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ABSTRACT

In many fields of study scientists are interested in estimating the number of

unobserved classes. A biologist may want to find the number of rare species of

an animal population in order to conserve, manage, and monitor biodiversity; a

library manager may want to know how many non-circulating items are present

in a library system; or a clinical investigator may want to determine the number

of unseen disease occurrences. A traditional way of estimating an unknown

number of classes is by using a negative binomial model (Fisher, Corbet, and

Williams 1943). The negative binomial model is based on assuming that the

numbers of individuals from each class are independent Poisson samples, and

that the means of these Poisson random variables follow a Gamma distribution.

This thesis proposes a parametric model where the law of the mean frequency

of classes is a finite mixture of exponential distributions. The proposed model

has the following advantages: model simplicity, efficient computation using the

EM algorithm, and a straightforward interpretation of the fitted model. Also,

model assessment by way of a chi-squared goodness of fit procedure can be used,

a benefit this parametric model has over other commonly used non-parametric

methods.

A main accomplishment of this thesis is providing an efficient computation

of maximum likelihood (ML) estimates for the proposed model. Without use

of the EM algorithm, finding ML estimates for this model can be difficult and

time consuming. The likelihood function is complicated due to high dimension-

ality and non-identifiability of certain parameters. Within the M step of our

algorithm we embed another EM, which can effortlessly maximize the parame-

ters in the finite mixture. We refer to the algorithm as a nested EM. Aitken’s



acceleration is used to increase speed of the algorithm.

Microbial samples from the coast of Massachusetts Bay near Nahant, Mas-

sachusetts are used to demonstrate data analysis using three different numbers

of components in the finite mixture of the model described. It is shown that

the model produces reasonable estimates and fits the data satisfactorily. This

model has recently been premiered in species richness estimation (Hong et al.

2006), and its many advantages show promise for continued use in estimating

the number of unobserved classes.

keywords: EM algorithm, finite mixtures, species richness, Aitken’s acceler-

ation, microorganisms
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Chapter 1

Introduction: How Many Kinds
are There?

Imagine a large population divided into a number of classes. Each member of

the population, when polled, is identified with one class. However, the number

of existing classes is unknown. It is not possible to survey the entire population;

yet we wish to estimate the total number of classes. We must make a guess and

try to estimate the number of classes based on an observed sample. Statistics

can then be used in order to answer the research question: How many kinds are

there?

There are many examples of populations for which researchers are attempt-

ing to answer this question. Below are some examples which reveal the varied

fields in which this question arises.

1.1 Motivating Examples

In the vast field of biology, the estimation of species richness is a widely studied

area. Species richness is used to describe the number of species which reside in

a certain biosphere or belong to a particular population. Knowing the number

of species can help determine the complexity of an ecosystem. A high level

1
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of species richness can help identify undersampled populations. Measurements

over time can help determine the number of rare or extinct species. Knowing the

species richness of a population helps biologists understand biodiversity. Bio-

diversity is related to many other studies in environmental science and ecology.

Interest in the number of species is not restricted to specialized fields in biology.

Biologists are studying populations of birds (Borgella and Gavin 2005 [5]), spi-

ders (Scharff et al. 2003 [28]), fish (Smith and Jones 2005 [29]), flies (Folgarait

et al. 2005 [18]), bats (Sampaio et al. 2003 [26]), fossils (Cobabe and Allmon

1994 [11]), trees (Cannon, Peart, and Leighton 1998 [9]), and bacteria (Hong et

al. 2006 [19]; Dunbar et al. 2002 [13]), in an attempt to assess levels of biodi-

versity. Due to the numerous biological applications of estimating the number

of unobserved classes, the problem is often named the “species problem”.

A problem in numismatics is to estimate the size of an ancient coin collection

(Stam 1987 [31]). Esty (1986 [15]) describes that numismatists are interested

in the original number of coins in an issue, and also the number of dies used

to produce an ancient coinage. We can think of a die as a type of coin in the

collection. The number of dies found in a sample from an ancient coin issue is

used to determine the total number of dies in that coinage, which can be used to

estimate the total number of coins in the issue. The size of a coin issue reveals

important information regarding the economy of the civilization from which it

came.

Estimating the size of an author’s vocabulary can also be related to estimat-

ing the number of classes. Efron and Thisted (1976 [14]) estimate the number

of words in Shakespeare’s vocabulary based on word frequencies from his pub-

lished material. Knowing the size of the vocabulary tells us the number of words

Shakespeare knew but did not use. Also, suppose a new work by Shakespeare
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is discovered. We can then estimate the number of new words that we expect

to find from this source. A linguist may also be interested in comparing the

vocabulary size of several authors (Booth 1967 [4]).

Maintaining databases is an area of research related to estimating the num-

ber of classes. For example, when a user is searching for an journal article, it

is not rare to return several hits on a search query even if the library holds

only a single copy of the article. The multiple hits are all for the same pub-

lished material, however multiple records are on file. These duplicate records

are not identified due to small differences, such as a misspelling or an abbre-

viation in one of the fields. The library database manager wants to know how

many duplicate records are in the database, for the size of the database based

on the number of records is usually an overestimate of the material contained

in the library. This problem reduces to estimating the number of classes. In

general, database managers may wish to estimate the number of categories in

the database. This is described as estimating the size of projections which is

discussed by Olken and Rotem (1995 [24]).

The problem of estimating the number of classes also arises in library sys-

tems management. Managers want to be informed of the usage of materials in

the library and how much material is not being circulated (Burrell 1988 [8]). In-

formation about which materials are borrowed, and the frequency in which they

are loaned out can be used to estimate the amount of non-circulating material.

During the debugging process of computer software, a tally of the number

of errors recorded can be used to estimate the number of total faults in the

system (Lloyd, Yip, and Chan 1999 [22]). Errors may or may not all be equally

likely to be detected. Certain resampling and debugging patterns can be used

to estimate the frequency of errors in the system. This information is used to
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estimate the number of faults in the entire program.

Ding (1996 [12]) uses AIDS incidence and HIV infection data in order to

estimate the size of the AIDS epidemic. Brookmeyer and Gail (1988 [6]) estimate

the number of unreported diseases, as well as infection rate of AIDS.

To estimate the size of a illicit drug-using population, Hser (1993 [20]) uses

data from drug treatment centers and arrest records. This data is considered

a sample from the population of treatment-susceptible criminal users. This

population is of interest for its health implications and criminal effect on the

larger population. Estimating the size of the drug-using population helps in the

planning of institutions invested in helping those with drug problems.

These are just a few of the many examples of estimating the number of unob-

served classes. A bibliography of related references exist and are maintained by

Dr. John Bunge, Associate Professor, Cornell University. This list of references

can be accessed at http://www.stat.cornell.edu/∼bunge/bibliography.

These research problems all ask a common question: How many kinds are

there? Whether this question is targeted at spider species, coin dies, or types

of words known to an author, it can be answered using the model proposed in

the following chapters.

1.2 Modeling the Observed Data

Our sample consists of individuals, each of whom can be identified with a class.

In estimating species richness, we classify the individuals into their respective

species. Then we can see which classes are the most abundant, which classes

are the most rare, and what the frequencies of all class sizes look like. We base

the model proposed in this paper on the Poisson distribution. The next sections
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introduce the model notation and sampling scheme for the data.

