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Mixture subclass discriminant analysis link to

restricted Gaussian model and other generalizations
Nikolaos Gkalelis, Vasileios Mezaris, Member, IEEE, Ioannis Kompatsiaris, Senior Member, IEEE,

and Tania Stathaki

Abstract—In this paper, a theoretical link between mixture
subclass discriminant analysis (MSDA) and restricted Gaussian
model is first presented, and then two further discriminant anal-
ysis (DA) methods, fractional step MSDA (FSMSDA) and kernel
MSDA (KMSDA) are proposed. Linking MSDA to an appropriate
Gaussian model allows the derivation of a new DA method under
the Expectation Maximization (EM) framework (EM-MSDA),
that derives simultaneously the discriminant subspace as well
as the maximum likelihood estimates. The two other proposed
methods generalize MSDA in order to solve problems inherited
from conventional discriminant analysis. FSMSDA solves the
subclass separation problem, that is, the situation when the
dimensionality of the discriminant subspace is strictly smaller
than the rank of the inter-between-subclass scatter matrix. This
is done by an appropriate weighting scheme and the utilization
of an iterative algorithm for preserving useful discriminant
directions. On the other hand, KMSDA uses the kernel trick
to separate data with nonlinearly separable subclass structure.
Extensive experimentation shows that the proposed methods
outperform conventional MSDA and other LDA variants.

Index Terms—Feature extraction, discriminant analysis, mix-
ture of Gaussians, probabilistic algorithms, clustering, pattern
recognition, classification, machine learning.

I. INTRODUCTION

In a natural environment, the high dimensional measure-

ment signals, lying in the F -dimensional measurement space,

usually represent patterns residing in a much lower, D-

dimensional subspace embedded in the ambient measurement

space [1]. Dimensionality reduction (DR) is an important com-

ponent of statistical pattern classifiers that helps to overcome

estimation problems in noisy high-dimensional environments,

and thus, often results in improved classifier accuracy as well

as lower storage and processing time requirements. A fun-

damental DR technique is linear discriminant analysis (LDA)

[2]–[4]. Given a training set of C classes and N training obser-

vations represented with the block matrix X = [X1, . . . ,XC ],
whose i-th block, Xi = [x1

i , . . . ,x
Ni

i ], consists of the Ni

observations xn
i

∈ R
F of the i-th class, this method derives a

discriminant subspace spanned by the column vectors of the

transformation matrix Ψ ∈ R
F×D that maximizes the ratio

JLDA(Ψ) = tr(ΨT SbΨ)/ tr(ΨT SwΨ) (1)
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of the between-class sum of squares Sb =
∑C

i=1
p̂i(µ̂i −

µ̂)(µ̂i − µ̂)T to the within-class sum of squares Sw =
∑C

i=1
p̂iΣ̂i, where, p̂i = Ni/N , Σ̂i = 1

Ni

∑Ni

n=1
(xn

i −

µ̂i)(x
n
i − µ̂i)

T , µ̂i = 1

Ni

∑Ni

n=1
xn

i , µ̂ =
∑C

i=1
p̂iµ̂i are

the estimated prior, the sample covariance matrix, the sample

mean, and the total sample mean, respectively. This optimiza-

tion problem turns out to be equivalent to the generalized

eigenvalue decomposition SbΨ = SwΨΛ, where the columns

of Ψ are the generalized eigenvectors corresponding to the

largest generalized eigenvalues in the diagonal matrix Λ [5].

Despite its elegant algebraic formulation, two important

shortcomings of LDA restrict its use in real-world applications:

a) The LDA criterion cannot be applied directly when the

matrix Sw is rank-deficient, a situation that occurs frequently

in many applications involving small sample size (SSS) data.

Several methods have been proposed to deal with this problem,

including PCA+LDA [6], MMC LDA [7], dICA [8], and

others. b) LDA faces difficulties in deriving a discriminant

subspace when the classes are not linearly separable (a prob-

lem called hereafter nonlinearity problem). This problem has

been mostly addressed by using kernel extensions of LDA, [9],

[10] or methods that use local linear discriminant analyzers to

learn the nonlinear data structure [2], [11]. However, the SSS

problem remains, and to address it similar solutions to those

discussed above are exploited for both the kernel-based [12],

[13] and local-based [14] LDA variants.

Another strategy for solving the nonlinearity problem is to

use a clustering procedure to derive a subclass division of

the data, and then incorporate this information into the LDA

criterion (again, the SSS problem is handled with techniques

that overcome the rank-deficiency of Sw, e.g. see [15]).

The main advantage of this strategy over the methods de-

scribed in the previous paragraph (especially over the kernel-

based variants of LDA) is that it offers faster computation

times during testing, because it only involves a single matrix

multiplication. This is the underlying principle of mixture

discriminant analysis (MDA) [16] that utilizes the following

criterion

JMDA(Ψ) = tr(ΨT SbsΨ)/ tr(ΨT SwsΨ), (2)

where Sbs =
∑C

i=1

∑Hi

j=1
p̂i,j(µ̂i,j − µ̂)(µ̂i,j − µ̂)T is the

between-subclass scatter, Sws =
∑C

i=1

∑Hi

j=1
p̂i,jΣ̂i,j is the

within-subclass scatter matrix, Hi denotes the number of

subclasses of the i-th class, and p̂i,j , µ̂i,j , Σ̂i,j are the

estimated prior, sample mean and sample covariance matrix

of the j-th subclass of class i.
As our target is to derive a subspace that best separates
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observations of different classes, a better choice is to define

a discriminant metric that favors the scatter of means be-

tween subclasses of different classes. This idea is exploited

in subclass discriminant analysis (SDA) [17] that defines the

following criterion

JSDA(Ψ) = tr(ΨT SbsbΨ)/ tr(ΨT ΣxΨ) , (3)

where Sbsb =
∑C−1

i=1

∑Hi

j=1

∑C
k=i+1

∑Hk

l=1
p̂i,j p̂k,l(µ̂i,j −

µ̂k,l)(µ̂i,j − µ̂k,l)
T is the inter-between-subclass scatter ma-

trix, representing the scatter between the means of subclasses

of different classes (inter-subclass scatter of means), and

Σx = 1

N

∑C
i=1

∑Hi

j=1

∑Ni,j

n=1(x
n
i,j − µ̂)(xn

i,j − µ̂)T is the total

covariance matrix.

Several extensions of MDA [18]–[21], and SDA [22]–[25]

have been proposed, mainly seeking a more effective subclass

partitioning procedure. In [26], mixture subclass discriminant

analysis (MSDA) is presented, where it is explained that the

use of the criterion

JMSDA(Ψ) = tr(ΨT SbsbΨ)/ tr(ΨT Σ̆xΨ) , (4)

where, Σ̆x = Sbsb + Sws, is a better choice than the SDA

criterion (3). Moreover, this algorithm assumes that the data

have a Gaussian homoscedastic subclass structure and intro-

duces an appropriate subclass partitioning procedure along

with a nongaussianity criterion to derive the subclass division

that optimizes the MSDA criterion. In [26], it was shown

that in most cases MSDA outperforms SDA and other LDA

variants. However, as we explain in the following, there is still

room for further improving dimensionality reduction along the

following directions:

1) Link to Gaussian model: In [16], [27], [28], it was

shown that the LDA and MDA subspaces (defined by the

column vectors of the respective projection matrix) coincide

with the subspace that maximizes the log-likelihood function

of Gaussian class densities or Gaussian mixture class densities,

respectively, under the assumption that all class densities (or

mixture component densities) are homoscedastic and that all

class discriminant information is confined in a D-dimensional

subspace of the F -dimensional measurement space. A re-

spective link between MSDA (or SDA) and an appropriate

Gaussian model has not yet been provided in the literature,

and such a link could lead to a new DR approach.

2) Subclass separation problem: When the dimensionality

of the LDA subspace is strictly lower than the rank of the

between-class matrix, i.e., D < C − 1, the projection of

the class densities to the discriminant subspace may smear

the neighboring classes in the measurement space, a situation

described as the class-separation problem [29]–[31]. The same

problem can equivalently occur to MSDA (and other subclass

variants of LDA), i.e., neighboring subclasses in the original

feature space may overlap in the projection subspace when the

MSDA subspace dimensionality is strictly lower than the rank

of the inter-between-subclass scatter matrix. We refer to this

situation as the subclass separation problem.

3) Subclass nonlinearity problem: MSDA (and other sub-

class variants of LDA) can resolve the problem of nonlinearly

separable classes as long as a subclass division that results in

linearly separable subclasses is identified. If this is not possi-

ble, a subclass-based approach that can deal with nonlinearly

separable subclasses is desirable, often using an appropriate

kernel to map the nonlinearly separable subclass divisions into

a new space where they are linearly separable. For instance,

in [32], [33] the kernel SDA (KSDA) method was shown to

outperform a number of other approaches including kernel

discriminant analysis (KDA) [9] and kernel support vector

machines (KSVM) [34].

