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Abstract

Clustering problems are central to many knowledge dis-
covery and data mining tasks. However, most existing clus-
tering methods can only work with fixed-dimensional repre-
sentations of data patterns. In this paper, we study the clus-
tering of data patterns that are represented as sequences
or time series possibly of different lengths. We propose a
model-based approach to this problem using mixtures of au-
toregressive moving average (ARMA) models. We derive an
expectation-maximization (EM) algorithm for learning the
mixing coefficients as well as the parameters of the com-
ponent models. Experiments were conducted on simulated
and real datasets. Results show that our method compares
favorably with another method recently proposed by others
for similar time series clustering problems.

1. Introduction

Clustering is the unsupervised process of grouping data
patterns into clusters so that patterns within a cluster bear
strong similarity to one another but are very dissimilar to
patterns in other clusters. Clustering problems are central
to many knowledge discovery and data mining tasks. Many
clustering techniques have been studied for data patterns
that are represented as points in multidimensional spaces
of fixed dimensionality. In this paper, we deal with sequen-
tial patterns such as sequences and time series possibly of
different lengths.

Distance-based methods and model-based methods are
two major classes of clustering methods. They are anal-
ogous to other nonparametric and parametric methods, re-
spectively, in that the former category (i.e., distance-based
or nonparametric methods) assumes only some weak struc-
ture of the data, but the latter category (i.e., model-based
or parametric methods) assumes some strong structure. For
time series data, model-based methods provide a principled

∗A longer version of this paper can be found in
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approach for handling the problem of modeling and cluster-
ing time series of different lengths. In this paper, we will
focus on model-based time series clustering methods. In
particular, mixture models [9] will be used.

2. Related work

Finite mixtures of Markov chains [2] have been proposed
for clustering time series. The expectation-maximization
(EM) algorithm [3] is used to learn the mixing coefficients
as well as the parameters of the component models. The
number of clusters can be determined by comparing differ-
ent choices of the number based on some scoring scheme.
Another approach to the clustering of time series modeled
by Markov chains is called Bayesian clustering by dynam-
ics (BCD) [12] which can best be seen as a hybrid approach
with both model-based and distance-based flavors.

While simple Markov chains are good enough for some
applications, some time series can be modeled better using
hidden Markov models (HMM) [11] due to their ability of
handling temporal and spatial uncertainties simultaneously.
Finite mixtures of HMMs have been studied. Similar to
mixtures of Markov chains, the EM algorithm can also be
used for HMM mixtures [14, 8]. To trade accuracy for ef-
ficiency, the k-means algorithm (used in [10]) and the rival
penalized competitive learning (RPCL) algorithm (used in
[7]) have also been used in place of EM.

In addition to Markov chains and HMMs, autoregressive
moving average (ARMA) and autoregressive integrated
moving average (ARIMA) models have also been used ex-
tensively for time series analysis [1]. Kwok et al. [6] ap-
plied mixtures of ARMA models as well as their special
cases, mixtures of autoregressive (AR) models, for time se-
ries modeling and forecasting. However, clustering appli-
cations based on such mixture models were not studied by
them. More recently, a method was proposed by Kalpakis
et al. for clustering ARIMA time series [5]. This method
is similar to the BCD method in that it is a hybrid method
with both model-based and distance-based characteristics.

In the next section, we will propose a new time series
clustering method based on mixtures of ARMA models.
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3. Mixtures of ARMA models

