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Abstract to track is large and these objects interactin a complex man-
ner.

A dynamic texture is a linear dynamical system used o The main limitation of all these representations is that
model a single video as a sample from a spatio-temporalthey are inherentlyocal, aiming to achieve understanding
stochastic process. In this work, we introduce the mixtfire 0 of the whole by modeling the motion of the individual parti-
dynamic textures, which models a collection of videos con-cles. This iscontrary to how these visual processes are per-
sisting of different visual processes as samples from afset o cejved by biological visionsmoke is usually perceived as a
dynamic textures. We derive the EM aIgorithm for Iearning whole, a tree is norma”y perceived as a Sing|e Object, and
a mixture of dynamic textures, and relate the learning al- the detection of traffic jams rarely requires tracking indtiv
gorithm and the dynamic texture mixture model to previous yal vehicles. Recently, there has been an effort to advance
works. Finally, we demonstrate the applicability of thepro  towards this type ofiolistic modelingby viewing video se-
posed model to problems that have traditionally been chal- quences derived from these processedyammic textures
lenging for computer vision. or, more precisely, samples from stochastic processes de-

fined over space and time [11-14]. In fact, the dynamic tex-

ture framework has been shown to have great potential for
1. Introduction video synthesis [11], motion segmentation [12], and video

classification [13, 14]. This is, in significant part, duehet

One family of visual processes that has relevance for var-fact that the underlying generative probabilistic framewo

ious applications of computer vision is that of, what could IS ¢a@pable of 1) abstracting a wide variety of complex mo-

be loosely described as, visual processes composed-of 10N patierns into aimplespatio-temporal process, and 2)
sembles of particles subject to stochastic matithe par- synthesizing samples of the associated time-varyingtextu
ticles can be microscopic, e.g plumes of smoke, macro- One major current limitation of the dynamic texture
Scopic, e.g. leaves and Vegetation b|0W|ng in the wind, or framework iS, hOWEVGI’, its |nab|I|ty to account for visual
even objects, e.g. a human crowd, a flock of birds, a traf- Processes consisting @hultiple, co-occurring, dynamic
fic jam, or a bee-hive. The applications range from remote textures For example, a flock of birds flying in front of
monitoring for the prevention of natural disasters, e.g- fo @ water fountain, highway traffic moving in opposite direc-
est fires, to background subtraction in challenging environ tions, video containing both smoke and fire, and so forth.
ments, e.g. outdoors scenes with vegetation, and variousVhile, in such cases, existing dynamic texture models are
types of surveillance, e.g. traffic monitoring, homeland se inherently incorrect, the underlying generative framewsr
curity applications, or scientific studies of animal beloavi ~ Not. In fact, co-occurring textures can be easily accounted
Despite their practical significance, and the ease with for by augmenting the probabilistic generative model with
which they are perceived by biological vision systems, the @ discretériddenvariable, that has a number of states equal
visual processes in this family still pose tremendous chal- to the number of textures, and encodes which of them is
lenges for computer vision. In particular, tiseochastic ~ responsible for a given piece of the spatio-temporal video
nature of the associated motion fields tends to |‘||]gh|y volume. Conditioned on the state of this hidden variable,
challenging for traditional motion representatiossch as  the video is then modeled as a simple dynamic texture.
optical flow [1-4], which requires some degree of motion  This leads to an extension of the dynamic texture model,
smoothness, parametric motion models [5-7], which as-a mixture of dynamic textureshat we study in this work.
sume a piece-wise planar world, or object tracking [8-10], In addition to introducing the model itself, we report on
which tends to be impractical when the number of subjectsthree main contributions. First, the expectation maximiza



tion (EM) algorithm is derived for maximum likelihood es-
timation of the parameters of a mixture of dynamic textures.
Second, the relationships between this mixture model and
various other models previously proposed in the machine
learning and computer vision literatures, including migti

of factor analyzers, linear dynamical systems, and switche
linear dynamic models, are analyzed. Finally, we demon- b)
strate the applicability of the new model to the solution of
traditionally difficult vision problems that range from shu

tering traffic video sequences to segmentation of sequences
containing multiple dynamic textures.