1.2.1 Data Structure and Notation

Consider a population divided into C classes, where C < ∞. Suppose we have

obtained a sample of n individuals from this population and the value of C is

known. Assuming each individual can be identified with only one class, then all

of the individuals in the sample can be sorted into their respective classes. Let

c be the number of unique classes that have appeared in the sample.

Define Yj to be the number of individuals in the sample associated with class

j where j = 1, 2, . . . , C. We can describe Yj as a Poisson random variable with

mean λj > 0. The probability density function for Yj is

p (yj) = P [Yj = yj]

=
e−λjλ

yj

j

yj!
. (1.1)

We assume the Yj are independent for all j. We will call Y = (Y1, Y2, . . . , YC)′

the non-truncated data vector.

Notice that Y has non-negative integer elements. This means zero is a

possible value in Y. If Yj = 0, then no individuals from class j were observed

in the sample. This feature distinguished the non truncated data vector from

the truncated or observed data vector.

1.2.2 Zero-Truncated Poisson Distribution

We will now assume that C is unknown. This means when class j is not found

in the sample, we do not know the class exists.

The truncated data for each class is Xij , where i = 1, 2, . . . , c and c is the

number of unique classes observed in the sample. We observe a subset, {Xij} ⊆
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{Yj} such that Yj > 0. In other words, Xij = Yj if Yj > 0. Denote the truncated

(or, more specifically, zero-truncated) data vector as X = (X1, X2, . . . , Xc)
′. We

will drop the double subscript when we do not need to refer to the non-truncated

data. Then Xi for i = 1, . . . , c will represent the observed data.

By properties of conditional probability, we have

P [Xij = xij ] = P [Yj = xij |Yj > 0]

=
P [Yj = xij , Yj > 0]

P [Yj > 0]

=
P [Yj = xij ]

1− P [Yj = 0]
, (1.2)

where xij = 1, 2, . . . , and we call the distribution of Xij a zero-truncated Poisson

distribution.

1.2.3 Example: Microbial Species Richness

The data from eight microbial samples will be used to illustrate the model fitting

procedure. Each sample contains 1734 total individuals sorted into classes based

on eight different methods of classification. We will call each class a species in

order to identify with biological examples. A unique species (formally called an

operational taxonomic unit) is defined by a 70, 80, 90, 95, 96, 97, 98, and 99%

sequence similarity cut-off percentage determined by analyzing 16S rRNA gene

sequences. For details on the data generation technique see Hong et al. (2006

[19]).

Figure 1.1 shows an example of the observed data for the microbial data at

cut-off percentage 99.

Due to difficulties in modeling frequency data with a long right tail, as seen

in Figure 1.1 one can split the sample into “rare” and “abundant” species. Rare

species are considered the set of Xi such that Xi ≤ τ , where τ is fixed prior
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Figure 1.1: Microbial Data (99% cut-off)

to the analysis. In this paper, the choice of τ is important in model selection.

Wang and Lindsay (2005 [33]) consider τ a tuning parameter in a nonparametric

maximum likelihood approach.

For the microbial data, a higher sequence similarity cut-off is a more strin-

gent rule for determining if two individuals are classified as the same species.

Thus, as the cut-off percentage increases, individuals are classified into a larger

number of species. The observed data has a shorter right tail and a larger num-

ber of singletons (
∑

I{Xi = 1}). Figures 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, and 1.8 show

70, 80, 90, 95, 96, 97, and 98% cut-offs, respectively, for the microbial data, and

illustrate how the observed data changes as the cut-off value increases.
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Figure 1.3: Microbial Data (80% cut-off)
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Figure 1.5: Microbial Data (95% cut-off)
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Figure 1.6: Microbial Data (96% cut-off)
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Figure 1.7: Microbial Data (97% cut-off)



14

0
20

0
40

0
60

0
80

0

5 10 15 20 25

Frequency

N
um

be
r 

of
 S

pe
ci

es

Figure 1.8: Microbial Data (98% cut-off)



15

1.3 A Hierarchical Model

The mean number of individuals sampled from a class j, λj = E[Yj], can be

considered a realization of a random variable with distribution function, F .

Assuming λj ∼ F for all j, the resulting marginal distribution of Yj is often

referred to as a F -mixed Poisson distribution. We next discuss possible distri-

butions that can be used for the Poisson means.

1.3.1 The Negative Binomial Model

First, we explain in detail the model proposed by Fisher, Corbet, and Williams

(1943 [17]). The authors use this model to estimate species richness. In gen-

eral, the Negative Binomial distribution is often used to model widely dispersed

Poisson data.

Consider Yj which is the non zero-truncated data for species j = 1, 2, . . . , C,

and is a Poisson random variable with mean λj which represents the number

of individuals from species j in the sample. We assume Yj are independent for

all j.

Suppose that the classes are not equally abundant; that is, λj 6= λk for all

j 6= k. Differences in the means are allowed by assuming the λj follow a Gamma

distribution given by the following density function with α, β > 0.

p (λj) =
1

Γ(α)βα
λα−1

j e−λj/β. (1.3)

We assume that λj are independent for all j.

Using equation 1.1 and 1.3, we find the marginal distribution of Yj by inte-

grating with respect to λj. Then Yj has a negative binomial distribution given

by the density function

p (yj) =
Γ(α + yj)

Γ(α)Γ(yj + 1)

βyj

(1 + β)α+yj
. (1.4)
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It turns out that our simplest model is a special case of this model.

In practice the Negative Binomial model fails to fit many data sets especially

those with a large number of singletons, such as in the microbial data.

1.3.2 Distributions for Poisson Means

The simplest structure for the λ′js is to assume all the means are equal, i.e.

λj ≡ λ for all j. However, from observed data as in figure 1.5 this may be an

unreasonable assumption in many cases.

The Gamma distribution used in the last section is just one of many choices

for a distribution on λj. Since λj is a nonnegative value, any distribution with

support on (0,∞) is a reasonable choice.

This problem is motivated by the scientific question of estimating the number

of unobserved classes. In the realm of parametric models, the Negative Binomial

model often fails to fit the data, and a more flexible distribution is sought out.

Choosing a more flexible distribution for the λj may increase the fit of the model

and assuage issues such as choosing an appropriate value for τ .

The basic idea of this thesis is to model the full data as a collection of

independent Poisson samples where the means of the Poisson samples follow

a mixture of Exponential distributions. The zero-truncated mixed-Exponential

mixed Poisson becomes the model for our observed data. We have chosen to use

the Exponential distribution for its simplicity. See section 5.2 for discussion.

Chapter 2 introduces the mixed Poisson model with a single Exponential

distribution. This is a special case of the Negative Binomial model described

in section 1.3.1. The model for the observed data is a zero-truncated mixture

of Geometric distributions. Chapter 3 introduces the use of a mixture of two

Exponential distributions. Here, we implement a nested EM algorithm to find
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the maximum likelihood estimates instead of using the analytic approach in

chapter 2. Chapter 4 uses a mixture of three exponentials for the Poisson means.

The same nested EM algorithm is used, and slow convergence is expedited by

the use of Aitken’s acceleration. Chapter 5 presents additional topics which are

related to this model and the species problem.