Inspired from the above discussion, in this paper we first

provide an explicit link between MSDA and an appropri-

ate Gaussian model, which allows the derivation of a new

DA method under the Expectation Maximization framework

(EM-MSDA). Furthermore, we present two additional meth-

ods, fractional-step MSDA (FSMSDA) and kernel MSDA

(KMSDA), to alleviate the subclass separation problem of

MSDA and to handle cases where MSDA subclasses are not

linearly separable, respectively.

The rest of the paper is structured as follows: In Section II

a link between MSDA and a Gaussian model is provided and

EM-MSDA is derived, while in Sections III and IV, FSMSDA

and KMSDA are presented. In Section V experimental results

are reported and Section VI concludes the paper.

II. LINK TO GAUSSIAN MODEL

In this section, we initially provide a Gaussian mixtures

model formulation of the classification task, and then show

how the Expectation Maximization (EM) algorithm [35]–[37]

can be applied to estimate the unknown model parameters.

Through this treatment we provide an explicit link between

MSDA and the described Gaussian model, and consequently

derive the EM-MSDA algorithm.

A. Gaussian mixtures model

Let ω1, . . . , ωC be a finite set of C states of nature (classes)

and (X , Y ) be an X×IC-valued random pair, where X ⊂ R
F

is the space of observations and IC = {1, . . . , C} is the class

indicator variable [2], [3], [38]. Under this framework we

model the i-th class-conditional probability density function

p(x|ωi) as a multivariate Gaussian mixture density of Hi

component densities where the mixture components along all

classes are homoscedastic [16], i.e.

p(x|ωi) =

Hi
∑

j=1

πi,jN (x|µi,j) , (5)

where, N (x|µi,j) = (τ)−F/2|Σ|−1/2 exp((−1/2)∆(x, µi,j))
is the j-th component density (subclass) of the i-th mixture

with constant τ ≈ 6.283185..., nonnegative mixing coeffi-

cient πi,j (satisfying
∑Hi

j=1
πi,j = 1), mean vector µi,j and

covariance matrix Σ shared along all mixture components.

Moreover, ∆(x,µi,j) = (x − µi,j)
T Σ−1(x − µi,j) is the

Mahalanobis distance between observation x and the j-th

component of class i.
We then wish to obtain a D < F -dimensionality re-

duction of the data which favors the separability of those

subclasses that correspond to different classes. Consequently,
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the parameter vector of the presented model is formed

as θ = [π1,1, µ
T
1,1, . . . , πC,HC

,µT
C,HC

, vec(Σ)T , vec(Ψ)T ]T ,

where Ψ ∈ R
F×D is the required projection matrix for

mapping the data into the reduced subspace, T is the vector

transposition operator, and the vec() operator stacks the matrix

columns to a vector.

B. Log-likelihood function

For the estimation of the unknown parameters θ we resort

to the EM algorithm. The EM algorithm is based on the

interpretation of the observed data set Xi of i-th class as

incomplete, where the missing part is a corresponding set Zi =
[z1

i , . . . , z
Ni

i ] of categorical vectors zn
i = [zn

i,1, . . . , z
n
i,Hi

]T , in

which only a particular element zn
i,κ equals to 1, indicating

that xn
i was produced from the κ-th component (subclass)

of the i-th mixture density. Under the above formulation and

assuming that the C data matrices (blocks) of the block matrix

X (Section I) are independent as well as that the column

vectors of the i-th block constitute a random sample from the

population with density p(x|ωi) (i.e., all observation vectors

are independent and identically distributed (i.i.d.)), the log-

likelihood function L1 of the complete dataset would be

(similar to [16], [27] – see Appendix A-A)

2L1 =
C

∑

i=1

Hi
∑

j=1

2Ñi,j lnπi,j − NF ln(2π) + N ln(detΣ−1)

−
C

∑

i=1

Hi
∑

j=1

Ñi,j(x̄i,j − µi,j)
T Σ−1(x̄i,j − µi,j)

−
C

∑

i=1

Ni
∑

n=1

Hi
∑

j=1

hn
i,j(x

n
i − x̄i,j)

T Σ−1(xn
i − x̄i,j),

(6)

where hn
i,j are the responsibilities, i.e., the expected values of

the categorical variables zn
i,j for each data point, given by

hn
i,j = E[zn

i,j ] =
π̂i,jN (xn

i |µ̂i,j)
∑Hi

j=1
π̂i,jN (xn

i |µ̂i,j)
, (7)

and x̄i,j = (1/Ñi,j)
∑Ni

n=1
hn

i,jx
n
i , Ñi,j =

∑Ni

n=1
hn

i,j are the

weighted sample mean and the effective number of points of

the j-th component of the i-th mixture respectively (note from

(7) that
∑Hi

j=1
Ñi,j = Ni). Moreover, ln δ and detA denote

the natural logarithm of number δ and the determinant of

matrix A, respectively. We can rewrite (6) more compactly

as

2L1 = ζ −
C

∑

i=1

Hi
∑

j=1

Ñi,j(x̄i,j − µi,j)
T Σ−1(x̄i,j − µi,j)

= ζ − tr{N(X̄ − M)T Σ−1(X̄ − M)} (8)

where ζ is the part of the log-likelihood function that is in-

dependent of the true means (ζ =
∑C

i=1

∑Hi

j=1
2Ñi,j lnπi,j −

NF ln(2π) + N ln(detΣ−1) −
∑C

i=1

∑Ni

n=1

∑Hi

j=1
hn

i,j(x
n
i −

x̄i,j)
T Σ−1(xn

i − x̄i,j)), and M = [µ1,1, . . . ,µC,HC
], X̄ =

[x̄1,1, . . . , x̄C,HC
] are the matrices of true means and weighted

sample means respectively.

1) Constrained M: We wish to impose two constraints on

the values of the true means as we explain in the following.

Firstly, we require that the discriminant information is confined

in a D-dimensional subspace of the original F -dimensional

measurement space (e.g., see p. 339 [27], [16], [28]). Under

this restriction the mean of the j-th mixture component of the

i-th class density is expressed as

µi,j = µo + ΣΨυi,j (9)

where, Ψ ∈ R
F×D is a singular transformation matrix with

uncorrelated column vectors that transforms Σ into the unit

matrix

ΨT ΣΨ = I, (10)

µo is the total mean, and υi,j ∈ R
D is the projection of µi,j

into the lower-dimensional subspace. The latter is clear if we

rearrange (9) to yield υi,j = ΨT (µi,j − µo). In matrix form

(9) can be written as

M = Mo + ΣΨΥ (11)

where, M now is of column rank D, Mo = [µo, . . . ,µo] is

the F × H matrix whose column vectors equal to the total

mean µo, and Υ = [υ1,1, . . . ,υC,HC
] is the matrix with the

projection coefficients of the mean vectors.

Secondly, we wish to penalize (6) such that in the lower

dimensional subspace the between-subclass spread is empha-

sized relative to the within-subclass spread. We can impose

this by penalizing (6) with the term tr{ΥQΥT }. The penalty

matrix Q is defined as

Q = NA−1N − N (12)

where N = diag(Ñ1,1, . . . , ÑC,HC
) is an H × H diagonal

matrix with diagonal elements the effective sample numbers

of the respective mixture component, A is a symmetric matrix

that allows us to express the weighted inter-between-subclass

scatter matrix

Sw
bsb =

C−1
∑

i=1

Hi
∑

j=1

C
∑

k=i+1

Hk
∑

l=1

p̃i,j p̃k,l(x̄i,j − x̄k,l)(x̄i,j − x̄k,l)
T ,

(13)

in a matrix product form,

Sw
bsb = X̄AX̄T , (14)

and X̄ = [x̄1,1, . . . , x̄C,HC
] is the matrix of the weighted

means. That is, the matrix element Ai,j.k,l that corresponds

to x̄i,j and x̄k,l weighted means takes the value

Ai,j.k,l =







p̃i,j(1 − p̃i), if (i, j) = (k, l),
0 if i = k, j 6= l,
−p̃i,j p̃k,l else

(15)

where p̃i,j = Ñi,j/N , p̃i =
∑Hi

j=1
p̃i,j = Ni/N . Notice

that the sum of the components of any row vector (or any

column vector) of matrix A equals to zero. Therefore, for

any matrix with equal column vectors B = [b, . . . ,b] the

matrix product ABT will yield the zero matrix. We should

also note that Q is symmetric and that for A = N, Q

and consequently the penalty term vanish, leading to the

conventional MDA algorithm [16]. As we will explain in the
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sequel, such a specialization of the penalty matrix Q will lead

to an interesting extension of the MDA algorithm that will

provide a subspace equivalent to the MSDA subspace.

