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Abstract

A dynamic texture is a linear dynamical system used to
model a single video as a sample from a spatio-temporal
stochastic process. In this work, we introduce the mixture of
dynamic textures, which models a collection of videos con-
sisting of different visual processes as samples from a set of
dynamic textures. We derive the EM algorithm for learning
a mixture of dynamic textures, and relate the learning al-
gorithm and the dynamic texture mixture model to previous
works. Finally, we demonstrate the applicability of the pro-
posed model to problems that have traditionally been chal-
lenging for computer vision.

1. Introduction

One family of visual processes that has relevance for var-
ious applications of computer vision is that of, what could
be loosely described as, visual processes composed ofen-
sembles of particles subject to stochastic motion. The par-
ticles can be microscopic, e.g plumes of smoke, macro-
scopic, e.g. leaves and vegetation blowing in the wind, or
even objects, e.g. a human crowd, a flock of birds, a traf-
fic jam, or a bee-hive. The applications range from remote
monitoring for the prevention of natural disasters, e.g. for-
est fires, to background subtraction in challenging environ-
ments, e.g. outdoors scenes with vegetation, and various
types of surveillance, e.g. traffic monitoring, homeland se-
curity applications, or scientific studies of animal behavior.

Despite their practical significance, and the ease with
which they are perceived by biological vision systems, the
visual processes in this family still pose tremendous chal-
lenges for computer vision. In particular, thestochastic
nature of the associated motion fields tends to behighly
challenging for traditional motion representationssuch as
optical flow [1–4], which requires some degree of motion
smoothness, parametric motion models [5–7], which as-
sume a piece-wise planar world, or object tracking [8–10],
which tends to be impractical when the number of subjects

to track is large and these objects interact in a complex man-
ner.

The main limitation of all these representations is that
they are inherentlylocal, aiming to achieve understanding
of the whole by modeling the motion of the individual parti-
cles. This iscontrary to how these visual processes are per-
ceived by biological vision: smoke is usually perceived as a
whole, a tree is normally perceived as a single object, and
the detection of traffic jams rarely requires tracking individ-
ual vehicles. Recently, there has been an effort to advance
towards this type ofholistic modeling, by viewing video se-
quences derived from these processes asdynamic textures
or, more precisely, samples from stochastic processes de-
fined over space and time [11–14]. In fact, the dynamic tex-
ture framework has been shown to have great potential for
video synthesis [11], motion segmentation [12], and video
classification [13,14]. This is, in significant part, due to the
fact that the underlying generative probabilistic framework
is capable of 1) abstracting a wide variety of complex mo-
tion patterns into asimplespatio-temporal process, and 2)
synthesizing samples of the associated time-varying texture.

One major current limitation of the dynamic texture
framework is, however, its inability to account for visual
processes consisting ofmultiple, co-occurring, dynamic
textures. For example, a flock of birds flying in front of
a water fountain, highway traffic moving in opposite direc-
tions, video containing both smoke and fire, and so forth.
While, in such cases, existing dynamic texture models are
inherently incorrect, the underlying generative framework is
not. In fact, co-occurring textures can be easily accounted
for by augmenting the probabilistic generative model with
a discretehiddenvariable, that has a number of states equal
to the number of textures, and encodes which of them is
responsible for a given piece of the spatio-temporal video
volume. Conditioned on the state of this hidden variable,
the video is then modeled as a simple dynamic texture.

This leads to an extension of the dynamic texture model,
a mixture of dynamic textures, that we study in this work.
In addition to introducing the model itself, we report on
three main contributions. First, the expectation maximiza-

1



tion (EM) algorithm is derived for maximum likelihood es-
timation of the parameters of a mixture of dynamic textures.
Second, the relationships between this mixture model and
various other models previously proposed in the machine
learning and computer vision literatures, including mixtures
of factor analyzers, linear dynamical systems, and switched
linear dynamic models, are analyzed. Finally, we demon-
strate the applicability of the new model to the solution of
traditionally difficult vision problems that range from clus-
tering traffic video sequences to segmentation of sequences
containing multiple dynamic textures.