The ARIMA model introduced by Box and Jenkins [1]
is a combination of three types of time series data pro-
cesses, namely, autoregressive, integrated, and moving av-
erage processes. A stationary ARIMA model with autore-
gressive order p and moving average order q is commonly
denoted as ARMA(p, q). Given a time series x = {xt}n

t=1,
the fitted ARMA(p, q) model takes the form

xt = φ0+
p∑

j=1

φjxt−j+
q∑

j=1

θjet−j+et, t = 1, 2, . . . , n,

where n is the length of the time series, φ0 is a constant
term, {φ1, φ2, . . . , φp, θ1, θ2, . . . , θq} is the set of AR(p)
and MA(q) coefficients, and {et}n

t=1 is a sequence of in-
dependent and identically distributed (IID) Gaussian white
noise terms with variance σ2. From [1], we can express the
natural logarithm of the conditional likelihood function as

ln P (x|Φ) = −n

2
ln(2π) − n

2
ln(σ2) − 1

2σ2

n∑
t=1

e2
t ,

where Φ = {φ0, φ1, φ2, . . . , φp, θ1, θ2, . . . , θq, σ
2} is the

set of all model parameters and et must be estimated recur-
sively.

We now extend standard ARMA models to mixtures
of ARMA models, or simply called ARMA mixtures, for
time series clustering. Let us assume that the time se-
ries data are generated by M different ARMA models,
which correspond to the M clusters of interest denoted as
ω1, ω2, . . . , ωM . Let P (x|ωk,Φk) denote the conditional
likelihood function or density function of component model
k, with Φk being the set of parameters for the model. Let
P (ωk) be the prior probability that a time series comes
from model k. The conditional likelihood function of the
mixture model can be expressed in the form of a mixture
density as P (x|Θ) =

∑M
k=1 P (x|ωk,Φk)P (ωk), where

Θ =
{
Φ1,Φ2, . . . ,ΦM , P (ω1), P (ω2), . . . , P (ωM )

}
rep-

resents the set of all model parameters for the mixture
model. For a time series x, it is assigned to cluster ωk with
posterior probability P (ωk|x), where

∑M
k=1 P (ωk|x) = 1.

Suppose we are given a set D =
{
x1,x2, . . . ,xN

}
of N time series. Under the usual assumption that dif-
ferent time series are conditionally independent given the
underlying model parameters, we can express the likeli-
hood of D as P (D|Θ) =

∏N
i=1 P (xi|Θ). Model param-

eter learning amounts to finding the maximum a posteri-
ori (MAP) parameter estimate given the data set D, i.e.,
Θ̂ = arg maxΘ

[
P (D|Θ)P (Θ)

]
. If we take a noninfor-

mative prior on Θ, learning degenerates to maximum like-
lihood estimation (MLE), i.e., Θ̂ = arg maxΘ P (D|Θ).
This MLE problem can be solved efficiently using EM,
which will be discussed in detail in the next section.

4. EM learning algorithm

The EM algorithm is an iterative approach to MLE or
MAP estimation problems with incomplete data. It has been
widely used for many applications, including clustering and
mixture density estimation problems [13].

The likelihood of D can be rewritten as a function of the
parameter vector Θ for a given data set D, i.e., L(Θ;D) =
P (D|Θ) =

∏N
i=1 P (xi|Θ). Assuming a noninformative

prior on Θ, the goal of the EM algorithm is to find Θ that
maximizes the likelihood L(Θ;D) or the log-likelihood
�(Θ;D) =

∑N
i=1 ln P (xi|Θ).

Since D is the incomplete data, we assume the miss-
ing data to be Z =

{
z1, z2, . . . , zN

}
, such that D and Z

form the complete data (D,Z). Thus the complete-data
log-likelihood function is ln P (D,Z|Θ). If we knew the
missing data (and hence the complete data), parameter es-
timation would be straightforward. Without knowing the
missing data, however, the EM algorithm has to iterate be-
tween the Expectation step (E-step) and the Maximization
step (M-step). In the E-step, we calculate the expected value
Q

(
Θ|Θ(t)

)
of the complete-data log-likelihood with re-

spect to the unknown data Z given the observed data D and
the current parameter estimate Θ(t), i.e., Q

(
Θ|Θ(t)

)
=

E
[
ln P (D,Z|Θ) |D,Θ(t)

]
. In the M-step, we try to max-

imize Q
(
Θ|Θ(t)