2) Constrained Σ: Similarly to MDA with centroid shrink-

ing (p.171, [16]) we constrain the covariance matrix at the

weighted within-subclass scatter matrix

Σ̂ = Sw
ws =

C
∑

i=1

Hi
∑

j=1

p̃i,jΣ̂
w
i,j

=
1

N

C
∑

i=1

Hi
∑

j=1

Ni
∑

n=1

hn
i,j(x

n
i − x̄i,j)(x

n
i − x̄i,j)

T ,

(16)

where Σ̂w
i,j = (1/Ñi,j)

∑Ni

n=1
hn

i,j(x
n
i − x̄i,j)(x

n
i − x̄i,j)

T is

the weighted sample covariance matrix of (i, j) component

density.

Imposing the above constraints (10), (11), (16), and the

penalty term (12) in (8), we finally arrive to the following

penalized and restricted version of the log-likelihood function

2L2 = − tr{N(X̄ − Mo − Σ̂ΨΥ)T Σ̂−1(X̄ − Mo − Σ̂ΨΥ)}
− tr{ΥQΥT } + ζ,

(17)

where Ψ is constrained by (10).

C. EM algorithm

The EM algorithm can be applied to obtain the maximum

likelihood estimate (MLE) of the model parameters in (17).

This algorithm alternates between two steps, the Expectation

step (E-step) and the Maximization step (M-step), to produce

a sequence of estimates until some convergence criterion is

met.

1) E-step: During the E-step, the parameter values iden-

tified in the previous EM cycle are used to compute the

responsibilities hn
i,j using (7).

2) M-step: In this step, the unknown mixture parameters

are estimated by maximizing (17). In particular, we need to

estimate the mixing coefficients πi,j and the true means µi,j

for each mixture component in (5).

Estimation of πi,j : The mixing coefficients are estimated by

maximizing (17) subject to the constraint that
∑Hi

j=1
πi,j = 1,

giving (similarly to [37] – see Appendix A-B)

π̂i,j =
Ñi,j

Ni
. (18)

Estimation of µi,j : Now we proceed to estimating the true

means in M, or equivalently Mo, Υ, and Ψ, that maximize

(17) subject to ΨT Σ̂Ψ = I. In (17) ζ is independent of M and

thus can be discarded from the optimization criterion. More-

over, the maximization of L2 is equivalent to the minimization

of −L2 under the same conditions, leading us to the following

optimization problem

argmin
Mo,Υ,Ψ

L3 subject to ΨT Σ̂Ψ = I, (19)

where,

L3 = tr{N(X̄ − Mo − Σ̂ΨΥ)T Σ̂−1(X − Mo − Σ̂ΨΥ)}
+tr{ΥQΥT }.

(20)

Setting ȳi,j = Σ̂−1/2x̄i,j , vi,j = Σ̂−1/2µi,j , and vo =

Σ̂−1/2µo, we can write vi,j = vo + Ψ̃υi,j or in matrix form

V = Vo + Ψ̃Υ (21)

where Ψ̃ = Σ̂1/2Ψ, Ȳ = Σ̂−1/2X̄ = [ȳ1,1, . . . , ȳC,HC
],

V = Σ̂−1/2M = [v1,1, . . . ,vC,HC
], and Vo = Σ̂−1/2Mo.

Substituting this to (20) we arrive to

L3 =
C

∑

i=1

Hi
∑

j=1

Ñi,j(ȳi,j − vi,j)
T (ȳi,j − vi,j)

= tr{N(Ȳ − V)T (Ȳ − V)} + tr{ΥQΥT }

= tr{N(Ȳ − Vo − Ψ̃Υ)T (Ȳ − Vo − Ψ̃Υ)}
+tr{ΥQΥT }

(22)

Setting the derivatives of L3 in (22) with respect to the

projection coefficients Υ to zero we obtain

∂L3

∂Υ
= 0 ⇒ Υ = Ψ̃T (Ȳ − Vo)AN−1 (23)

We can now expand (22) as

L3 = tr{N(Ȳ − Yo + Yo − Vo − Ψ̃Υ)T

×(Ȳ − Yo + Yo − Vo − Ψ̃Υ)} + tr{ΥQΥT }

= tr{N(Ȳ − Yo)
T (Ȳ − Yo)}

+ tr{N(Yo − Vo)
T (Yo − Vo)}

+ tr{NΥT Ψ̃T Ψ̃Υ} + tr{ΥQΥT }

+2 tr{N(Ȳ − Yo)
T (Yo − Vo)}

−2 tr{N(Ȳ − Vo)
T Ψ̃Υ} (24)

Reformulating the fifth term of (24) we see that it vanishes

tr{N(Ȳ − Yo)
T (Yo − Vo)}

=
∑C

i=1

∑H
j=1

Ñi,j(ȳi,j − yo)
T (yo − vo) = 0 ,

(25)

Using (12), (23) and taking into account that Ψ̃T Ψ̃ =
ΨT Σ̂Ψ = I the summand of the third and forth term of (24)

becomes

tr{NΥT Ψ̃T Ψ̃Υ} + tr{ΥQΥT }
= tr{Υ(N + Q)ΥT } = tr{ΥNA−1NΥT }

= tr{A(Ȳ − Vo)
T Ψ̃Ψ̃T (Ȳ − Vo)}

(26)

and similarly using (23) the sixth term of (24) becomes

tr{N(Ȳ − Vo)
T Ψ̃Υ}

= tr{A(Ȳ − Vo)
T Ψ̃Ψ̃T (Ȳ − Vo)}

(27)

Substituting (25), (26), (27) into (24) we arrive to

L3 = tr{N(Ȳ − Yo)
T (Ȳ − Yo)}

+tr{N(Yo − Vo)
T (Yo − Vo)}

− tr{A(Ȳ − Vo)
T Ψ̃Ψ̃T (Ȳ − Vo)} (28)

Using the fact that AVT
o = 0, the last term of (28) is simplified

to

tr{A(Ȳ − Vo)
T Ψ̃Ψ̃T (Ȳ − Vo)} = tr{AȲT Ψ̃Ψ̃T Ȳ}

+tr{AVT
o Ψ̃Ψ̃T Vo} − 2 tr{AVT

o Ψ̃Ψ̃T Ȳ}

= tr{AȲT Ψ̃Ψ̃T Ȳ} ,
(29)
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and substituting this back to (28) we arrive to

L3 = tr{N(Ȳ − Yo)
T (Ȳ − Yo)}

+tr{N(Yo − Vo)
T (Yo − Vo)} − tr{Ψ̃T ȲAȲT Ψ̃} ,

(30)

where, Yo = Σ̂−1/2Xo, and Xo is the F × H matrix

whose column vectors equal to the weighted mean xo =
(1/N)

∑C
i=1

∑Hi

j=1

∑Ni

n=1
hn

i,jx
n
i =

∑C
i=1

∑Hi

j=1
p̃i,jx̄i,j . We

now have to minimize (30) with respect to Vo, or equivalently

tr{N(Yo−Vo)
T (Yo−Vo)} = N(yo−vo)

T (yo−vo) (31)

which is minimized for yo = vo and, thus, yielding µ̂o = xo

or in matrix form

M̂o = Xo . (32)

Without loss of generality we can set xo = [0, . . . , 0]T (e.g.

setting X ← X−Xo). Substituting this back to (30) we arrive

to

L3 = tr{Σ̂−1X̄NX̄T } − tr{ΨT X̄AX̄T Ψ} (33)

where we have used the requirement that Ψ transforms the

pooled covariance matrix Σ̂ into the unit matrix (ΨT Σ̂Ψ = I).

In (33) only the second term depends on the transformation

matrix, and, thus, this matrix can be obtained by solving the

following optimization problem

argmax
Ψ

tr{ΨT Sw
bsbΨ} subject to ΨT Sw

wsΨ = I (34)

where we have used (14) and fixed Σ̂ according to (16).

The solution to this problem is obtained by the set {ψi|i =
1, . . . , D} of the generalized eigenvectors of Sw

bsb and Sw
ws

corresponding to the D largest eigenvalues {λi|i = 1, . . . , D}
of the following generalized eigenvalue decomposition [2]

Sw
bsbΨ = Sw

wsΨΛ (35)

where Λ = diag(λ1, . . . , λD). Therefore, the subspace that

maximizes the constrained log-likelihood function in (19) at

each EM cycle coincides with the subspace that maximizes the

MSDA criterion, where the scatter matrices in (4) are replaced

by their weighted equivalent in each EM cycle. The MLE of

the true means can now be computed by substituting (23), (32)

into (11) and using the computed estimates of (16), (35) for

Sws and Ψ respectively

M̂ = Xo + Sw
wsΨΨT (X̄ − Xo)AN−1

= Sw
wsΨΨT X̄AN−1 (36)

where, we have assumed that Xo = 0.

D. Model selection

The Gaussian model described above as well as the derived

EM algorithm assume that the number of mixing components

in each Gaussian mixture density is provided. However, this

information is rarely known. In order to estimate the opti-

mum number of mixing components for each mixture density

with respect to the given training set, we utilize an iterative

procedure, where at each iteration a new Gaussian model is

specified (with respect to the number of mixture components)

and a nongaussianity measure Φ is evaluated in order to assess

the goodness of fit of the particular Gaussian model. This

iterative process is repeated until the nongaussianity measure

Φ converges to a small value as explained in the following.