The paper is organized as follows. In Section 2, we for-
malize the dynamic texture mixture model. In Section 3 we
present the EM algorithm for learning its parameters from
training data. In Section 4, we relate it to previous mod-
els and discuss its application to video clustering and seg-
mentation. Finally, in Section 5 we present an experimental
evaluation in the context of these applications.

Figure 1. a) The dynamic texture. b) The dynamic texture mix-

2. Mixtures of dynam| c textures ture with 3 components. The variabh%j) is the state of thejt"
dynamic texture at time, and the hidden variable selects from

) ) ) ] ) the three dynamic textures.
In this section, we introduce the dynamic texture mixture

model. For completeness, we start with a brief review of the
dynamic texture model.

y plalis) = Glo, Azi1,Q) (3)
2.1. Dynamic texture p(yler) = Gy, Cay, R) 4)

whereG(z, i1, %) = (27) /25| /2~ $lle=nl% s the n-
dimensional Gaussian distribution afid||y, = 2% 'z.
Lettingz] = (z1,---,2,) andy] = (y1,---,y-) be a se-
guence of states and observations, the joint distribuson i

A dynamic texture [11] is a generative video model de-
fined by a random process with an observed variagble
which encodes the video frame at a specific time, and a hid-
den state variable,, which encodes the evolution of the

video over time. The state and observed variables are re- o T ki
lated through the following linear dynamical system (LDS) p(x1,y7) = p(a1) HP(ItWtfl) Hp(yt|17t)- (5)
equations t=2 t=1

A number of methods are available to learn the parameters
{ Te1 = Ay + v (1) of the dynamic texture from a training video sequence, in-
ye = Cay + we cluding asymptotically maximum likelihood methods such
as N4SID [16] or expectation-maximization [17], and a sub-

h R™ and R™ (typicall . Th : ) . !
wherer; < an < (typically n < m) © optimal (but computationally efficient) solution [11].

parameterd € R"*" is the state transition matrix ard €
R™*™ a matrix containing the principal components of the
video sequence. The driving noise process is (0, Q,)
with @ € R™*", and the observed noiseis ~ N(0, R.)
with R € R™*™, whereN (i, ¥,) is a Gaussian distribu-
tion with meanu and covarianc&. We extend the defini-
tion of [11] by allowing the initial state:; to be distributed

2.2. Mixture of dynamic textures

Consider a generative video model, where the obser-
vation of a video sequenceg] is generated from one
of K dynamic textures, each with probability; of oc-

asz, ~ N(u, S). The dynamic texture is completely spec- cqrrlng.K Given component propab|llt|e$a1, oo
ified with the parameter® = {A,Q,C, R, u,S}, and is ~ With >.j—1@; = 1 and dynamic texture components
represented as a graphical model in Figure 1a. {O1,..., Ok}, the generative model is:

It can be shown [15] that the probability of the initial 1. Sample componentj from the distribution
state, the conditional state distribution, and the coadil {ai,...,ak}.

observation distribution are given by ] )
2. Sample an observatigyf from the dynamic texture

p(z1) = G(a1,p,5) ) componen®;.



N number of observed sequences

T length of an observed sequence

K number of mixture components

i index over the set of observed sequences
j index over the components of the mixture
t time index of a sequence

Yi the i** observed sequence

yi: the observation at timeof y;

xf.” the state sequence gf under component
%(-,Jt) the state at time of z”)

zi(J) the indicator variable that; is from componenj
a;  the probability of the;j** component

©; the parameters of thg¢‘" component

Table 1. Notation for EM for mixture of dynamic textures

The probability of the sequengg sampled from this gen-
erative model is

K
p(T) = ajp;(u7) (6)
j=1

wherep;(y]) = p(y]; ©;) is the class conditional proba-
bility of the ;" dynamic texture. This is the mixture model
for dynamic textures.

An equivalent model, shown fak = 3 components in
Figure 1b, is to explicitly represent the stateeaithcom-
ponentj by the conditional distribution

p(?|2)) = G, AV, QW) (7)
The observed variablg; is conditioned orall the compo-
nent states and the hidden variable
p(yt|xt(51)a o 7x2(SK)a z = .]) = G(ytv C(J)xz(fj)a R(J)) (8)
wherez selects the appropriate statf’ and theC¥) and
RY) parameters to form thg!" dynamic texture.