Chapter 2

A Single Exponential
Distribution

This chapter begins by introducing the Exponential mixed Poisson distribution

in modeling the non-truncated data. The Exponential mixed Poisson distribu-

tion is a simple place to start since it is probabilistically equivalent to a Geo-

metric distribution. The model for the observed data becomes a zero-truncated

Geometric distribution.

2.1 An Empirical Bayes Model

Consider Yj, the number of individuals observed from species j, where j =

1, . . . , C and C is the total number of species. Let Yj|λj ∼ Poisson (λj), inde-

pendently for each j. Now let λj ∼ Exponential (θ), where θ is the mean of the

distribution, i.e. if p (λj| θ) represents the probability density for λj, then

p (λj| θ) =
1

θ
e−

λj
θ .

We assume that the λj are independent for all j.

This probability structure implies that the marginal distribution of Yj is

18
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Geometric ((1 + θ)−1), that is,

p (yj) =

∫
p (yj|λj) p (λj)dλj

=

∫
e−λjλ

yj

j

yj!

1

θ
e−

λj
θ dλj

=
1

θyj!

∫
λ

yj

j e−λj(1+θ−1)dλj

=
1

1 + θ

(
θ

1 + θ

)yj

, (2.1)

for yj = 0, 1, . . .. In the above parameterization, 1
1+θ

is commonly associated

with the probability of success of a Geometrically distributed random variable.

Next we define the model for the observed data. Using equation 1.2, the

zero-truncated Geometric distribution is

P [Xij = xij ] = P [Yj = xij |Yj > 0]

=
1

1+θ

(
θ

1+θ

)xij

1− 1
1+θ

=

(
θ

1 + θ

)xij
−1

1

1 + θ
, (2.2)

where xij = 1, 2, . . .. This is the model as described in equation 1.4 with α = 1

and β = θ. Thus, Xij − 1 is also a Geometric random variable where 1
1+θ

is the

probability of success.

2.2 Estimation and Inference

2.2.1 Maximum Likelihood Estimation

Using the zero-truncated Geometric distribution in equation 2.2 to model the

observed data, we find parameter estimates by maximum likelihood. Assuming
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Xi are independent for all i, the likelihood is

L(θ) =
c∏

i=1

(
θ

1 + θ

)xi−1
1

1 + θ

=

(
θ

1 + θ

)Pc
i=1 (xi−1) (

1

1 + θ

)c

.

Maximizing with respect to θ gives us the maximum likelihood estimate

θ̂ = x̄− 1, (2.3)

where x̄ = 1
c

∑c
i=1 xi.

Now we estimate the number of unobserved classes. Let C0 = C − c denote

the number of unobserved classes. We estimate C0 from the model by setting

up the equation

C0 = Cp0(θ̂)

= (C0 + c) p0(θ̂).

Thus, the estimate of the number of unobserved classes, Ĉ0 is

Ĉ0 =
c p0(θ̂)

1− p0(θ̂)
. (2.4)

For the single Exponential model, using equations 2.1 and 2.3 we find

Ĉ0 =
c 1

1+θ̂

1− 1

1+θ̂

=
c

θ̂

=
c

x̄− 1
.

2.2.2 Standard Errors

We use a standard asymptotic approach developed by Sanathanan (1972 [27])

to calculate the variance of our estimate in equation 2.4. As C →∞,

Ĉ − C√
C

⇒d Normal


0,

[
1− p0(θ)

p0(θ)
− 1

p 2
0 (θ)

(
dp (0)

dθ

)T

I (θ)−1

(
dp (0)

dθ

)]−1

 ,
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where
(

dp(0)
dθ

)
is the score function evaluated at x = 0 and I (θ) is the Fisher

information matrix.

Since Ĉ0 = Ĉ − c and c is known, we can apply the standard error of Ĉ to

Ĉ0. Thus, the asymptotic standard error of Ĉ0 is

SE(Ĉ0) =

[
1

Ĉ

[
1− p0(θ̂)

p0(θ̂)
− 1

p 2
0 (θ̂)

(
dp (0)

dθ̂

)T

I
(
θ̂
)−1

(
dp (0)

dθ̂

)]]−1/2

,

where we plug in our parameter estimate, θ̂.

2.2.3 Goodness of Fit

In order to measure departure of the data from the model, an asymptotic χ2

goodness of fit statistics is used. Let W be

W =
K∑

k=1

(Ok − Ek)
2

Ek

, (2.5)

where k = 1, . . . , K = max Xi + 1. Then Ok is the observed count in kth cell

and Ek is the expected count in the kth cell. We have,

Ok =
c∑

i=1

I{Xi = k}

and

Ek = ĈP [Xi = k],

for k = 1, . . . , K − 1; and

OK = 0

and

EK = Ĉ

∞∑
m=K−1

P [Xi = m]
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for the last cell.

The asymptotic distribution of W is χ2
ν where ν = K − p− 1 is the degrees

of freedom for a model with p parameters. If any of the expected cell counts

are less than five, cells are binned. Starting from the lowest cell frequency,
∑c

i=1 I{Xi = 1}, cells are binned one by one until the expected count is greater

than or equal to five. If the last binned cell has an expected count less than

five, then the last two cells are binned. A more exact distribution of W can

be found using a parametric bootstrap procedure (Tollenaar & Mooijaart 2003

[32]).

2.2.4 Computation

Fitting the Exponential mixed Poisson model is not a difficult task. Maximum

likelihood estimates can be computed by hand. Standard errors and goodness

of fit statistics can be calculated directly.

2.3 Example

In this section we will focus on the microbial data with cut-off 99%. Table 2.1

shows the results for each value of the tuning parameter, τ .

Figure 2.1 shows the fitted values for this data with τ = 22. It is clear that

the estimated values, represented by the asterisks on the plot, do not fit the

data well. This agrees with the p-value from the goodness of fit statistic.
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Table 2.1: Results for Microbial 99%

τ Ĉ SE(Ĉ) GOF p-value
4 6,294.0 145.5 0.0000
5 5,716.8 128.1 0.0000
6 5,392.6 118.4 0.0000
7 5,218.6 113.1 0.0000
8 4,918.0 104.0 0.0000
9 4,855.3 102.1 0.0000
11 4,705.7 97.6 0.0000
17 4,592.1 94.1 0.0000
22 4,452.7 89.8 0.0000
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Figure 2.1: Fitted Values with Microbial 99% (τ = 22)



Chapter 3

A Mixture of Two Exponential
Distributions

Typically, the zero-truncated Exponential mixed Poisson model is not flexible

enough to model the data. The lack of fit can be quantified in the goodness of

fit statistic. Searching for a more flexible model is the motivation for looking

at mixtures of Exponential distributions.

3.1 Model Description

Consider a three parameter probability density for λj,

p (λj| θ1, θ2, θ3) = θ3f1 + (1− θ3)f2,

where

f1 =
1

θ1

e
−λj

θ1

and

f2 =
1

θ2

e
−λj

θ2

are two Exponential distributions with means θ1 and θ2, respectively. Thus

24
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p (λj| θ1, θ2, θ3) = θ3
1

θ1

e
−λj

θ1 + (1− θ3)
1

θ2

e
−λj

θ2 .