Skewness and kurtosis can be used to provide an indication

of how well a particular Gaussian mixture density fits the

training data of a specific class [26], [39], [40]. Estimates

of the weighted standardized skewness β̂i,j,f and kurtosis

γ̂i,j,f along the f -th dimension regarding the j-th mixture

component of the i-th class can be computed as follows

β̂i,j,f =

1

Ñi,j

∑Ni

n=1
hn

i,j(x
n
i,j,f − µ̂i,j,f )3

σ̂3
i,j,f

, (37)

γ̂i,j,f =

1

Ñi,j

∑Ni

n=1
hn

i,j(x
n
i,j,f − µ̂i,j,f )4

σ̂4
i,j,f

− 3 , (38)

where xn
i,j,f is the f -th element of xn

i,j , and µ̂i,j,f , σ̂i,j,f are

the sample mean and standard deviation of the j-th mixture of

i-th class along the f -th dimension. The above estimates will

be close to zero for Gaussian densities and deviate from zero

the more the underlying density deviates from the Gaussian.

We can thus obtain an estimate of the skewness β̂i,j and

kurtosis γ̂i,j of the (i, j) component density by averaging along

all dimensions, i.e., β̂i,j = (1/F )
∑F

f=1
|β̂i,j,f | , γ̂i,j =

(1/F )
∑F

f=1
|γ̂i,j,f |, where |a| denotes absolute value of a.

Similarly, we can define a nongaussianity measure regarding

the Gaussian mixture density referring to the i-th class using

Φi =

Hi
∑

j=1

π̂i,j(β̂i,j + γ̂i,j) . (39)

A large value of Φi will denote that the respective Gaussian

mixture density does not fit well the underlying density

function of the i-th class training data. Therefore, at each

iteration this measure is used to select the mixture density

that yielded the worst fit according to the following criterion

k = argmax
i=1,...,C

(Φi) , (40)

and the required number of mixture components referring to

this mixture density is increased by one (Hk ← Hk + 1).

Similarly, at each iteration a total nongaussianity measure is

defined for assessing the fitness of the current Gaussian model

with respect to the overall training data set

Φ =
C

∑

i=1

p̃iΦi . (41)

The value of Φ is examined at each iteration, and the iterative

procedure is completed upon the convergence of Φ to a steady-

state solution. The resulting EM-MSDA algorithm is outlined

in Algorithm 1. Alternatively, a cross-validation criterion can

be used to select the Gaussian model that provides the best

empirical recognition rate.

III. FRACTIONAL STEP MIXTURE SUBCLASS

DISCRIMINANT ANALYSIS

In equivalence to the class separation problem of LDA [29]–

[31], the subclass separation problem may occur when the

dimensionality of the MSDA subspace D is strictly lower
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Algorithm 1 EM-MSDA

Input: Annotated data set X

Output: Ψ

1: Initialize: H1 = · · · = HC = 1, H = C, Φi (39), Φ (41)

2: repeat

3: Compute class label k of class to repartition (40)

4: Set: Hk ← Hk + 1
5: Repartition k-th class to Hk subclasses using k-means

6: Initialize the MLE parameters θ̂

7: repeat

8: E-step: Compute responsibilities hn
i,j (7)

9: M-step: Compute MLEs: Ψ (35), θ̂ (16), (36)

10: until convergence of θ̂

11: Compute nongaussianity Φi for each class (39)

12: Compute total nongaussianity Φ (41)

13: until convergence of Φ

than the rank of the inter-between-subclass scatter matrix

(D < rank(Sbsb) ≤ min(F,H − 1)). When this happens,

distinct subclasses in the measurement space may not separate

well in the lower dimensional subspace. To demonstrate this

problem we use an artificial dataset of two classes, where, the

first class consists of two Gaussian subclasses N1,1, N1,2, and

the second class is a unimodal Gaussian N2,1. The means of

the Gaussian distributions are µ1,1 = [6 22]T , µ1,2 = [0 0]T ,

µ2,1 = [12 22]T , whereas a common covariance matrix is

shared along all distributions Σ = [0.7 0.3 ; 0.3 0.7], as

depicted in Figure 1. Under these settings, we see that the one-

dimensional projection transformation derived using MSDA

(ψMSDA) causes a large overlap between the subclasses N1,1

and N2,1, which are close to each other, but well separated

in the measurement space. This happens because the large

subclass distance d1,2.2,1 = ||µ1,2 − µ2,1||
2 dominates the

MSDA criterion, and, thus, the derived projection transforma-

tion preserves well the separation of the subclasses N1,2 and

N2,1, while, on the other hand, merges the two subclasses that

are close together in the measurement space, N1,1 and N2,1.

Fig. 1. Subclass separation problem.

To overcome the subclass separation problem, inspired from

[31], we introduce the fractional-step MSDA (FMSDA) that

utilizes the following objective function

JFMSDA(Ψ) =
tr(ΨT ŠbsbΨ)

tr(ΨT Σ̌xΨ)
, (42)

where the inter-between-subclass scatter matrix is modified

using an appropriate weighting function wi,j.k,l

Šbsb =
C−1
∑

i=1

Hi
∑

j=1

C
∑

k=i+1

Hk
∑

l=1

wi,j.k,l(µi,j − µk,l)(µi,j − µk,l)
T ,

(43)

and the modified covariance matrix accordingly becomes

Σ̌x ≡ Šbsb +Sws. The weighting function is a monotonically

decreasing function defined as wi,j.k,l = d−r
i,j.k,l, where,

di,j.k,l = ||µi,j − µk,l||
2 is the euclidian distance between

the estimated means of subclasses (i, j) and (k, l), and r is an

integer number larger than two.

The FMSDA algorithm (Algorithm 2) starts with the ap-

plication of the subclass partitioning procedure described in

the previous section (Eqs. (37) to (41)) to derive a subclass

division of the data. Then, the FMSDA criterion (42) is utilized

to initialize the projection transformation matrix ΨD ∈ R
F×D,

and an iterative algorithm is applied, where at each iteration ρ
fractional steps are used for decreasing the dimensionality of

the subspace by one. That is, at the t-th fractional step of the

k-th iteration the data are projected in the k-th dimensional

subspace using the transformation matrix Ψk ∈ R
F×k, scaled

utilizing the following scaling transformation

ϑ(y, t) =

{

αtyi, i = k
yi, i = 1, . . . , k − 1,

(44)

where α = exp(− ln(ρ)/(ρ− 1)), and the transformation ma-

trix Ψk is recomputed using the projected and scaled data. At

the end of this fractional procedure the last, k-th eigenvector of

Ψk (i.e., the one that corresponds to the smallest eigenvalue

of Ψk) is discarded. The scaling transformation compresses

the data along the direction of the last eigenvector of Ψk.

This allows the subclass means that are along the direction

of the k-th eigenvector to be increasingly weighted in the

next fractional step, causing the k-dimensional subspace to

reorient so that a useful projection direction is not discarded

at the end of each iteration. A validation set is used to

assess the performance of the derived projection matrix Ψk

at each iteration, and the one that provided the best correct

classification rate (CCR) is selected.

The main advantage of FMSDA (and also EM-MSDA)

over kernel variants of LDA is that the projection matrix

still constitutes a linear transformation, which can provide

real time performance during the testing stage. On the other

hand, in contrast to EM-MSDA that tends to optimize the fit

of the subclasses and simultaneously seek the projection that

maximizes the inter-subclass scatter of means, FMSDA derives

an initial subclass structure of the data and gradually attempts

to identify the subspace that provides the best empirical

recognition rate.

