of data used in this work 

does not allow the proposed models to adapt to all types 

of weather conditions, this will cause a decrease in perfor-

mance of our models especially in the case of overcasting 

days. Also, to increase forecast horizon the use of only 

local collected data is not sufficient, in this case the use of 

weather forecasts will be an obligation. Those issues will 

be resolved in future works.
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