3. Parameter estimation using EM

The EM algorithm [18] is a method for estimating the pa-
rameters of a probability distribution when the distrilouti

depends on hidden variables (i.e. there is missing data). Fo

missing information with the current parameters, and com-
puting new parameters given the estimate of the missing in-
formation. The EM iteration is

o E-Step: Q(0;0) =Ey ¢ (logp(z,y, 2 0))
o M-Step: ©' = argmaxg Q(0; O)

wherep(z, y, z; ©) is the complete data likelihood, param-
eterized by, of the observation, hidden state, and hidden
assignment variables.

We assume that the training data is a set of independent
video sequences. The EM algorithm for a mixture of dy-
namic textures is presented in Algorithm 1 (see [19] for
derivation). The expectation step computes the conditiona
expectations of the state variables

i = By =" =1) 9)
‘A/z%)t = COV(ngt)vxz(‘?t)|yivzi(']):1) (10)
VD = cov(@l)al) g2 =1) (12

where the conditional expectations are taken with respect t
the distribution of the hidden statg, given the observed
sequencey;, and parameterized by thg'" mixture com-
ponent. In addition, the E-step computes the conditional
likelihood of the observation given thg” mixture compo-
nent,p;(y;), for all j. These quantities are computed using
the Kalman smoothing filter [15,17,19]. The maximiza-
tion step computes the maximum likelihood parameter val-
ues for each dynamic texture component, by averaging over
all sequencesy; }, weighted by the probability that the se-
quencey; belongs to thej** mixture component.

For the purposes of our experiments, each dynamic tex-
ture componen®; was initialized by using the suboptimal
learning method of [11] on a random video sequence from
the training set. The component probabilities were initial
ized to a uniform distributione; = 1/K. Since the EM
algorithm can terminate on a local minimum, the algorithm
was run several times using different initialization seeds
and the parameters which best fit the training data (in the
maximum likelihood sense) were kept. Finally, the covari-
ance matrice§), S, andR were regularized by forcing their
eigenvalues to be larger than a minimum value, and by re-
stricting .S and R to be diagonal.

the dynamic texture mixture, the observed information is a 4. Connections to the literature and applica-

set of video sequencésg; }, and the missing data consists of

tions

1) the assignments of sequences to mixture components (the

assignment of sequenggto the j** mixture componentis
encoded by the state of the indicator variahff@), and 2)
the hidden state sequenmé) for y; under componeni

The proposed EM learning algorithm and dynamic tex-
ture mixture model are related to several previous works.
In this section we briefly describe these relations and dis-

(see Table 1 for notation). The EM solution is found using cuss two applications of the dynamic texture mixture to the

an iterative procedure that alternates between estimtitéeng

problems of video clustering and motion segmentation.



Algorithm 1 EM for Dynamic Texture Mixture

Input: N sequence$y; }¥ ,, num. of component&’.
Initialize {©;}, = {ay, A;,Qj, Rj, Cj, b, S}y
repeat
{Expectation Step
fori=1to N andj = 1to K do
Compute:vfjt), VZTg)t’ V;Tg)t 1
the Kalman smoothing filter with; and©;.
pYw ) (J)( (J))

1\2& t ilt, t
P~V G
A(J) a;p;(yi)

Zk 1akpk(7!1)
end for

{Maximization Step
for j =1to K do

®; = val Az(J) Zt 1131(&
%:E 1% Zt 2 z|tt
¢j:Z£V1Az(J)Zt 2Pz(é)1t 1
\IJJ:ZZ 1 z Zt 2 z|tt 1
Fj:Zilez(J)Zt 1 Vit (2 ))
AJZZ?; Al(J) e 1%t(yzt)

- N . . N
Ny =30 Zi(j) N e ~
Cr = Fgl'(q’j)_l ;AT =(gy) 7!
Rj = & (A= CjTy)
* 1 sy T
I (r-1)N; (% o AJ\IJJ)
- L 030

until convergence
Output: © = {6},

andlog p;(y;) using

4.1. Relationship to prior work

For a single componenj & 1) and a single observation

fluences the observation vector), and the observation noise
N (0, R) whereR is a diagonal matrix. With the appropriate
restrictions on the mixture parameters, the EM algorithm
for a dynamic texture mixture reduces to the EM algorithm
used for learning a mixture of factor analyzers [22]. In par-
ticular, this requires setting; = Q; = I andA; = 0 for
each factor analysis component, ané= 1 since there are

no temporal dynamics.