IV. KERNEL MIXTURE SUBCLASS DISCRIMINANT

ANALYSIS

The methods described in the previous sections will still

not perform well when it is not possible to identify a sub-
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Algorithm 2 FMSDA

Input: Annotated set X, validation set G, parameters ρ, r
Output: Ψ

1: Initialize: H1 = · · · = HC = 1, H = C, Φi (39), Φ (41)

2: repeat

3: Compute class label k of class to repartition (40)

4: Set Hk ← Hk + 1 and repartition k-th class

5: Compute nongaussianity values Φi (39) and Φ (41)

6: until convergence of Φ
7: Compute ΨD (42), set D = rank(Šbsb) (43)

8: Set CCRk = 0, k = 1, . . . , D
9: for k = D to 1 do

10: for t = 0 to ρ − 1 do

11: Project training data: y = ΨT
k x

12: Apply scaling transformation: ỹ = ϑ(y, t)
13: Compute Ψ̃ (42) using scaled data

14: Set: Ψk ← ΨkΨ̃

15: end for

16: Discard the last (k-th) column of Ψk

17: Project and classify validation samples using Ψk

18: if sample gj is classified correctly then

19: CCRk + +
20: end if

21: end for

22: Set: ko = argmaxk(CCRk); Ψ = Ψko

class division that results in linearly separable classes [32],

[33]. To deal with such cases, a nonlinear feature mapping

φ(·) : R
F 7→ F can be used to map the partitioned data

into some high- or even infinite-dimensional feature space F ,

where the data are expected to be linearly separable. Given a

subclass partition of the data X = [X1,1, . . . ,XC,HC
], where

Xi,j = [x1
i,j , . . . ,x

Ni,j

i,j ] contains the observations of the (i, j)

subclass, the transformation matrix W that maximizes the

MSDA criterion in F can be computed from the following

generalized eigenvalue problem

S
φ
bsbW = Σ̌

φ
xWΛφ (45)

where,

S
φ
bsb =

C−1
∑

i=1

Hi
∑

j=1

C
∑

k=i+1

Hk
∑

l=1

p̂i,j p̂k,l(µ̂
φ
i,j − µ̂

φ
k,l)(µ̂

φ
i,j − µ̂

φ
k,l)

T ,

Σ̌
φ
x = S

φ
bsb + Sφ

ws, Sφ
ws =

C
∑

i=1

Hi
∑

j=1

p̂i,jΣ̂
φ
i,j ,

are the inter-between-subclass scatter matrix, the within-

subclass scatter matrix, the modified total sample covariance

matrix, and Σ̂
φ
i,j = (1/Ni,j)

∑Ni,j

n=1(φ(xn
i,j)− µ̂

φ
i,j)(φ(xn

i,j)−

µ̂
φ
i,j)

T , µ̂
φ
i,j = (1/Ni,j)

∑Ni,j

n=1 φ(xn
i,j) are the sample co-

variance matrix and the sample mean of (i, j) subclass in F
respectively. To avoid working with the mapped data explicitly

(which may be impossible in case of infinite dimensional

feature space F) a kernel function formulated as an inner

product in the feature space satisfying the Mercer’s condition

is used [9]

k(xn
i,j ,x

ν
k,l) = φ(xn

i,j)
T φ(xν

k,l) . (46)

Under mild conditions, any solution of W must lie in the span

of all the training samples [9], and, thus, it can be represented

by a linear combination of the training samples as

W = Φ(X)Γ (47)

where Φ(X) = [φ(x1
1,1), . . . ,φ(x

NC,HC

C,HC
)] and Γ ∈ R

N×C−1

contains the expansion coefficients. Substituting (47) into

(45) and multiplying from the left with Φ(X)T we get

ΦT (X)Sφ
bsbΦ(X)Γ = ΦT (X)Σ̌φ

xΦ(X)ΓΛφ or

Sk
bsbΓ = Σ̌k

xΓΛφ (48)

where we set Sk
bsb = ΦT (X)Sφ

bsbΦ(X), Sk
ws =

ΦT (X)Sφ
wsΦ(X), and Σ̌k

x = Sk
bsb + Sk

ws. The mean and

sample covariance matrix of the (i, j) subclass in F can

be written in matrix product form as µ
φ
i,j = Φ(Xi,j)pi,j

and Σ
φ
i,j = (1/Ni,j)Φ(Xi,j)(I−Pi,j)Φ

T (Xi,j) respectively,

where, pi,j is a Ni,j×1 vector and Pi,j is a Ni,j×Ni,j matrix

with all elements equal to 1/Ni,j . Using the above expressions,

the scatter matrices in (48) can be entirely expressed by the

kernel functions as follows

Sk
bsb =

C−1
∑

i=1

Hi
∑

j=1

C
∑

k=i+1

Hk
∑

l=1

pi,jpk,l(Ki,jpi,j − Kk,lpk,l)

×(Ki,jpi,j − Kk,lpk,l)
T , (49)

Sk
ws =

1

N

C
∑

i=1

Hi
∑

j=1

Ki,j(I − Pi,j)K
T
i,j (50)

where, Ki,j = ΦT (X)Φ(Xi,j), Ki,j ∈ R
N×Ni,j , and,

thus, Γ can be easily computed from (48) using only kernel

evaluations. The derived Γ can then be used for the projection

of a test sample φ(x) in the discriminant subspace using

z = WT φ(x) = ΓT k (51)

where k = [k(x1
1,1,x), . . . , k(x

NC,HC

C,HC
,x)]T and z is the

projection of φ(x).
The optimal subclass partition of the data is identified by ex-

ploiting the nongaussianity-based iterative algorithm described

in Algorithms 1 and 2. Consequently, the KMSDA algorithm

is presented in Algorithm 3. In certain cases, KMSDA may

provide superior performance in comparison to EM-MSDA

and FMSDA, however, at the cost of much higher computation

time during both the training and testing stage, especially

when large-scale training data sets are used (due to the large

number of kernel evaluations for mapping the observations in

the kernel space, and the associated computational burden of

performing eigenanalysis in this space).

V. EXPERIMENTS

In this section, we use 12 standard benchmarks (defining

in total 19 classification tasks) to compare the proposed

algorithms, EM-MSDA, FMSDA and KMSDA, with various

linear and nonlinear methods, in particular with PCA [41],

LDA [6], FDA [30], MDA [16], SMDA [21], SDA [17],

MSDA [26], KDA [9] and KSDA [33].
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Algorithm 3 KMSDA

Input: Annotated data set X

Output: Γ

1: Initialize: H1 = · · · = HC = 1, H = C, Φi (39), Φ (41)

2: repeat

3: Compute class label k of class to repartition (40)

4: Set: Hk ← Hk + 1
5: Repartition k-th class to Hk subclasses using k-means

6: Compute Φi (39) and total nongaussianity Φ (41)

7: until convergence of Φ
8: Compute Γ (48)

A. Datasets

For the evaluation we use four datasets that belong to the

UCI repository [42], two datasets from the Gunnar Rätsch’s

Benchmark Datasets [43], and six datasets that have been

widely used for face, object and video shot detection:

Dataset 1: The Monk problem [42] is based on an artificial

dataset of 432 data points in N
6
+. Three binary classification

tasks have been defined, i.e., MONK1, MONK2 and MONK3.

For each task, a portion of the data has been randomly selected

for forming the training set, and all 432 samples are used as

the test set. In addition, in the third task 5% of the training

data have been annotated wrongly in order to simulate the

effect of random noise contaminating the data.

Dataset 2: The Landsat data set (LSD) consists of 6 classes

(red soil, cotton crop, grey soil, damp grey soil, soil with

vegetation stubble, and very damp grey soil) and 6435 feature

vectors in N
36
+ . A partition of the dataset to training set (4435

samples) and test set (2000 samples) is already provided in

[42].

Dataset 3: The Wisconsin diagnostic breast cancer (WDBC)

dataset [42] is used for the recognition of benign and malignant

cells from diagnostic images. This database comprises 569

diagnostic images represented in R
30.

Dataset 4: The multi-feature digit dataset (MDD) [42]

consists of ten classes and 200 patterns per class, i.e. 2,000

patterns in total, where each class represents one handwritten

numeral (“0”-“9”). Each pattern is represented in terms of 6

feature sets, extracted from a 30×48 binary image, as follows:

a) MDD-pix: 240 pixel averages in 2× 3 windows, b) MDD-

fou: 76 Fourier coefficients of the character shapes, c) MDD-

fac: 216 profile correlations, d) MDD-kar: 64 Karhunen-Loève

coefficients, e) MDD-zer: 47 Zernike moments, f) MDD-

mor: 6 morphological features. Each set of features defines

a separate classification task.

Dataset 5: The ETH80 database [44] consists of 8 ob-

ject classes, namely, apples, pears, cars, cows, horses, dogs,

tomatoes, and cups. Each class contains color images of 10

different objects recorded from 41 different views spaced

evenly over the upper viewing hemisphere, i.e., the database

contains 3280 images in total. In our computations the classic

COIL segmentation masks of 128×128 pixels size provided in

[44] are employed, resized to 25× 30 pixels size and scanned

column-wise to form 750-dimensional feature vectors.

Dataset 6: A subset of the MediaMill Challenge dataset

is used for event recognition experiments. It consists of 492

shots belonging to one of five different sport events (baseball,

basketball, football, golf, soccer). Each shot is represented

by a 101-dimensional vector, where the κ-th component of

this vector is in the range [0; 1], expressing the degree of

confidence that the κ-th concept (out of 101 concepts) is

present in the shot [45]. These values are the output of SVM-

based automatic concept detectors, thus represent highly-noisy

data.

Datasets 7-10: Four face datasets were used in our ex-

periments. The Sheffield face database [46] offers 575 gray-

scale cropped facial images of 20 individuals, shown in a

range of poses from profile to frontal views. The AT&T

Database of Faces [47] contains 400 facial images of 40

individuals captured at different times, with varying lighting

conditions, facial expressions, etc. The Extended Yale B

(ExtYaleB) database [48] offers 2432 gray-scale cropped facial

images of 38 individuals under 64 illumination conditions.