Using equation 1.1 the two-mixed-Exponential mixed Poisson distribution is

P [Yj = yj] =

∫
p (λj| θ1, θ2, θ3)p (yj|λj)dλj

= θ3

∫
f1p (yj|λj)dλj + (1− θ3)

∫
f2p (yj|λj)dλj

= θ3
1

1 + θ1

(
θ1

1 + θ1

)yj

+ (1− θ3)
1

1 + θ2

(
θ2

1 + θ2

)yj

.

The marginal distribution for Yj is a weighted sum of two geometric probabili-

ties.

The zero-truncated distribution is

P [Xi = xi] =
P [Xi = xi]

1− P [Xi = 0]

=
θ3

1
1+θ1

(
θ1

1+θ1

)xi

+ (1− θ3)
1

1+θ2

(
θ2

1+θ2

)xi

1−
(
θ3

1
1+θ1

+ (1− θ3)
1

1+θ2

) .

3.2 Computation by the EM Algorithm

We wish to fit the zero-truncated two-mixed-Exponential mixed Poisson dis-

tribution to the frequency data. Treating as a missing data problem with the

observations Yj = 0 as missing data, we can use the Expectation Maximiza-

tion (EM) algorithm by imputing a value for
∑

I{Yj = 0} and then maximize

the non-zero-truncated distribution. Iterating through these two steps gives

us a maximum likelihood estimate for θ = (θ1, θ2, θ3). The likelihood for the

weighted sum of geometric distributions can be maximized by way of the EM

algorithm. Embedding another EM into the M step of the outer EM algorithm

gives us a nested EM (Böhning and Schön 2005 [3]).
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3.2.1 E Step

The first step is to specify an initial value for the expected zero count,
∑

I{Yj = 0}.
Based on the idea that one component of the mixture models the rare species

while the other component models the abundant species, we will use the first

four frequencies of the data, {xi : xi ≤ 4}, to estimate the starting value with a

single Exponential mixed Poisson distribution truncated on the left and right;

that is, X = Y |0 < Y ≤ 4 where Y is a Geometric random variable with success

probability p. Let n(0) be the number of observations in {xi : xi ≤ 4}. The

likelihood for {xi : xi ≤ 4} is

L(p) =
n(0)∏
i=1

P [Y = xi|Y ≤ 4]

=
n(0)∏
i=1

P [Y = xi]∑4
j=1 P [Y = j]

.

The log likelihood is

l(p) =
n(0)∑
i=1

log P [Y = xi]− n(0) log

(
4∑

j=1

P [Y = j]

)

=
n(0)∑
i=1

log [(1− p)xi p]− n(0) log

(
4∑

j=1

(1− p)j p

)

= log (1− p)
n(0)∑
i=1

xi − n(0) log
4∑

j=1

(1− p)j.

Taking a derivative with respect to p, we have

l(p)

dp
=
−∑n(0)

i=1 xi

1− p
− n(0)

∑4
j=1 j(1− p)j−1

∑4
j=1 (1− p)j

.

The maximum likelihood estimate for p solves

l(p)

dp
= 0.
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The estimated probability Y = 0|Y ≤ 4 is

p̂0 =
p̂∑4

j=0 (1− p̂)j p̂
.

The expected zero count is

Ĉ0(0) =
p̂0n

(0)

1− p̂0

.

The zero in parenthesis indicates the iteration number for the outer EM, indexed

by k.

We treat the unobserved zero count as missing data. This step imputes a

value for Ĉ0(k+1). The expected zero count for the kth iteration given the current

parameter estimates, θ̂(k) is

Ĉ0(k+1) = p0(θ̂(k))
(
c + Ĉ0(k)

)
,

where p0(θ̂(k)) is the probability Y = 0 under the non zero-truncated model.

3.2.2 M Step

Next, we want to update our parameter estimates. We can now maximize the

non-zero-truncated model, which is a mixture of Geometric distributions, using

the EM algorithm. We will refer to this embedded EM as the inner EM. The

EM used to impute the expected zero counts will be called the outer EM.

The first step is to specify initial values for the parameters (θ1, θ2, θ3). Con-

sider the non truncated data as contributions from the two exponential mixing

distributions. To obtain rough starting values, we use the low and high fre-

quencies to estimate the mean of each mixing distribution. Let Y
(1)
i be a subset

of the data such that min Yi ≤ Yi ≤ b2
3
max Yic + 1 where byc is the greatest

integer less than or equal to y. Let Y
(2)
i be a subset of the data such that



28

b1
3
max Yic+ 1 ≤ Yi ≤ max Yi. Also, let n(1) and n(2) be the number of elements

in the sets Y
(1)
i and Y

(2)
i respectively. The initial values for θ1 and θ2 are

θ1(0) = Ȳ (1) =
1

n(1)

n(1)∑
i=1

Y
(1)
i

and

θ2(0) = Ȳ (2) =
1

n(2)

n(2)∑
i=1

Y
(2)
i .

We let θ3(0) = 1/2. The subscript in parenthesis indicates the iteration number

for the inner EM, indexed by l.

Nested E Step

Within one iteration of the outer EM, there is one imputed value of C0, which

together with the observed data, is the non-truncated data for the lth iteration.

This data can be modeled by the non-truncated two-mixed-Exponential distri-

bution. We apply the EM to maximize the parameters in this finite mixture as

described in McLachlan and Peel (2000 [23] section 2.8).

Let Z1i be a random variable which indicates Yi originated from the first

component and Z2i = 1−Z1i be a random variable which indicates Yi originated

from the second component. Using the current parameter estimates, θ(l−1),

we impute the expected values for Z1i(l) and Z2i(l). For each Yi, we find the

conditional expectation given the data. Bayes formula gives us

E[Z1i(l)] = P [Z1i = 1|Yi = yi]

=
P [Yi = yi|Z1i = 1]P [Z1i = 1]

P [Yi = yi|Z1i = 1]P [Z1i = 1] + P [Yi = yi|Z1i = 0]P [Z1i = 0]

=

(
θ1(l−1)

1+θ1(l−1)

)yi
1

1+θ1(l−1)
θ3(l−1)(

θ1(l−1)

1+θ1(l−1)

)yi
1

1+θ1(l−1)
θ3(l−1) +

(
θ2(l−1)

1+θ2(l−1)

)yi
1

1+θ2(l−1)
(1− θ3(l−1))
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and

E[Z2(l)] = P [Z1i = 0|Yi = yi]

= 1− P [Z1i = 1|Yi = yi].

Nested M Step

The parameter estimates for θ1 and θ2 have a closed form following equation

2.33 in (Mclachlan and Peel 2000 [23]) given by

θ1(l) =

∑
E[Z1i(l)]Yi∑
E[Z1i(l)]

and

θ2(l) =

∑
E[Z2i(l)]Yi∑
E[Z2i(l)]

The estimate for θ3(l) is the sample average of the E[Z1i(l)],

θ3(l) =

∑
E[Z1i(l)]

c + c0(k)

.

The sum,
∑
E[Z1i(l)] =

∑
P [Z1i = 1|Yi = yi], is calculated by adding all E[Z1i(l)]

terms for Yi > 0 with E[Z1i(l)]Ĉ0 for Yi = 0.