)
with respect to Θ to find the new param-

eter estimate Θ(t+1).
In the context of using ARMA mixtures for cluster-

ing, the missing data correspond to the unknown cluster
or group membership of each time series xi. The log-
likelihood �(Θ;D) can thus be expressed as �(Θ;D) =∑N

i=1 ln P (xi|ωzi
,Φzi

) +
∑N

i=1 ln P (ωzi
). Given the ob-

served data D and the current parameter estimate Θ(t), the
expectation of the complete-data log-likelihood becomes

Q
(
Θ|Θ(t)

)
=

N∑
i=1

M∑
k=1

P
(
ωk|xi,Θ(t)

)
ln P (xi|ωk,Φk)

+
N∑

i=1

M∑
k=1

P
(
ωk|xi,Θ(t)

)
ln P (ωk).

The EM algorithm iteratively maximizes Q
(
Θ|Θ(t)

)
un-

til convergence. For each iteration, we compute the poste-
rior probabilities P (ωk|xi,Θ(t)) and Q

(
Θ|Θ(t)

)
using the

current parameter estimate Θ(t) in the E-step, and update
the parameter estimate by maximizing Q

(
Θ|Θ(t)

)
with re-

spect to Θ to obtain Θ(t+1) in the M-step.

5. Results on simulated datasets

As in [5], experiments were conducted on both simulated
and real datasets. Instead of handling ARIMA time series



directly, a preprocessing step of differencing was first ap-
plied to convert each nonstationary ARIMA time series into
the corresponding stationary ARMA time series. Moreover,
as discussed in [1], ARMA models can be converted into
equivalent AR models. Thus, for simplicity, we in fact used
mixtures of AR models in all our experiments, although
the EM algorithm presented above can be used for general
ARMA mixtures.

The cluster similarity measure [4] was used to evaluate
and compare the clustering results obtained by Kalpakis et
al.’s method (abbreviated in the tables below as CEP for
cepstral coefficients) and our method (abbreviated as MAR
for mixtures of AR models).

We first study the simpler scenario with simulated time
series data generated by a known number of AR models.
We consider two cases separately. The first case involves
AR models with the same noise variance, and the second
case involves AR models with different noise variances.

In the first experiment, we used two AR(1) models with
their AR coefficients uniformly distributed in the ranges
(0.30 ± 0.01) and (0.60 ± 0.01), respectively. The noise
variance was 0.01 for both models. Each model generated
15 time series to form the dataset. As expected, both our
MAR method and the CEP method worked very well be-
cause the two groups of time series are easily separable.
The cluster similarity measure was always equal to 1.

We further conducted more experiments on time series
generated by two closer AR(1) models. As before, the AR
coefficient of one model was uniformly distributed in the
range (0.30 ± 0.01), but that for the other model was set to
four different ranges in four different experiments, varying
from (0.55 ± 0.01) to (0.40 ± 0.01). In each experiment,
each model generated 15 time series to form the dataset.
Both methods were run 10 times on each dataset. The min-
imum, average, and maximum values of the cluster similar-
ity measure over 10 trials were recorded. Table 1 summa-
rizes the results obtained by the two methods. Our method
is slightly better than CEP when the two AR(1) models are
farther from each other, but CEP becomes slightly better
when the range of AR coefficient of one model decreases to
(0.40±0.01), which is very close to that of the other model.

We repeated the experiments above under the same
setup, except that the two AR(1) models had the same AR
coefficient distribution range of (0.30 ± 0.01) but different
noise variances of 0.01 and 0.02, respectively. Our method
gives perfect clustering of the two groups of time series, but
CEP, which makes no use of the noise variances, gives very
poor results on this dataset with the cluster similarity values
being (0.51/0.59/0.67).