The CMU Pose, Illumination, and Expression (PIE) database

[49] is a collection of more than 40,000 facial images of 68

people captured across 13 different poses, under 43 different

illumination conditions, and with four different expressions.

For the Sheffield database, we downscaled the facial images

to size 32 × 32 pixels resolution using bicubic interpolation,

and scanned them columnwise to retrieve a set of 575 feature

vectors in R
1024. For the rest of the face databases we used

the preprocessed 32 × 32 pixels resolution facial image sets

of the Four Face database collection [50], [51].

Dataset 11: The Banana set [52] is a binary class dataset

consisting of 5300 samples in R
2. It is an artificial dataset

created using a mixture of overlapping Gaussians.

Dataset 12: The Breast Cancer dataset [52] is a two-class

dataset containing samples of 277 patients in R
9 (excluding

the nine samples that contain unknown attribute values).

B. Evaluation

A division of the datasets described in the previous sub-

section to training and test sets is necessary in order to

evaluate the proposed algorithms. Such a division is provided

along with the data for Monk and LSD. For Banana and

Breast Cancer, we used 50 random realizations for training/test

sets for each dataset from the Gunnar Rätsch’s benchmark

collection [52]. Similarly, for AT&T, ExtYaleB and PIE, 30

random realizations from the Four Face database collection

[50], [51] were used, where the training set at each realization

contains 10 images per subject for ExtYaleB and PIE, and

8 images per subject for AT&T. For each of the remaining

datasets, we divided them following standard practices in

similar works of the literature, e.g. [17], [33]. In particular,

we have designed ς cross-validation (CV) folds by selecting

randomly ̟% of the samples of each class at each fold to form

the test set, and used the rest of the samples as the training

set. The number of folds ς and the percentage of test samples

̟% for WDBC, MDD, ETH-80, Sheffield, and Mediamill

dataset were set to (ς, ̟) = (1, 50), (5, 50), (10, 10), (30, 60)
and (30, 20) respectively.

The optimal parameters of each method at each CV fold are

selected using as primary metric the correct classification rate
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(CCR). For this, the global-to-local search strategy is applied

(e.g., see [9]), i.e., after globally searching using a coarse

scale of the parameter space, a candidate interval where the

optimal parameters might exist is retrieved, and then a finer

inspection for identifying the optimal parameters within this

interval is performed. For the subclass methods (SDA, MSDA,

FMSDA, EM-MSDA, KMSDA) we optimize over the number

of subclasses in each class, and consequently over the total

number of subclasses. For the FMSDA method we additionally

require the identification of the exponent r of the weighting

functions in (43) and the number of fractional steps ρ ∈ N+

for decreasing the subspace dimensionality by one. For the

optimization of these parameters we search over the following

values: r = 3, 4, . . . , 16 and ρ = 3, 4, . . . , 20. Similarly, for

the kernel-based methods (KDA, KSDA, KMSDA) we need

to identify the optimal parameters of the kernel functions. In

our experiments we used two types of base kernels: Guassian

radial basis function k(xi,xj) = exp(−‖xi − xj‖/2σ2), σ ∈

R+, and the polynomial function k(xi,xj) = ((xixj) + o)̺,

o ∈ R, ̺ ∈ N+. For their parameters we search for the optimal

values over the following ranges: o = 0, 1, ̺ = 1, 2, . . . , 8,

σ = 0.1, 0.2, . . . , 4. We should also note that for the datasets

whose number of training observations N is small compared

to their dimensionality F (such as the Sheffield and ETH-

80 datasets), the computation of the inverse of the MLE of

the sample covariance matrix (16) by the EM-based meth-

ods, for instance SMDA and EM-MSDA, will be especially

problematic (e.g. see [2], [53]). In these cases, we compute

the inverse using the eigenvalue decomposition of the sample

covariance matrix, keeping only the eigenvalue components

whose eigenvalues are above a specific threshold [2].

The recognition performance of a method regarding a

dataset is measured using the average CCR (ACCR) along

all CV folds, i.e., at each CV fold the maximum correct

classification rate (CCR) for the different set of parameters is

retained, and the CCRs are averaged along all CV folds. Sim-

ilarly, the ground truth labels and the predicted labels at each

CV fold for each algorithm are retained, and the McNemar’s

hypothesis test [54], [55] with a significance level of 0.025 is

used to evaluate the statistical significance of the difference

in the performance between each of the proposed algorithms

and any other algorithm used in our experiments. Moreover,

to compare the computational complexity of the algorithms

we recorded the testing and training times in minutes, on a

Intel i7 2.8GHz machine, with respect to one CV fold for

each method and each dataset. Except for MDA and SMDA,

for which their R package implementation [21] is exploited,

all the other algorithms are compared using an unoptimized

Matlab implementation. The FMSDA algorithm was then used

as the baseline algorithm to compute the speedup rate sκ for

the κ-th algorithm using sκ = Tfmsda/Tκ, where Tfmsda and

Tκ are the training (or testing) time concerning the FMSDA

and the κ-th algorithm respectively.

The ACCRs of the methods along with the average dimen-

sionality in the discriminant subspace are shown in Table I,

while, the results of the statistical significance tests are shown

in Table II. In the latter, a cell contains the symbol +, ⋆ or ∼
for FMSDA, EMMSDA or KMSDA respectively, in order to

denote that the improvement in performance achieved by the

aforementioned methods in comparison to the method corre-

sponding to the column of the table is statistically significant.

Finally, the speedup rate for the training stage (left side of

the comma) and testing stage (right side of the comma) of the

algorithms on each dataset are depicted in Table III, where

higher speedup values indicate faster computations. In every

table we have divided the methods into three groups, namely,

linear, subclass and kernel-based methods. With respect to this

partitioning, for Tables I and III we have used bold digits

and underlined-bold digits to denote the best performance rate

within each group and along all methods respectively.

From Table I we can see that for the majority of the datasets

the best ACCR among the linear subclass methods is provided

by FMSDA (in 10 out of 19 classification tasks of Table I) or

EM-MSDA (again in 10 out of 19 tasks). In overall the best

ACCR among all methods is achieved by KMSDA (in 17 out

of 19 tasks). We should also note that in many cases FMSDA

and EM-MSDA outperform the kernel-based methods as well

(including KMSDA in 2 classification tasks, while they match

KMSDA’s performance in another 2 tasks). Between FMSDA

and EM-MSDA, we observe that the former tends to perform

better when the data dimensionality is larger than the number

of the samples, and at the same time many subclasses are

necessary in order to capture the subclass structure of the data.

In these cases, the training samples per subclass are limited

and consequently the subclass covariance matrices are poorly

estimated [53]. This adversely affects the performance of

EM-based methods. For instance, the performance of SMDA

and EM-MSDA on the ETH80 dataset (which contains 8

object classes and each object class 10 different objects) is

considerably lower than that of FMSDA.

From the results in Table II we can also see that the

performance improvements attained by the proposed methods

are statistically significant for most of the datasets. From Table

III, we additionally see that FMSDA and EM-MSDA provide

systematically lower computation times during the testing

stage among all linear subclass methods (and, as expected

are also faster than the kernel-based methods). This quality

of FMSDA and EM-MSDA is a critical advantage of them,

especially for applications that require real-time or near real-

time processing of large data volumes, such as event detection

in video streams. Summarizing, we observe that the three

proposed methods in most cases outperform the current state

of the art as recently reported for KSDA in [33] and in the

also very recent works [21], [26], at the same time offering

competitive response times during the testing (recognition)

stage.

VI. CONCLUSIONS

Subclass DA methods are attractive alternatives to the

kernel DA variants because they offer fast (often real-time)

computations and comparable recognition performance. Fur-

thermore, combining subclass partitioning and the kernel trick

in a single DA method opens new possibilities for improved

DA effectiveness. MSDA is a very recent subclass method,

that utilizes an effective partitioning procedure to derive a
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TABLE I
RECOGNITION RATES (ACCRS). THE DIMENSIONALITY OF EACH DATASET IS GIVEN IN THE PARENTHESIS NEXT TO THE DATASET’S NAME.