Convergence Criterion

Convergence is determined when the likelihood for the incomplete data is not

decreased after an EM iteration, for both the outer and inner EM. For the outer

EM, iterations are ceased when

1− ε ≤ Ĉ0(k)

Ĉ0(k−1)

≤ 1 + ε
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for small, positive ε. For the inner EM, iterations are ceased when all parameter

estimates meet the criteria

1− ε ≤ θ̂1(l)

θ̂1(l−1)

≤ 1 + ε,

1− ε ≤ θ̂2(l)

θ̂2(l−1)

≤ 1 + ε,

and

1− ε ≤ θ̂3(l)

θ̂3(l−1)

≤ 1 + ε.

In the examples in sections 3.3 and 4.3, ε is set equal to 10−6.

3.3 Example

Again we focus on the microbial data with cut-off 99%. Table 3.1 shows the

results from fitting the zero-truncated two mixed-exponential mixed Poisson

model for each value of the tuning parameter, τ .

Figure 3.1 shows the fitted values for this data with τ = 22. This model

shows a better fit than the predicted values from the single Exponential model

quantified by the large goodness of fit p-values from the fourth column in table

3.1. We would like to use as much data as possible, meaning the largest value

Table 3.1: Results for Microbial 99%

τ Ĉ SE(Ĉ) GOF p-value
6 13,966.7 6,191.6 0.1339
7 12,849.4 4,315.5 0.5210
8 11,236.2 2,472.6 0.5574
9 10,958.7 2,220.8 0.7218
11 10,256.5 1,738.4 0.8063
17 9,678.9 1,410.6 0.7638
22 9,063.0 1,127.4 0.6493
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Figure 3.1: Fitted Values with Microbial 99% (τ = 22)

of τ . With the two mixed-Exponential model, we can use all of the available

data (τ = 22) with model agreement.

Figure 3.2 shows the fitted values for the microbial data at cut-off percentage

98 (τ = 16); table 3.2 shows the results; and table 3.3 shows the parameter

estimates.

Tables 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9 show results for all other cutoff percent-

ages for the microbial data. An NA appears for the GOF p-value when there

are not enough degrees of freedom to calculate the goodness of fit statistic after

binning cells.
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Figure 3.2: Fitted Values with Microbial 98% (τ = 16)

Table 3.2: Results for Microbial 98%

τ Ĉ SE(Ĉ) GOF p-value
6 11,967.7 10,019.9 0.0964
7 11,243.1 6,675.4 0.3828
8 9,322.8 3,137.2 0.0673
9 8,155.5 1,903.9 0.0517
10 7,213.8 1,214.3 0.0100
11 7,061.6 1,127.4 0.0205
12 6,896.1 1,040.3 0.0285
16 6,631.3 906.4 0.0941
23 6,250.1 745.7 0.0973
25 5,935.5 637.2 0.0677
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Table 3.3: Parameter Estimates for Microbial 98%

τ θ̂1 θ̂2 θ̂3

6 0.05542 0.73886 0.89974
7 0.06476 0.87155 0.91299
8 0.09018 1.11146 0.92398
9 0.11324 1.33931 0.93235
10 0.13986 1.69176 0.94281
11 0.14508 1.77538 0.94481
12 0.15109 1.87431 0.94701
16 0.16141 2.04080 0.95050
23 0.17828 2.33765 0.95586
25 0.19439 2.68506 0.96070

Table 3.4: Results for Microbial 70%

τ Ĉ SE(Ĉ) GOF p-value
6 202.7 1,413.5 NA
22 96.9 114.6 NA
53 40.9 13.7 NA
91 40.0 13.6 NA
339 38.4 13.8 NA
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Table 3.5: Results for Microbial 80%

τ Ĉ SE(Ĉ) GOF p-value
6 827.3 2,071.3 NA
7 793.0 1,612.5 0.0725
8 737.7 1,139.2 0.1135
9 679.7 785.4 0.1563
11 614.7 506.9 0.2372
12 569.0 362.6 0.4997
13 536.2 278.6 0.5494
14 496.1 200.3 0.6007
15 474.4 166.7 0.4459
16 466.4 155.1 0.4386
20 453.5 141.0 0.4549
22 441.2 127.8 0.1526
23 431.2 117.9 0.1473
25 421.7 109.4 0.1522
27 412.8 102.1 0.1210
31 402.8 94.7 0.1399
34 393.2 88.3 0.1437
38 383.5 81.5 0.2340
56 366.9 71.8 0.2668
76 347.1 61.6 0.3548
81 332.7 54.4 0.2426
102 319.3 48.4 0.2440
115 309.3 45.2 0.1801
130 301.8 43.3 0.1092
264 289.7 39.6 0.0507
364 280.7 37.2 0.0189
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Table 3.6: Results for Microbial 90%

τ Ĉ SE(Ĉ) GOF p-value
6 3,612.7 6,289.2 0.0323
7 3,428.4 3,851.3 0.1196
8 2,827.9 1,615.4 0.2381
9 2,348.5 714.2 0.0706
10 2,115.2 442.8 0.0138
11 2,087.6 414.0 0.0351
12 2,028.9 367.4 0.0486
13 1,975.7 326.7 0.0685
15 1,917.5 288.7 0.1232
16 1,891.2 274.1 0.1426
17 1,865.2 260.8 0.1584
19 1,836.3 244.4 0.2780
20 1,809.4 232.4 0.2878
25 1,773.1 215.3 0.3398
28 1,737.0 199.9 0.3337
34 1,696.4 184.3 0.3114
36 1,661.4 171.9 0.2669
41 1,600.4 152.6 0.0952
45 1,575.1 145.4 0.0608
49 1,551.7 139.2 0.0392
52 1,530.9 132.8 0.0165
53 1,513.7 125.0 0.0313
62 1,495.1 122.0 0.0210
96 1,466.3 117.5 0.0029
123 1,436.4 112.2 0.0018
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Table 3.7: Results for Microbial 95%

τ Ĉ SE(Ĉ) GOF p-value
6 6,808.7 6,142.4 0.0065
7 5,650.8 2,496.6 0.0199
8 4,875.1 1,355.4 0.0086
9 4,528.2 993.8 0.0302
10 4,372.2 865.7 0.0615
11 4,160.1 708.5 0.0793
12 4,036.8 633.8 0.1016
13 3,810.2 504.3 0.1532
14 3,774.1 487.6 0.0999
18 3,711.8 461.6 0.2525
19 3,603.9 415.5 0.2473
20 3,557.2 398.9 0.2804
21 3,513.2 380.1 0.2910
25 3,459.2 362.9 0.3206
28 3,404.1 343.0 0.4110
30 3,352.2 328.4 0.3843
33 3,301.5 311.9 0.3486
37 3,250.4 296.5 0.3005
41 3,200.8 285.4 0.2248
58 3,132.6 265.8 0.0653
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Table 3.8: Results for Microbial 96%

τ Ĉ SE(Ĉ) GOF p-value
6 5,755.3 4,199.5 0.0874
7 4,713.5 1,408.4 0.0634
8 4,293.3 830.6 0.0105
9 4,177.5 721.4 0.0784
10 4,091.5 646.4 0.1870
11 3,935.1 536.0 0.2520
12 3,839.7 481.6 0.4189
13 3,780.4 447.0 0.5353
18 3,720.8 421.1 0.6265
20 3,659.1 396.4 0.6758
21 3,602.3 371.2 0.6928
22 3,550.5 353.3 0.6694
25 3,495.1 331.9 0.6977
28 3,438.9 312.1 0.6758
33 3,377.7 295.5 0.5380
37 3,318.4 277.9 0.4489
44 3,256.0 261.2 0.3286