In the experiments above the number of component mod-
els was specified in advance. We further improve our al-
gorithm by running the basic EM algorithm multiple times
with an increasing number of component models until at

Table 1. Clustering results for time series gen-
erated by two AR(1) models with the same
noise variance but different AR coefficient
distribution ranges

Range of AR Cluster similarity (min/avg/max)
coefficient MAR CEP

(0.55 ± 0.01) (0.93/0.99/1.00) (0.93/0.98/1.00)
(0.50 ± 0.01) (0.83/0.93/0.97) (0.80/0.93/0.97)
(0.45 ± 0.01) (0.80/0.88/0.93) (0.71/0.86/0.93)
(0.40 ± 0.01) (0.63/0.77/0.90) (0.63/0.79/0.93)

least one redundant component model is found. When the
number of component models specified is equal to or less
than the actual number of clusters, the basic EM algorithm
will converge. However, if the number of component mod-
els specified is larger than the actual number of clusters, the
EM algorithm will not converge within a reasonably large
number of iterations. Moreover, some component models
will learn to become very similar to each other. Based on
these characteristics, we can decide whether too many com-
ponent models are specified. Hence the correct number of
clusters can be determined and returned.

This set of experiments based on simulated datasets al-
lows us to explore the strengths and weaknesses of the
two methods under different controlled settings. While
our method, like other EM-based methods, generally de-
grades in clustering performance when the underlying clus-
ters are very close to each other, it is better than Kalpakis et
al.’s distance-based method under more general situations.
Specifically, our method is significantly better when the
models have different noise variances. It is also more flexi-
ble in determining the number of clusters automatically.

6. Results on real datasets

For comparison, we conducted further experiments with
the same four real datasets used by Kalpakis et al. [5]. The
same preprocessing steps used by them were also applied
to the datasets to remove the nonstationarity in the data.
Moreover, due to differences in level and scale, a normal-
ization step was applied to generate normalized data so that
the time series values fall in the range [0, 1]. All the ex-
periments were conducted on both normalized and unnor-
malized data. The cluster similarity values for the four real
datasets are shown in Table 2.

Compared with the CEP method, our method can give
the same (for two datasets) or better (for another two
datasets) results when unnormalized data are used. Our
method always works better on unnormalized data because



Table 2. Clustering results for real datasets
Dataset Normalized Unnormalized

MAR CEP MAR CEP
Personal income 0.78 0.84 0.90 0.84

ECG 0.80 0.94 0.94 0.94
Temperature 0.58 0.65 1.00 0.65
Population 0.62 0.64 0.64 0.64

the variance information can be utilized in separating the
clusters. However, both our method and the CEP method,
due to their nature of modeling stationary ARMA processes
only, do not learn the differences in trend of the time series
and hence cannot give very satisfactory results for the pop-
ulation dataset. It should be noted, however, that the trends
of the two groups of population time series are actually vi-
sually distinguishable. Extension of our method to address
this issue will be discussed in the next section.

7. Conclusion and future work

In this paper, we have proposed a model-based method
for clustering univariate ARIMA time series. This mixture-
model method, based on mixtures of ARMA models, uses
an EM algorithm to learn the mixing coefficients as well
as the parameters of the component models. In addition,
the number of clusters in the data can be determined auto-
matically. Experimental results on both simulated and real
datasets show that this method is generally effective in clus-
tering time series, and that it compares favorably with the
hybrid method proposed recently by Kalpakis et al. for sim-
ilar time series clustering problems.

Our method can be improved in a number of aspects.
One aspect is related to parameter initialization for the EM
algorithm, which may affect the convergence speed of the
algorithm and the quality of the solution found. Currently
our method sets the initial prior probabilities of the clusters
to be equal, and randomly picks M different time series to
initialize the M component models. A possible improve-
ment is to initialize the parameters of the mixture model
based on the clustering results of some faster but less accu-
rate method. This is analogous to the use of k-means for
finding the initial parameter values for an EM algorithm.

Computational speedup can be achieved by pruning
some models if their posterior probabilities become very
close to 0, indicating that their significance is negligible.
One problem with our method, like other EM-based meth-
ods, is that its clustering performance can degrade signifi-
cantly when the underlying clusters are very close to each
other. A possible extension to model ARIMA time series
without removing the nonstationarity may also be explored.
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