The paper is organized as follows. In Section 2, we for-
malize the dynamic texture mixture model. In Section 3 we
present the EM algorithm for learning its parameters from
training data. In Section 4, we relate it to previous mod-
els and discuss its application to video clustering and seg-
mentation. Finally, in Section 5 we present an experimental
evaluation in the context of these applications.

2. Mixtures of dynamic textures

In this section, we introduce the dynamic texture mixture
model. For completeness, we start with a brief review of the
dynamic texture model.

2.1. Dynamic texture

A dynamic texture [11] is a generative video model de-
fined by a random process with an observed variableyt,
which encodes the video frame at a specific time, and a hid-
den state variablext, which encodes the evolution of the
video over time. The state and observed variables are re-
lated through the following linear dynamical system (LDS)
equations

{

xt+1 = Axt + vt

yt = Cxt + wt
(1)

wherext ∈ R
n andyt ∈ R

m (typically n ≪ m). The
parameterA ∈ R

n×n is the state transition matrix andC ∈
R

m×n a matrix containing the principal components of the
video sequence. The driving noise process isvt ∼ N (0, Q,)
with Q ∈ R

n×n, and the observed noise iswt ∼ N (0, R,)
with R ∈ R

m×m, whereN (µ, Σ,) is a Gaussian distribu-
tion with meanµ and covarianceΣ. We extend the defini-
tion of [11] by allowing the initial statex1 to be distributed
asx1 ∼ N (µ, S). The dynamic texture is completely spec-
ified with the parametersΘ = {A, Q, C, R, µ, S}, and is
represented as a graphical model in Figure 1a.

It can be shown [15] that the probability of the initial
state, the conditional state distribution, and the conditional
observation distribution are given by

p(x1) = G(x1, µ, S) (2)
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Figure 1. a) The dynamic texture. b) The dynamic texture mix-

ture with 3 components. The variablex(j)
t is the state of thejth

dynamic texture at timet, and the hidden variablez selects from
the three dynamic textures.

p(xt|xt−1) = G(xt, Axt−1, Q) (3)

p(yt|xt) = G(yt, Cxt, R) (4)

whereG(x, µ,Σ) = (2π)−n/2|Σ|−1/2e−
1

2
‖x−µ‖2

Σ is the n-
dimensional Gaussian distribution and‖x‖2

Σ = xT Σ−1x.
Letting xτ

1 = (x1, · · · , xτ ) andyτ
1 = (y1, · · · , yτ ) be a se-

quence of states and observations, the joint distribution is

p(xτ
1 , yτ

1 ) = p(x1)

τ
∏

t=2

p(xt|xt−1)

τ
∏

t=1

p(yt|xt). (5)

A number of methods are available to learn the parameters
of the dynamic texture from a training video sequence, in-
cluding asymptotically maximum likelihood methods such
as N4SID [16] or expectation-maximization [17], and a sub-
optimal (but computationally efficient) solution [11].

2.2. Mixture of dynamic textures

Consider a generative video model, where the obser-
vation of a video sequenceyτ

1 is generated from one
of K dynamic textures, each with probabilityαj of oc-
curring. Given component probabilities{α1, . . . , αK}

with
∑K

j=1 αj = 1 and dynamic texture components
{Θ1, . . . , ΘK}, the generative model is:

1. Sample component j from the distribution
{α1, . . . , αK}.

2. Sample an observationyτ
1 from the dynamic texture

componentΘj.