Table 3.9: Results for Microbial 97%

τ Ĉ SE(Ĉ) GOF p-value
6 8,237.0 6,482.1 0.0979
7 6,768.1 2,533.3 0.0054
8 6,131.7 1,656.1 0.0254
10 5,450.8 1,025.1 0.1563
11 5,106.4 785.9 0.1999
12 5,004.0 727.0 0.2224
13 4,677.6 559.7 0.0215
14 4,613.4 532.5 0.2936
15 4,548.1 501.3 0.1271
20 4,443.4 463.3 0.2015
21 4,351.5 428.4 0.1860
24 4,257.1 399.3 0.1710
25 4,111.6 355.3 0.1463



Chapter 4

A Mixture of Three Exponential
Distributions

We would like to explore mixtures of Exponential Distributions with more than

two components. Situations may arise where the two-mixed-Exponential model

is not flexible enough to fit the data. This chapter explores this five parameter

model.

4.1 Model Description

Consider a five parameter probability density for λj,

p (λj| θ1, θ2, θ3, θ4, θ5) = θ4f1 + θ5f2 + (1− θ4 − θ5)f3,

where

f1 =
1

θ1

e
−λj

θ1 ,

f2 =
1

θ2

e
−λj

θ2 ,

and

f3 =
1

θ3

e
−λj

θ3 .

are three Exponential distributions with means θ1, θ2, and θ3, respectively.

38
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The three-mixed-Exponential mixed Poisson distribution is a mixture of

Geometric distributions with success probabilities 1/(1 + θ1), 1/(1 + θ2), and

1/(1 + θ3), respectively. Thus, the non-zero-truncated distribution for Yj is a

weighted sum of three geometric probabilities.

The zero-truncated distribution is

P [Xij = xij ] =
P [Yj = xij ]

1− P [Yj = 0]

=
θ4

1
1+θ1

(
θ1

1+θ1

)xij

+ θ5
1

1+θ2

(
θ2

1+θ2

)xij

+ (1− θ4 − θ5)
1

1+θ3

(
θ3

1+θ3

)xij

1−
(
θ4

1
1+θ1

+ θ5
1

1+θ2
+ (1− θ4 − θ5)

1
1+θ3

) .

4.2 Computation

Implementation of the EM algorithm is an extension of the two-mixed-Exponential

fitting algorithm.

4.2.1 Starting Values

The starting value for the expected zero count, Ĉ0(k) is found using the same

method from section 3.2.1.

The starting values for the parameter estimates are found in a similar manner

to section 3.2.2. We split the data into three sections, estimate a geometric

distribution for each of the subsets, and then use these estimates for starting

values for the mixture distribution.

Let Y
(1)
i be a subset of the data such that min Yi ≤ Yi ≤ b2

4
max Yic + 1

where byc is the greatest integer less than or equal to y. Let Y
(2)
i be a subset of

the data such that b1
4
max Yic + 1 ≤ Yi ≤ b3

4
max Yic + 1. Let Y

(3)
i be a subset

of the data such that b2
4
max Yic + 1 ≤ Yi ≤ max Yi. Let n(1), n(2), and n(3) be

the number of elements in the sets Y
(1)
i , Y

(2)
i , and Y

(3)
i respectively. The initial



40

values for θ1, θ2, and θ3 are

θ1(0) = Ȳ (1) =
1

n(1)

n(1)∑
i=1

Y
(1)
i

θ2(0) = Ȳ (2) =
1

n(2)

n(2)∑
i=1

Y
(2)
i

θ3(0) = Ȳ (3) =
1

n(3)

n(3)∑
i=1

Y
(3)
i .

We let θ4(0) = θ5(0) = 1/3.

4.2.2 E Step

Using the parameter estimates from the M step, θ̂k, we impute a new value for

the expected zero count, Ĉ0(k+1) by

Ĉ0(k+1) = p0(θ̂(k))
(
c + Ĉ0(k)

)
,

where p0(θ̂(k)) is the probability Y = 0 under the non zero-truncated model,

that is

p0(θ̂(k)) = θ̂4(k)
1

1 + θ̂1(k)

+ θ̂5(k)
1

1 + θ̂2(k)

+ (1− θ̂4(k) − θ̂5(k))
1

1 + θ̂3(k)

.

4.2.3 M Step

Again we nest an EM algorithm for fitting the missing component mixture

distribution inside the M step for the truncated distribution. We use the starting

values for the five parameters as defined in section 4.2.1.

Nested E Step

Let Z1i be a random variable which indicates if Yi originated from the first

component, Z2i indicating the second component, and Z3i indicating the third
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component. Using the current parameter estimates, θ(jl1), we impute the ex-

pected values for Z1i(l) and Z2i(l) for i = 1, 2, . . . , n. For each Yi, Bayes formula

gives us

E[Z1i(l)] = P [Z1i = 1, Z2i = 0, Z3i = 0|Yi = yi]

=
P [Yi = yi|Z1i = 1, Z2i = 0, Z3i = 0]P [Z1i = 1, Z2i = 0, Z3i = 0]

D
,

where

D = P [Yi = yi|Z1i = 1, Z2i = 0, Z3i = 0]P [Z1i = 1, Z2i = 0, Z3i = 0]

+P [Yi = yi|Z1i = 0, Z2i = 1, Z3i = 0]P [Z1i = 0, Z2i = 1, Z3i = 0]

+P [Yi = yi|Z1i = 0, Z2i = 0, Z3i = 1]P [Z1i = 0, Z2i = 0, Z3i = 1].

Thus,

E[Z1i(l)] =

(
θ1(l−1)

1+θ1(l−1)

)yi
1

1+θ1(l−1)
θ4(l−1)

D
,

where

D =

(
θ1(l−1)

1 + θ1(l−1)

)yi 1

1 + θ1(l−1)

θ4(l−1) +

(
θ2(l−1)

1 + θ2(l−1)

)yi 1

1 + θ2(l−1)

θ5(l−1)

+

(
θ3(l−1)

1 + θ3(l−1)

)yi 1

1 + θ3(l−1)

(1− θ4(l−1) − θ5(l−1).

Similarly,

E[Z2i(l)] = P (Z1i = 0, Z2i = 1, Z3i = 0|Yi = yi)

=
P (Yi = yi|Z1i = 0, Z2i = 1, Z3i = 0)P (Z1i = 0, Z2i = 1, Z3i = 0)

D

=

(
θ2(l−1)

1+θ2(l−1)

)yi
1

1+θ2(l−1)
θ5(l−1)

D
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and

E[Z3i(l)] = P (Z1i = 0, Z2i = 0, Z3i = 1|Yi = yi)

=
P (Yi = yi|Z1i = 0, Z2i = 0, Z3i = 1)P (Z1i = 0, Z2i = 0, Z3i = 1)

D

=

(
θ3(l−1)

1+θ3(l−1)

)yi
1

1+θ3(l−1)

(
1− θ4(l−1) − θ5(l−1)

)

D
.