Linear methods Linear subclass methods Kernel methods

PCA LDA FDA MDA SMDA SDA MSDA FMSDA EM-MSDA KDA KSDA KMSDA

MONK1 (6) 81.4% (6) 69.9% (1) 69.9% (1) 95.6% (6) 93% (6) 84.4% (6) 98.8% (4) 99.8% (3) 96.2% (3) 90.2% (1) 94.4% (5) 99.8% (3)

MONK2 (6) 71.7% (6) 67.3% (1) 67.3% (1) 76.1% (5) 65.3% (3) 84.9% (6) 87.2% (6) 85.2% (5) 90% (6) 81.9% (1) 83.5% (29) 91% (16)

MONK3 (6) 86.8% (6) 85.8% (1) 85.8% (1) 94.1% (6) 89.5% (6) 88.9% (3) 93.0% (3) 94.4% (2) 94.4% (3) 95.8% (1) 94.6% (3) 96.2% (1)

LSD (36) 89.4% (36) 84% (5) 85.2% (5) 88.1% (35) 83.2% (35) 87.8% (17) 89.9% (16) 90.4% (17) 89% (19) 87.1% (5) 89.3% (6) 89.9% (38)

WDBC (30) 89.4% (30) 93.3% (1) 94.7% (1) 96.1% (27) 91.9% (19) 94.7% (15) 96.8% (10) 97.1% (5) 97.2% (8) 93.3% (1) 94.3% (5) 95.4% (5)

MDD-pix (240) 97.5% (240) 94.1% (9) 95.3% (8) 96.4% (105) 96.7% (71) 96.6% (55) 97.8% (70) 97.3% (44) 95.9% (19) 98.5% (9) 98.2% (47) 98.6% (23)

MDD-fou (76) 82.6% (76) 80.4% (9) 80.2% (8) 82.9% (72) 82.6% (64) 81.3% (52) 82.2% (24) 82.7% (13) 83.1% (23) 85.4% (9) 84% (17) 85.9% (12)

MDD-fac (216) 94.4% (213) 97.6% (9) 97.6% (8) 98.2% (63) 97.2% (80) 96.2% (31) 98.3% (29) 98.4% (20) 98.4% (43) 98.2% (9) 95.7% (23) 98.8% (13)

MDD-kar (64) 97.2% (64) 95.7% (9) 95.6% (8) 97.2% (64) 97.3% (55) 97.0% (41) 97.2% (20) 96.8% (15) 97.5% (57) 98.3% (9) 98.1% (23) 98.6% (22)

MDD-zer (47) 81.1% (47) 76.4% (9) 79.3% (8) 83% (47) 83.2% (24) 81.2% (22) 83.2% (22) 82.8% (27) 78.7% (16) 84.0% (9) 83% (23) 84.8% (27)

MDD-mor (6) 59.5% (6) 67.2% (6) 67.3% (4) 67.4% (6) 68.2% (6) 67.5% (6) 68.3% (6) 68.5% (5) 67.6% (6) 65.8% (9) 64.8% (17) 68.7% (33)

ETH80 (750) 83.5% (750) 69.5% (7) 77.1% (7) 79.4% (115) 73.6% (82) 85.1% (73) 86.5% (75) 87% (65) 74.7% (41) 86.9% (7) 83.2% (17) 87.2% (63)

Mediamill (101) 68% (101) 64.9% (4) 63.9% (4) 71.3% (21) 60.2% (9) 69.3% (35) 71.4 (23) 75.8% (31) 72% (27) 74.3% (4) 76.8% (26) 77.5% (24)

Sheffield (1024) 94.9% (236) 95.5% (19) 96.8% (19) 90.3% (39) 95.2% (74) 97.2% (31) 97.6% (24) 98.5% (18) 97.3% (34) 98% (19) 98.5% (31) 98.5% (23)

A&T (1024) 92.5% (319) 96.1% (39) 97.8% (33) 93.5% (81) 95.4% (81) 97.7% (47) 98.3% (44) 98.9% (29) 98.9% (39) 97.9% (39) 98.9% (47) 99.4% (40)

ExtYaleB (1024) 53.4% (379) 85.6% (37) 85.6% (35) 73.3% (75) 66.2% (39) 86.5% (71) 86.7% (48) 87.7% (40) 87.8% (37) 85.5% (37) 87.9% (48) 89.9% (39)

PIE (1024) 44.4% (679) 77.6% (67) 79.8% (41) 82.1% (105) 62.6% (69) 80% (67) 84.9% (85) 86.5% (66) 86.1% (67) 85.1% (62) 83.7% (67) 86.7% (74)

Banana (1024) 68.4% (2) 57.2% (1) 63.7% (1) 88.3% (4) 88.3% (2) 86.2% (2) 88.4% (2) 88.3% (2) 88.9% (2) 88.8% (1) 88.4% (3) 89.5% (4)

B. Cancer (1024) 67.6% (9) 65.2% (1) 65.2% (1) 71.4% (4) 69.4% (2) 70.4% (4) 73.9% (7) 75.3% (7) 77.9% (9) 74.7% (1) 74.6% (3) 79.2% (3)

TABLE II
STATISTICAL SIGNIFICANCE RESULTS. SYMBOLS +, ∗, ∼ DENOTE THAT THE IMPROVEMENT IN PERFORMANCE ACHIEVED BY FMSDA (+), EMMSDA

(∗), OR KMSDA (∼) IN COMPARISON TO THE METHOD OF A GIVEN COLUMN IS STATISTICALLY SIGNIFICANT.

Linear methods Linear subclass methods Kernel methods

PCA LDA FDA MDA SMDA SDA MSDA KDA KSDA

MONK1 +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∼ +, ∼ +, ∗, ∼ +, ∗, ∼ +, ∼

MONK2 +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ ∗, ∼ ∗, ∼ ∗, ∼

MONK3 +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼

LSD +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∼

WDBC +, ∗, ∼ +, ∗

MDD-pix ∼ +, ∼ ∼ ∼ ∼ ∼

MDD-fou ∼ +, ∗, ∼ +, ∗, ∼ ∼ ∼ +, ∗, ∼ ∼ ∼

MDD-fac +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ ∼ +, ∗, ∼ +, ∗, ∼ ∼ ∼ +, ∗, ∼

MDD-kar ∼ +, ∗, ∼ +, ∗, ∼ ∼ ∼ ∗, ∼ ∼ ∼

MDD-zer +, ∼ +, ∗, ∼ +, ∼ ∼ ∼ +, ∼ ∼ ∼

MDD-mor +, ∗, ∼ +, ∼ +, ∼ +, ∼ +, ∼ +, ∼ +, ∼

ETH80 +, ∼ +, ∗, ∼ +, ∼ +, ∼ +, ∼ +, ∼ +, ∼

Mediamill +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗ +, ∗, ∼ +, ∗ +, ∗ +, ∗

Sheffield +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∼ +, ∼ +, ∼

A&T +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ ∼ +, ∗, ∼ ∼

ExtYaleB +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ ∼

PIE +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼

Banana +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ ∗, ∼ ∗, ∼ +, ∗, ∼

B. Cancer +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼ +, ∗, ∼

TABLE III
TRAINING AND TESTING SPEEDUP RATES.

Linear methods Linear subclass methods Kernel methods

PCA LDA FDA MDA SMDA SDA MSDA FMSDA EM-MSDA KDA KSDA KMSDA

MONK1 15.19, 0.13 34.07, 1 1.79, 0.89 11.81, 0.56 4.20, 0.57 6.74, 0.98 3.51, 1.09 1, 1 2.87, 0.92 3.08, 0.59 0.20, 0.65 0.18, 0.64

MONK2 10.19, 0.12 35.74, 0.94 2.07, 0.88 12.12, 0.58 7.84, 0.45 8.98, 0.94 4.46, 0.94 1, 1 1.32, 1.18 3.18, 0.59 0.13, 0.55 0.13, 0.58

MONK3 15.96, 0.13 35.86, 1 2.13, 0.91 12.7, 0.83 4.45, 0.65 8.74, 0.99 4.05, 0.95 1, 1 3.54, 1.25 3.03, 0.54 0.21, 0.65 0.19, 0.62

LSD 331.16, 0.76 564.22, 1.32 8.68, 1.42 37.59, 0.98 6.71, 0.64 30.89, 0.99 9.30, 0.97 1, 1 2.20, 0.96 0.07, 0.52 0.01, 0.46 0.01, 0.43

WDBC 23.10, 0.10 54.40, 1.06 2.60, 0.76 5.75, 0.17 0.18, 0.15 4.85, 0.94 3.43, 0.99 1, 1 1.32, 1.06 1.29, 0.45 0.03, 0.46 0.03, 0.47

MDD-pix 410.92, 0.33 1136.07, 1.63 6.04, 1.41 13.41, 0.06 1.1, 0.37 14.86, 0.73 1.29, 0.78 1, 1 3.57, 1.13 3.02, 0.39 0.17, 0.35 0.03, 0.35

MDD-fou 517.16, 0.65 934.62, 1.27 3.23, 1.20 9.18, 0.07 1.18, 0.61 20.41, 0.61 6.46, 0.99 1, 1 3.68, 0.98 1.31, 0.38 0.07, 0.35 0.01, 0.34

MDD-fac 169.54, 0.30 357.92, 1.40 2.22, 1.24 4.06, 0.05 0.39, 0.4 6.44, 0.78 1.61, 0.95 1, 1 1.35, 0.96 1.05, 0.34 0.06, 0.31 0.01, 0.31