N number of observed sequences
τ length of an observed sequence
K number of mixture components
i index over the set of observed sequences
j index over the components of the mixture
t time index of a sequence
yi the ith observed sequence
yi,t the observation at timet of yi

x
(j)
i the state sequence ofyi under componentj

x
(j)
i,t the state at timet of x

(j)
i

z
(j)
i the indicator variable thatyi is from componentj

αj the probability of thejth component
Θj the parameters of thejth component

Table 1. Notation for EM for mixture of dynamic textures

The probability of the sequenceyτ
1 sampled from this gen-

erative model is

p(yτ
1 ) =

K
∑

j=1

αjpj(y
τ
1 ) (6)

wherepj(y
τ
1 ) = p(yτ

1 ; Θj) is the class conditional proba-
bility of the jth dynamic texture. This is the mixture model
for dynamic textures.

An equivalent model, shown forK = 3 components in
Figure 1b, is to explicitly represent the state ofeachcom-
ponentj by the conditional distribution

p(x
(j)
t |x

(j)
t−1) = G(x

(j)
t , A(j)x

(j)
t−1, Q

(j)) (7)

The observed variableyt is conditioned onall the compo-
nent states and the hidden variablez,

p(yt|x
(1)
t , · · · , x

(K)
t , z = j) = G(yt, C

(j)x
(j)
t , R(j)) (8)

wherez selects the appropriate statex
(j)
t and theC(j) and

R(j) parameters to form thejth dynamic texture.

3. Parameter estimation using EM

The EM algorithm [18] is a method for estimating the pa-
rameters of a probability distribution when the distribution
depends on hidden variables (i.e. there is missing data). For
the dynamic texture mixture, the observed information is a
set of video sequences{yi}, and the missing data consists of
1) the assignments of sequences to mixture components (the
assignment of sequenceyi to the jth mixture component is
encoded by the state of the indicator variablez

(j)
i ), and 2)

the hidden state sequencex
(j)
i for yi under componentj

(see Table 1 for notation). The EM solution is found using
an iterative procedure that alternates between estimatingthe

missing information with the current parameters, and com-
puting new parameters given the estimate of the missing in-
formation. The EM iteration is

• E-Step: Q(Θ; Θ̂) = EX,Z|Y ;Θ̂(log p(x, y, z; Θ))

• M-Step: Θ̂′ = argmaxΘ Q(Θ; Θ̂)

wherep(x, y, z; Θ) is the complete data likelihood, param-
eterized byΘ, of the observation, hidden state, and hidden
assignment variables.

We assume that the training data is a set of independent
video sequences. The EM algorithm for a mixture of dy-
namic textures is presented in Algorithm 1 (see [19] for
derivation). The expectation step computes the conditional
expectations of the state variables

x̂
(j)
i,t = E(x

(j)
i,t |yi, z

(j)
i = 1) (9)

V̂
(j)
i|t,t = cov(x

(j)
i,t , x

(j)
i,t |yi, z

(j)
i = 1) (10)

V̂
(j)
i|t,t−1 = cov(x

(j)
i,t , x

(j)
i,t−1|yi, z

(j)
i = 1) (11)

where the conditional expectations are taken with respect to
the distribution of the hidden statext, given the observed
sequenceyi, and parameterized by thejth mixture com-
ponent. In addition, the E-step computes the conditional
likelihood of the observation given thejth mixture compo-
nent,pj(yi), for all j. These quantities are computed using
the Kalman smoothing filter [15, 17, 19]. The maximiza-
tion step computes the maximum likelihood parameter val-
ues for each dynamic texture component, by averaging over
all sequences{yi}, weighted by the probability that the se-
quenceyi belongs to thejth mixture component.

For the purposes of our experiments, each dynamic tex-
ture componentΘj was initialized by using the suboptimal
learning method of [11] on a random video sequence from
the training set. The component probabilities were initial-
ized to a uniform distribution,αj = 1/K. Since the EM
algorithm can terminate on a local minimum, the algorithm
was run several times using different initialization seeds,
and the parameters which best fit the training data (in the
maximum likelihood sense) were kept. Finally, the covari-
ance matricesQ, S, andR were regularized by forcing their
eigenvalues to be larger than a minimum value, and by re-
strictingS andR to be diagonal.