Nested M Step

Following equation 2.33 in (Mclachlan and Peel 2000 [23]), the parameter esti-

mates for θ are

θ1(l) =

∑
E[Z1i(l)]Yi∑
E[Z1i(l)]

,

θ2(l) =

∑
E[Z2i(l)]Yi∑
E[Z2i(l)]

,

and

θ3(l) =

∑
E[Z3i(l)]Yi∑
E[Z3i(l)]

.

The estimate for the weight parameters are

θ3(l) =

∑
E[Z1i(l)]

c + c0(k)

and

θ4(l) =

∑
E[Z2i(l)]

c + c0(k)

.

Convergence Criterion

We maintain the same convergence criterion for each EM. Iterations for the

outer EM are ceased when

1− ε ≤ Ĉ0(k)

Ĉ0(k−1)

≤ 1 + ε
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for small, positive ε. For the inner EM, iterations are ceased when all parameter

estimates meet the criteria

1− ε ≤ θ̂1(l)

θ̂1(l−1)

≤ 1 + ε

1− ε ≤ θ̂2(l)

θ̂2(l−1)

≤ 1 + ε

1− ε ≤ θ̂3(l)

θ̂3(l−1)

≤ 1 + ε

1− ε ≤ θ̂4(l)

θ̂4(l−1)

≤ 1 + ε

1− ε ≤ θ̂5(l)

θ̂5(l−1)

≤ 1 + ε.

4.2.4 Aitken’s Acceleration

The EM algorithm sometimes requires an immense number of iterations to con-

verge. This slowness is mainly due to the small changes of the imputed zero

count and the parameter estimates between iterations in the primary EM. In

order to increase the speed of the algorithm we utilize an acceleration method

which attempts to skip iterations in the sequence. The method used is a ver-

sion of Aitken’s acceleration (McLachlan and Peel 2000 [23]) with the number

of skipped iterations determined by the change in the imputed zero count. This

method is applied to the outer EM.

We assume the change in the value of the imputed zero count, ∆(k) =
∣∣∣Ĉ0(k) − Ĉ0(k−1)

∣∣∣, is decreasing with constant rate. Thus

f (k) = ∆(k) +
(
∆(k) −∆(k−1)

)
k

describes the sequence of ∆(k). To find the iteration where ∆(k) = 0, we solve

0 = ∆(k) +
(
∆(k) −∆(k−1)

)
k
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for k, obtaining k =
∆(k)

(∆(k−1)−∆(k))
.

The value of the next imputed zero count, Ĉ0(k+1) is

Ĉ0(k) + k∆(k) = Ĉ0(k) +

(
∆(k)

∆(k−1) −∆(k)

)
∆(k)

= Ĉ0(k) +

(
Ĉ0(k) − Ĉ0(k−1)

)2

(
Ĉ0(k−1) − Ĉ0(k−2)

)
−

(
Ĉ0(k) − Ĉ0(k−1)

)

= Ĉ0(k) −

(
Ĉ0(k) − Ĉ0(k−1)

)2

Ĉ0(k) − 2Ĉ0(k−1) + Ĉ0(k−2)

.

This acceleration step is used after 10 successful EM iterations. Since the

acceleration requires three consecutive estimates for the unobserved number of

classes, Ĉ0(k), Ĉ0(k−1), and Ĉ0(k−2), the acceleration can be used at most on every

third iteration. We also do not implement the acceleration step if the change in

consecutive estimates is not decreasing.

4.3 Example

Again we focus on the microbial data with cut-off 99%. Table 4.1 shows the

results from fitting the zero-truncated three mixed-exponential mixed Poisson

model for each value of the tuning parameter, τ . The NA’s appearing in the

fourth column are due to an uncalculable p-value due to insufficient degrees of

freedom after binning cells.

Figure 4.1 shows the fitted values for this data with τ = 22. It is hard to

see any deviation from the observed and fitted values from this model. Large

goodness of fit statistics in table 4.1, show that the models would not reject a

goodness of fit hypothesis test. However, with a five parameter model there is

danger in overfitting the model with too many components. Table 4.2 shows

the parameter estimates for all of the values of τ on the same data set.
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Table 4.1: Results for Microbial 99%

τ Ĉ SE(Ĉ) GOF p-value
7 26,284.8 26,770.4 NA
8 11,885.0 2,862.6 NA
9 11,490.6 2,533.5 0.2344
11 10,586.7 1,878.9 0.3240
17 9,906.0 1,490.1 0.3002
22 9,216.3 1,170.8 0.3131

Table 4.2: Parameter Estimates for Microbial 99%

τ θ̂1 θ̂2 θ̂3 θ̂4 θ̂5

7 0.03114 0.03114 0.75556 0.62935 0.32838
8 0.09183 0.09183 1.15288 0.62148 0.33306
9 0.09690 0.09690 1.22649 0.62738 0.32946
11 0.11029 0.11029 1.44236 0.66230 0.30028
17 0.12235 0.12235 1.66437 0.68001 0.28725
22 0.13680 0.13680 1.99606 0.69979 0.27260

The estimates for the first two components are the same. We have rounded

the estimates in the table to five decimal places; however, the estimates are iden-

tical up to 32 significant digits. This means the algorithm is fitting a two mixed-

Exponential model. However, we are losing precision in our estimates since we

are estimating unnecessary parameters. Looking back at table 3.1 from the two-

mixed-Exponential model, corresponding values of τ have similar estimates for

the number of unobserved classes; however, the two mixed-Exponential model’s

estimate has a lower standard error.

Figure 4.2 shows the fitted values for the microbial data at cut-off percentage

98 (τ = 16) and table 4.3 shows the results. Table 4.4 shows parameter estimates
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Figure 4.1: Fitted Values with Microbial 99% (τ = 22)
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Figure 4.2: Fitted Values with Microbial 98% (τ = 16)

for the microbial 98% data. As τ increases, the estimates for θ1 and θ2

become distinct. As we use more data, we are able to fit more components.

Tables 4.5, 4.6, 4.7, 4.8, 4.9, and 4.10, show results for all other cutoff

percentages for the microbial data.



Table 4.3: Results for Microbial 98%

τ Ĉ SE(Ĉ) GOF p-value
7 3,772,351.4 NA NA
8 9,425.4 NA 0.0076
9 8,142.0 2,149.7 0.0055
10 7,209.0 35,540.0 0.0013
11 7,082.3 31,242.0 0.0030
12 6,893.9 26,053.5 0.0045
16 6,666.1 20,603.1 0.0243
23 10,994.7 15,838.9 0.2193
25 11,050.5 13,836.0 0.2473

Table 4.4: Parameter Estimates for Microbial 98%

τ θ̂1 θ̂2 θ̂3 θ̂4 θ̂5

7 0.00013 0.00013 0.75922 0.65655 0.34310
8 0.08892 0.08892 1.11111 0.59783 0.32679
9 0.11364 0.11365 1.34384 0.60661 0.32603
10 0.13992 0.14030 1.69443 0.61921 0.32373
11 0.14435 0.14488 1.77461 0.64117 0.30373
12 0.15089 0.15185 1.87660 0.64144 0.30566
16 0.15986 2.03478 0.16105 0.67288 0.04954
23 0.06197 0.55887 3.06595 0.87978 0.10670
25 0.06186 0.60542 3.71956 0.88451 0.10508