MDD-kar 181.93, 0.65 339.60, 1.27 1.06, 1.11 2.96, 0.07 0.48, 0.62 7.96, 0.60 2.68, 0.91 1, 1 1.07, 0.85 0.39, 0.36 0.02, 0.32 0.01, 0.32

MDD-zer 212.70, 0.80 296.79, 1.09 1.22, 1.13 3.62, 0.09 0.79, 0.89 10.64, 0.93 2.13, 0.88 1, 1 3.40, 0.96 0.46, 0.4 0.02, 0.34 0.01, 0.34

MDD-mor 389.80, 1.03 347.17, 1.06 1.85, 1.13 6.41, 0.15 8.13, 0.21 15.87, 0.87 0.65, 0.37 1, 1 3.09, 0.82 0.34, 0.33 0.02, 0.35 0.01, 0.30

ETH80 380.92, 0.09 1123.13, 1.19 13.31, 2.09 21.85, 0.23 1.12, 1.07 7.14, 1.02 1.18, 1.05 1, 1 0.51, 1.08 1.37, 0.32 0.03, 0.28 0.01, 0.28

Mediamill 168.18, 0.06 305.82, 1.78 5.47, 1.17 19.42, 0.1 64.88, 0.41 21.80, 0.92 10, 1.02 1, 1 2.13, 1.04 4.32, 0.53 0.14, 0.47 0.05, 0.47

Sheffield 470.65, 0.12 678.09, 0.99 1.09, 0.58 62.25, 0.08 3.72, 0.06 6.53, 0.26 18.14, 0.98 1, 1 2.52, 0.99 74.04, 0.39 12.33, 0.38 4.30, 0.39

A&T 2470.1, 0.31 3169.4, 0.93 0.5, 0.87 131.33, 0.09 1.95, 0.19 1.47, 0.79 0.83, 0.82 1, 1 0.61, 0.93 27.34, 0.36 1.38, 0.25 1.29, 0.34

ExtYaleB 510.28, 0.27 919.18, 0.92 0.72, 1.13 22.76, 0.09 3.65, 0.09 6.29, 0.66 1.32, 0.74 1, 1 0.59, 1.02 16.47, 0.47 3.17, 0.36 1.53, 0.4

PIE 472.67, 0.12 2115.13, 0.97 0.47, 1.03 54.84, 0.38 5.77, 0.31 13.36, 0.99 0.61, 0.74 1, 1 1.81, 1 44.09, 0.49 2.22, 0.43 1.39, 0.34

Banana 11.98, 0.93 7.65, 1.1 0.74, 1.1 50.79, 0.54 15.63, 0.83 2.29, 0.99 1.34, 0.99 1, 1 0.59, 0.98 0.17, 0.69 0.04, 0.59 0.03, 0.49

B. Cancer 21.67, 0.4 40.2, 1.17 3.14, 1.14 37.8, 0.23 3.37, 0.63 21.07, 1.04 9.06, 0.94 1, 1 0.33, 0.90 0.43, 0.25 0.27, 0.18 0.08, 0.18

Gaussian homoscedastic division of the data. In this work,

we extended MSDA in three different ways: a) EM-MSDA

was derived by linking MSDA with the Guassian mixture

model, b) FMSDA was proposed in order to solve the so-called

subclass separation problem, and c) KMSDA was presented

for separating categories with nonlinearly separable subclasses

using the kernel trick. The effectiveness of the three proposed

DA methods was verified by extensive experimentation on

various publicly available standard benchmarks.

Our methods could also be extended and used in additional

related problems, such as feature selection. Typically, this is

an application domain for methods such as support vector

machines [56]. Recently, a feature selection method based on

LDA was proposed in [57]. This method ranks each feature

using the sum of the eigenvectors of the LDA projection

matrix. In a similar fashion FMSDA could be easily modified

to rank and discard instead of the least discriminant dimension

the least significant feature at each iteration. We plan to

investigate this possibility, as well the possibility of extending

the proposed methods for signature-based classification, taking

advantage of the work described in [58].
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APPENDIX A

DERIVATION OF EQUATIONS IN SECTION II

A. Derivation of Eqs. (6) and (7)

The Gaussian mixture distribution concerning the i-th class

in (5) can be derived in terms of latent variables [36],

[37], as described in the following. Let Zi ∈ R
Hi be a

categorical latent random vector concerning the i-th class,

whose parameter space Zi is the standard base of R
Hi , i.e.,

Zi = {ei,1, . . . , ei,Hi
}, where only the j-th element of the unit

vector ei,j is equal to one and all other elements are equal

to zero. Setting p(Zi = ei,j) = πi,j and p(x|Zi = ei,j) =
N (x|µi,j) the marginal and conditional densities, p(zi) and

p(x|zi), are expressed in terms of the mixing coefficients

and mixture components respectively, p(zi) =
∏Hi

j=1
π

zi,j

i,j ,

p(x|zi) =
∏Hi

j=1
N (x|µi,j)

zi,j . Thus, using the product rule

of probability we can express the i-th class-conditional joint

density as

p(x, zi|ωi) = p(zi|ωi)p(x|zi, ωi) = p(zi)p(x|zi)

=

Hi
∏

j=1

(πi,jN (x|µi,j))
zi,j , (52)

where we have used the fact that x is conditionally indepen-

dent of ωi given zi, and zi is independent of ωi. The i-th
class-conditional marginal distribution of x can then be written

as

p(x|ωi) =
∑

zi

p(x, zi|ωi) =

Hi
∑

j=1

πi,jN (x|µi,j), (53)

which is a Gaussian mixture equivalent to (5), and, using the

Bayes’ rule the posterior distribution is also derived

p(zi|x, ωi) =

∏Hi

j=1
(πi,jN (x|µi,j))

zi,j

∑Hi

j=1
πi,jN (x|µi,j)

. (54)

Therefore, under the i.i.d. assumption, the likelihood of the

complete data set is expressed as (p.108, [27])

p(X,Z|θ) =
C
∏

i=1

Ni
∏

n=1

p(xn
i , zn

i |ωi)

=
C
∏

i=1

Ni
∏

n=1

Hi
∏

j=1

(πi,jN (xn
i |µi,j))

zn
i,j . (55)

while the posterior distribution takes the form

p(Z|X, θ) ∝
C
∏

i=1

Ni
∏

n=1

Hi
∏

j=1

(πi,jN (xn
i |µi,j))

zn
i,j , (56)

where Z = {Z1, . . . ,ZC} is the set of all categorical vectors.

Observing that the posterior distribution is independent over

zn
i,j , the expectation of the categorical variables can be derived

E[zn
i,j ] =

∑Hi

j=1
zn
i,j(πi,jN (xn

i |µi,j))
zn

i,j

∑Hi

j=1
πi,jN (x|µi,j)

, (57)

and simplifying the above, we arrive to the definition of the

responsibilities in (7).

Moreover, from (56) the log likelihood of the complete data

set is retrieved

ln p(X,Z|θ) =
C

∑

i=1

Ni
∑

n=1

Hi
∑

j=1

zn
i,j(ln πi,j + lnN (xn

i |µi,j)) .

(58)

Applying the expectation operator to the above expression and

substituting E[zi,j,n] from (7) the expectation of the complete

data log-likelihood is expressed as

E[ln p(X,Z|θ)]

=
C

∑

i=1

Ni
∑

n=1

Hi
∑

j=1

hn
i,j(lnπi,j + lnN (xi,n|µi,j ,Σ))

=
C

∑

i=1

Hi
∑

j=1

Ñi,j lnπi,j −
NF

2
ln(2π) +

N

2
ln |Σ−1|

−
1

2

C
∑

i=1

Ni
∑

n=1

Hi
∑

j=1

hi,j,n(xi,n − µi,j)
T Σ−1(xi,n − µi,j) .

(59)

Using the identity (xn
i − µi,j)

T Σ−1(xn
i − µi,j) = (xn

i −
x̄n

i )T Σ−1(xn
i −x̄i,j)+(x̄i,j−µi,j)

T Σ−1(x̄i,j−µi,j)+2(xn
i −

x̄i,j)
T Σ−1(x̄i,j − µi,j) along with the fact that

∑Ni

n=1
(xn

i −
x̄i,j)

T Σ−1(x̄i,j − µi,j) = 0, and multiplying both sides by

two, we arrive to (6).

B. Derivation of Eq. (18)

The constraint that the mixing coefficients should sum to

one can be incorporated in (17) using C lagrange multipliers

ηi, i = 1, . . . , C. Therefore, we need to find the stationary

point of

C
∑

i=1

Ni
∑

n=1

Hi
∑

j=1

hn
i,j(lnπi,j + lnN (xn

i |µi,j))

+
C

∑

i=1

ηi(

Hi
∑

j=1

πi,j − 1)

(60)

with respect to πi,j and ηi. Optimizing over πi,j we arrive to

Ñi,j/πi,j + ηi = 0. If we multiply both sides with πi,j and

sum over all subclasses of the i-th class we get ηi = −Ni.

Eliminating ηi we obtain (18).
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