4. Connections to the literature and applica-
tions

The proposed EM learning algorithm and dynamic tex-
ture mixture model are related to several previous works.
In this section we briefly describe these relations and dis-
cuss two applications of the dynamic texture mixture to the
problems of video clustering and motion segmentation.



Algorithm 1 EM for Dynamic Texture Mixture

Input: N sequences{yi}N
i=1, num. of componentsK.

Initialize {Θj}K
j=1 = {αj, Aj , Qj, Rj , Cj , µj , Sj}K

j=1.
repeat
{Expectation Step}
for i = 1 to N andj = 1 to K do

Computex̂(j)
i,t , V̂

(j)
i|t,t, V̂

(j)
i|t,t−1, andlog pj(yi) using

the Kalman smoothing filter withyi andΘj.

P̂
(j)
i|t,t = V̂

(j)
i|t,t + x̂

(j)
i,t (x̂

(j)
i,t )T

P̂
(j)
i|t,t−1 = V̂

(j)
i|t,t−1 + x̂

(j)
i,t (x̂

(j)
i,t−1)

T

ẑ
(j)
i =

αjpj(yi)
P

K
k=1

αkpk(yi)

end for
{Maximization Step}
for j = 1 to K do

Φj =
∑N

i=1 ẑ
(j)
i

∑τ
t=1 P̂

(j)
i|t,t

ϕj =
∑N

i=1 ẑ
(j)
i

∑τ
t=2 P̂

(j)
i|t,t

φj =
∑N

i=1 ẑ
(j)
i

∑τ
t=2 P̂

(j)
i|t−1,t−1

Ψj =
∑N

i=1 ẑ
(j)
i

∑τ
t=2 P̂

(j)
i|t,t−1

Γj =
∑N

i=1 ẑ
(j)
i

∑τ
t=1 yi,t(x̂

(j)
i,t )T

Λj =
∑N

i=1 ẑ
(j)
i

∑τ
t=1 yi,t(yi,t)

T

N̂j =
∑N

i=1 ẑ
(j)
i , α∗

j =
N̂j

N

C∗
j = Γj(Φj)

−1 , A∗
j = Ψj(φj)

−1

R∗
j = 1

τN̂j

(

Λj − C∗
j Γj

)

Q∗
j = 1

(τ−1)N̂j

(

ϕj − A∗
jΨ

T
j

)

µ∗
j = 1

N̂j

∑N
i=1 ẑ

(j)
i x̂

(j)
i,1

S∗
j = V̂

(j)
1,1 + 1

N̂j

∑N
i=1 ẑ

(j)
i (x̂

(j)
i,1 −µ∗

j)(x̂
(j)
i,1 −µ∗

j )
T

Θj = {α∗
j , A

∗
j , Q

∗
j , R

∗
j , C

∗
j , µ∗

j , S
∗
j }

end for
until convergence
Output: Θ = {Θj}K

j=1

4.1. Relationship to prior work

For a single component (j = 1) and a single observation
(N = 1), the EM algorithm for a dynamic texture mixture
reduces to the classical EM algorithm for learning a linear
dynamical system [17, 20, 21]. A linear dynamical system
(1) is a generalization of the factor analysis model [15], a
statistical model which explains an observed vector as a
combination of measurements which are driven by inde-
pendent factors. In the LDS framework, the time indext
becomes the index of the independent observationsyt. The
factorsxt (the hidden state) are independent (henceA = 0)
and distributed asN (0, I) (i.e. S = Q = I andµ = 0).
The observationyt is then a function of the factorsxt, the
factor loading matrixC (which explains how each factor in-

fluences the observation vector), and the observation noise
N (0, R) whereR is a diagonal matrix. With the appropriate
restrictions on the mixture parameters, the EM algorithm
for a dynamic texture mixture reduces to the EM algorithm
used for learning a mixture of factor analyzers [22]. In par-
ticular, this requires settingSj = Qj = I andAj = 0 for
each factor analysis component, andτ = 1 since there are
no temporal dynamics.