The dynamic texture mixture is also related to “switch-
ing” linear dynamical models, where the system parameters
are selected via a separate Markovian switching variable as
the time series progresses. Variations of these models in-
clude [23] where only the observation matdxswitches,

[24] where the state parameters switehgnd(@), and [25]
where the observation and state parameters swifGhr

A, and@). These three models are not mixtures of linear
dynamical systems, and only have one state variable which
evolves according to the active system parameters at each
time step.

In contrast to switching models with a single state vari-
able, the model proposed by Ghahramani [26] switches the
observed variable between the output of different linear dy
namic systems at each time step. Each LDS has its own ob-
servation matrix and state variable, which evolves acogrdi
to its own system parameters. The difference between the
Ghahramani model and the mixture of dynamic textures is
that the Ghahramani model can switch between LDS out-
putsat each time stepvhereas the mixture of dynamic tex-
tures selects an LD8nly onceat timet = 1, and never
switches from it. Hence, the mixture of dynamic textures
can be seen as a special case of the Ghahramani model,
where the initial probabilities of the switching variablea
the mixture component probabilities, and the Markovian
transition matrix of the switching variable is equal to the
identity matrix.

This has consequences of significant practical impor-
tance. In particular, the ability to switch at each time step
in the Ghahramani model results in a posterior distribution
that is a Gaussian mixture with a number of terms that in-
creases exponentially with time [26]. Thus, exact infeeenc
on the Ghahramani model is intractable, and the EM-style

(N = 1), the EM algorithm for a dynamic texture mixture Of learning requires approximate methods (e.g. variationa
reduces to the classical EM algorithm for learning a linear approximations). In contrast, because the dynamic texture
dynamical system [17, 20, 21]. A linear dynamical system Mmixture selects only one LDS for an observed sequence, the
(1) is a generalization of the factor analysis model [15], a Posterior is a mixture with a constant number of Gaussians
statistical model which explains an observed vector as aand exact inference in the dynamic texture mixture model is
combination of measurements which are driven by inde- tractable, and hence the EM algorithm introduced above is

pendent factors. In the LDS framework, the time index
becomes the index of the independent observatjpnghe
factorsz, (the hidden state) are independent (heAce 0)
and distributed ad/(0,7) (i.e. S = Q = I andu = 0).
The observationy, is then a function of the factors,, the
factor loading matrixC (which explains how each factor in-

exact.

Applications of switching linear models are numerous,
including tracking of multiple objects with sensor data]j23
human motion modeling [24], economic growth modeling
[25], and respiration modeling of people with sleep apnea
[26].



4.2. Clustering and motion segmentation 5.1. Video clustering results

Video clustering is an important problem in various ar-  Clustering was performed on 133 video sequences of ve-
eas of computer vision. For example, it can be used to un-hicle highway traffic [30]. Each video sequence was pre-
cover high-level patterns of structure in a video stream. (e. Processed by converting it into grayscale, downsampling
recurring events, events of high and low probability, outly it by four, subtracting the mean, normalizing the pixels to
ing events, etc.) and has, therefore, application to prosle  Unit variance, and clipping the video framesitox 48 pix-
such as surveillance, novelty detection, video summariza-€ls. The video sequences contained a variety of moving and
tion (by shot clustering), or remote monitoring of various Stopped traffic, and were clustered into 4 classes. Figure 2
types of environments. It can also be applied to the entriesshows four typical sequences for each of the four clusters.
of a video database in order to automatically create a tax-These examples, and further analysis of the sequences in
onomy of video classes that can then be used for databas€ach cluster, reveal that the clusters are in agreement with
organization or video retrieval. Under the mixture of dy- classes frequently used in the perceptual categorization o
namic textures representation, a set of video sequences caffaffic: stopped traffic (“traffic jam”), light traffic, slowraf-
be naturally clustered by first learning the mixture thatbes fic, and medium traffic.
fits the entire collection of sequences, and then assigning Note that this sort of “perceptually plausible” cluster-
each sequence to the mixture component with largest posteing would be extremely difficult to obtain with traditional

rior probability of having generated it, motion representations based on optical flow or paramet-
ric motion representations. Vehicle tracking and counting