The dynamic texture mixture is also related to “switch-
ing” linear dynamical models, where the system parameters
are selected via a separate Markovian switching variable as
the time series progresses. Variations of these models in-
clude [23] where only the observation matrixC switches,
[24] where the state parameters switch (A andQ), and [25]
where the observation and state parameters switch (C, R,
A, andQ). These three models are not mixtures of linear
dynamical systems, and only have one state variable which
evolves according to the active system parameters at each
time step.

In contrast to switching models with a single state vari-
able, the model proposed by Ghahramani [26] switches the
observed variable between the output of different linear dy-
namic systems at each time step. Each LDS has its own ob-
servation matrix and state variable, which evolves according
to its own system parameters. The difference between the
Ghahramani model and the mixture of dynamic textures is
that the Ghahramani model can switch between LDS out-
putsat each time step, whereas the mixture of dynamic tex-
tures selects an LDSonly onceat time t = 1, and never
switches from it. Hence, the mixture of dynamic textures
can be seen as a special case of the Ghahramani model,
where the initial probabilities of the switching variable are
the mixture component probabilitiesαj , and the Markovian
transition matrix of the switching variable is equal to the
identity matrix.

This has consequences of significant practical impor-
tance. In particular, the ability to switch at each time step
in the Ghahramani model results in a posterior distribution
that is a Gaussian mixture with a number of terms that in-
creases exponentially with time [26]. Thus, exact inference
on the Ghahramani model is intractable, and the EM-style
of learning requires approximate methods (e.g. variational
approximations). In contrast, because the dynamic texture
mixture selects only one LDS for an observed sequence, the
posterior is a mixture with a constant number of Gaussians
and exact inference in the dynamic texture mixture model is
tractable, and hence the EM algorithm introduced above is
exact.

Applications of switching linear models are numerous,
including tracking of multiple objects with sensor data [23],
human motion modeling [24], economic growth modeling
[25], and respiration modeling of people with sleep apnea
[26].



4.2. Clustering and motion segmentation

Video clustering is an important problem in various ar-
eas of computer vision. For example, it can be used to un-
cover high-level patterns of structure in a video stream (e.g.
recurring events, events of high and low probability, outly-
ing events, etc.) and has, therefore, application to problems
such as surveillance, novelty detection, video summariza-
tion (by shot clustering), or remote monitoring of various
types of environments. It can also be applied to the entries
of a video database in order to automatically create a tax-
onomy of video classes that can then be used for database
organization or video retrieval. Under the mixture of dy-
namic textures representation, a set of video sequences can
be naturally clustered by first learning the mixture that best
fits the entire collection of sequences, and then assigning
each sequence to the mixture component with largest poste-
rior probability of having generated it,

ℓi = argmax
j

log p(yi; Θj) + log αj . (12)

In addition to clustering different video sequences, the
mixture of dynamic textures is also a natural representation
for the problem of segmenting a single video sequence into
various components of homogeneous appearance and mo-
tion. In particular, these components can be segmented by
dividing the sequence into a set of localized spatio-temporal
patches and then clustering these patches. For example, the
segmentation results of the following section were obtained
by collecting video patches from the video sequence using
a p × p spatially-sliding window (that fills the entire tem-
poral volume), and clustering them intoK classes. A seg-
mented image was then produced using a voting scheme,
where each pixel in a patch receives a vote for the class
of that patch, as given by the clustering. The pixels were
then assigned to the class with the most votes. Finally, a
3 × 3 maximum vote filter was used to smooth the seg-
mented video regions.