¢; = argmaxlog p(y;; ©;) + log ;. (12) would be more likely to produce results equivalent to those

J achieved by dynamic texture mixture modeling, but would

entail both 1) significant technical challenges (most vehi-

In addition to clustering different video sequences, the cles occupy a very small number of image pixels and would
mixture of dynamic textures is also a natural represemntatio be quite difficult to track) and 2) tremendous computational
for the problem of segmenting a single video sequence intocomplexity (because there can be many vehicles to track).
various components of homogeneous appearance and md-urthermore, assuming that tracking is feasible, therdavou
tion. In particular, these components can be segmented bybe a need to cluster the collections of tracks produced by
dividing the sequence into a set of localized spatio-tempor each sequence. It is not clear that this problem, by itself,
patches and then clustering these patches. For example, theould be solved in a more natural or efficient way than the
segmentation results of the following section were obtine solution based on the dynamic texture mixture model.
by collecting video patches from the video sequence using
ap x p spatially-sliding window (that fills the entire tem- | i
poral volume), and clustering them int6 classes. A seg-
mented image was then produced using a voting scheme
where each pixel in a patch receives a vote for the class
of that patch, as given by the clustering. The pixels were fz—
then assigned to the class with the most votes. Finally, a
3 x 3 maximum vote filter was used to smooth the seg- §
mented video regions.

While the idea of using EM for clustering or motion
segmentation is not novel [6, 7, 27-29], the mixture of dy- W
namic textures representation enables its application to aj
class of visual processes that has traditionally been quite A
challenging for clustering and motion segmentation algo- g
rithms. This is illustrated in the subsequent section. S

5. Experimental evaluation

Figure 2. Example of clustering traffic video into four classes,
corresponding to (top to bottom) stopped traffic, lightficafslow

. . . . traffic, and medium traffic. Four typical sequences are shimwn
mixture model through experiments with clustering of traf- each of the four clusters.

fic video, and motion segmentation on both synthetic and
real video sequences.

We evaluated the performance of the dynamic texture



5.2. Motion segmentation results 7

For the segmentation experiments, all video was con-
verted into grayscalel x 5 video patches were used, and
the number of principal components was= 10. Patches
with an average pixel variance (in time) of less than 50 were
marked as static background. Figure 3 shows the segmen-[9]
tation of a composite video containing regions of water,
smoke, and fire usingl = 3 clusters.

Segmentation of the motion in a highway traffic scene
using K = 4 clusters is shown in Figure 4. The algorithm 11]
has segmented the video into regions of traffic which are
moving away from the camera (the two large regions on the [12]
right) and moving towards the camera (the regions on the
left). The region with traffic moving towards the camera
has been segmented into two regions because of perspectivié3]
effects due to car motion towards the camera.

While not perfect, these results are, once again, signif-
icantly better than what could be achieved with traditional
representations. Note that 1) the motion information isequi
sparse (there are significant gaps between cars), and 2) thgs,
perspective effects are extreme (cars at a distance occupy
littte more than a single pixel). The dynamic texture model [16]
could also be explicitly extended to account for some of
the problems, e.g. by explicitly accounting for the drastic
perspective deformation to which the dynamic texture com- [17]
ponents are subject. We intend to consider such extensions
in the future. i

Finally, Figure 5 shows the segmentation of a waterfall
scene using a window size @b x 15 pixels andK = 4
clusters. The different segmented regions correspond to re[19]
gions of different water dynamics (e.g. fast moving water,
turbulent water, and slow moving water). Once again, the
segmentation is plausible from a perceptual point of view [20]
(video is available at [31]) and would be difficult to achieve
with classical motion models.

(8]

[20]

[14]

8]
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