While the idea of using EM for clustering or motion
segmentation is not novel [6, 7, 27–29], the mixture of dy-
namic textures representation enables its application to a
class of visual processes that has traditionally been quite
challenging for clustering and motion segmentation algo-
rithms. This is illustrated in the subsequent section.

5. Experimental evaluation

We evaluated the performance of the dynamic texture
mixture model through experiments with clustering of traf-
fic video, and motion segmentation on both synthetic and
real video sequences.

5.1. Video clustering results

Clustering was performed on 133 video sequences of ve-
hicle highway traffic [30]. Each video sequence was pre-
processed by converting it into grayscale, downsampling
it by four, subtracting the mean, normalizing the pixels to
unit variance, and clipping the video frames to48× 48 pix-
els. The video sequences contained a variety of moving and
stopped traffic, and were clustered into 4 classes. Figure 2
shows four typical sequences for each of the four clusters.
These examples, and further analysis of the sequences in
each cluster, reveal that the clusters are in agreement with
classes frequently used in the perceptual categorization of
traffic: stopped traffic (“traffic jam”), light traffic, slow traf-
fic, and medium traffic.

Note that this sort of “perceptually plausible” cluster-
ing would be extremely difficult to obtain with traditional
motion representations based on optical flow or paramet-
ric motion representations. Vehicle tracking and counting
would be more likely to produce results equivalent to those
achieved by dynamic texture mixture modeling, but would
entail both 1) significant technical challenges (most vehi-
cles occupy a very small number of image pixels and would
be quite difficult to track) and 2) tremendous computational
complexity (because there can be many vehicles to track).
Furthermore, assuming that tracking is feasible, there would
be a need to cluster the collections of tracks produced by
each sequence. It is not clear that this problem, by itself,
could be solved in a more natural or efficient way than the
solution based on the dynamic texture mixture model.

Figure 2. Example of clustering traffic video into four classes,
corresponding to (top to bottom) stopped traffic, light traffic, slow
traffic, and medium traffic. Four typical sequences are shownfor
each of the four clusters.



5.2. Motion segmentation results

For the segmentation experiments, all video was con-
verted into grayscale,5 × 5 video patches were used, and
the number of principal components wasn = 10. Patches
with an average pixel variance (in time) of less than 50 were
marked as static background. Figure 3 shows the segmen-
tation of a composite video containing regions of water,
smoke, and fire usingK = 3 clusters.

Segmentation of the motion in a highway traffic scene
usingK = 4 clusters is shown in Figure 4. The algorithm
has segmented the video into regions of traffic which are
moving away from the camera (the two large regions on the
right) and moving towards the camera (the regions on the
left). The region with traffic moving towards the camera
has been segmented into two regions because of perspective
effects due to car motion towards the camera.

While not perfect, these results are, once again, signif-
icantly better than what could be achieved with traditional
representations. Note that 1) the motion information is quite
sparse (there are significant gaps between cars), and 2) the
perspective effects are extreme (cars at a distance occupy
little more than a single pixel). The dynamic texture model
could also be explicitly extended to account for some of
the problems, e.g. by explicitly accounting for the drastic
perspective deformation to which the dynamic texture com-
ponents are subject. We intend to consider such extensions
in the future.

Finally, Figure 5 shows the segmentation of a waterfall
scene using a window size of15 × 15 pixels andK = 4
clusters. The different segmented regions correspond to re-
gions of different water dynamics (e.g. fast moving water,
turbulent water, and slow moving water). Once again, the
segmentation is plausible from a perceptual point of view
(video is available at [31]) and would be difficult to achieve
with classical motion models.
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segmentation at iterations 1 through 6, and the final segmentation (bottom-right).

Figure 4. Segmentation of a highway traffic video. (left to right) A frame from the video, segmentation at iterations 1 and 10, and the final
segmentation.

Figure 5. Segmentation of a waterfall scene. (left to right) frame from the video, segmentation at iterations 1 and 4, and the final segmentation.
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