Table 4.5: Results for Microbial 70%

τ Ĉ SE(Ĉ) GOF p-value
22 198.8 1,482.5 NA
53 204.6 1,550.8 NA
91 234.6 2,114.6 NA
339 213.6 1,676.7 NA

48
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Table 4.6: Results for Microbial 80%

τ Ĉ SE(Ĉ) GOF p-value
7 792.8 1,933.4 NA
8 736.6 10,996.2 NA
9 680.1 6,300.3 NA
11 640.4 28,771.8 NA
12 573.5 12,323.9 NA
13 537.7 7,292.3 NA
14 496.1 3,718.8 NA
15 478.2 2,666.5 NA
16 466.5 2,219.1 NA
20 453.7 1,780.5 NA
22 512.7 548.4 0.0202
23 538.5 665.1 0.0182
25 535.5 632.2 0.0218
27 544.0 653.8 0.0252
31 551.7 668.3 0.0362
34 559.0 675.7 0.0433
38 565.5 677.9 0.1232
56 573.9 654.8 0.1088
76 575.6 592.4 0.1779
81 571.0 528.3 0.2511
102 555.8 431.1 0.2070
115 428.9 120.0 0.2012
130 410.4 100.0 0.2010
264 394.8 86.3 0.2014
364 387.8 81.2 0.1877
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Table 4.7: Results for Microbial 90%

τ Ĉ SE(Ĉ) GOF p-value
7 10,050,106.2 3,170.1 NA
8 2,834.5 83,226.7 NA
9 2,352.9 18,040.7 0.0080
10 2,125.6 7,458.1 0.0019
11 2,096.2 6,628.6 0.0057
12 2,029.6 5,109.5 0.0084
13 1,975.5 4,072.6 0.0166
15 2,223.5 3,299.5 0.0403
16 2,481.8 6,064.4 0.0538
17 3,303.0 18,917.6 0.0688
19 2,918.5 9,765.8 0.1662
20 3,582.4 26,157.1 0.1811
25 2,953.2 7,747.6 0.2195
28 2,880.1 6,256.2 0.2984
34 2,994.9 5,751.9 0.3162
36 3,300.7 6,798.6 0.1109
41 1,877.3 303.6 0.2353
45 1,876.5 298.2 0.2748
49 1,875.9 294.2 0.2735
52 1,876.0 291.8 0.2681
53 1,877.1 291.4 0.2542
62 1,875.9 288.4 0.1809
96 1,861.6 275.3 0.2791
123 1,859.7 267.8 0.3235
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Table 4.8: Results for Microbial 95%

τ Ĉ SE(Ĉ) GOF p-value
7 5,718.8 NA NA
8 4,902.0 49,106.2 0.0006
9 4,774.3 38,234.3 0.0041
10 4,378.5 21,723.8 0.0113
11 4,168.2 14,973.6 0.0153
12 4,040.4 11,878.7 0.0209
13 3,813.9 7,704.0 0.0449
14 3,778.0 7,171.4 0.0308
18 3,713.8 6,298.1 0.0989
19 5,602.8 15,385.3 0.2021
20 5,538.0 14,895.1 0.2338
21 5,620.0 14,049.7 0.3049
25 5,655.3 10,193.6 0.3781
28 5,641.3 8,118.3 0.5296
30 5,501.3 6,113.4 0.3699
33 5,033.9 3,371.1 0.1310
37 3,989.4 811.1 0.2311
41 3,862.7 647.3 0.0641
58 3,777.7 548.2 0.0889
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Table 4.9: Results for Microbial 96%

τ Ĉ SE(Ĉ) GOF p-value
7 4,715.2 NA NA
8 4,301.1 17,113.5 0.0008
9 4,291.3 15,520.3 0.0131
10 4,096.9 10,957.1 0.0463
11 3,935.2 7,757.2 0.0689
12 3,843.0 6,317.2 0.1741
13 3,779.9 5,515.2 0.2516
18 3,731.9 4,898.6 0.3568
20 3,674.3 3,989.7 0.4049
21 3,877.1 3,230.2 0.4502
22 4,063.5 3,624.4 0.4453
25 4,231.5 4,039.2 0.4750
28 4,385.6 4,047.5 0.4705
33 3,714.8 481.9 0.3664
37 3,725.7 473.8 0.3564
44 3,723.4 462.2 0.1227

Table 4.10: Results for Microbial 97%

τ Ĉ SE(Ĉ) GOF p-value
7 6,781.0 NA NA
8 6,162.4 26,646.1 0.0023
10 NA NA NA
11 5,106.5 15,334.6 0.0502
12 5,008.0 13,202.4 0.0578
13 4,680.3 7,856.9 0.0042
14 6,483.8 19,277.8 0.0150
15 6,705.7 18,363.9 0.0214
20 7,047.5 15,920.2 0.0556
21 7,532.4 14,425.2 0.1247
24 6,982.8 7,502.0 0.1316
25 6,510.2 4,198.5 0.1222



Chapter 5

Discussion and Additional Topics

5.1 General Mixtures of Exponentials

Increasing the number of components in the model explores more complicated

finite mixtures of Exponentials. It is easy to extend the model from chapter 4.

For instance, a four-mixed-Exponential mixed Poisson model could be parame-

terized as

P [Yj = yj] = θ5

(
θ1

1 + θ1

)yj
(

1

1 + θ1

)
+ θ6

(
θ2

1 + θ2

)yj
(

1

1 + θ2

)

+θ7

(
θ3

1 + θ3

)yj
(

1

1 + θ3

)

+(1− θ5 − θ6 − θ7)

(
θ4

1 + θ4

)yj
(

1

1 + θ4

)
,

where θ1, θ2, θ3, and θ4 are component parameters and θ5, θ6, and θ7 are weight

parameters. This model has seven parameters, and may be an overfit for fre-

quency data shown in figure 1.1. As seen with using the three mixed-Exponential

distribution in section 4.3, three components is more than enough to model some

data.

Feldmann and Whitt (1998 [16]) show that any monotone pdf can be ap-

53
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proximated by a finite mixture of Exponentials. Thus, mixtures of Exponentials

is a reasonable and flexible choice for the distribution of class means. They also

illustrate that this is especially useful in modelling heavy tailed data without

some of the mathematical complications of distributions such as Pareto and

Weibull.

Example

For the three models proposed in this paper (zero-truncated Geometric, zero-

truncated two-mixed-Geometric, and zero-truncated three-mixed-Geometric)

the two-mixed-Geometric performs best in terms of goodness of fit and precision

of the estimates. Contrasting tables 2.1, 3.1, and 4.1, we see that the Geometric

model does not fit the data well. The two and three mixed-Geometric models

fit the data well, although the estimates from the two-mixed-Geometric model

have a smaller standard error.

Among the analyses from the two-mixed-Geometric model we also can choose

a value for τ in order to attain better model fit. At τ = 22, the goodness of fit

p-value is 0.6493. Since it is possible to model all of the data, we will choose this

largest value of τ . Thus we estimate 9063.0 existing microbial species based on a

99% sequence similarity cut-off percentage. This estimate has a standard error

of 1127.4. Hence, a normal confidence interval would be (6853.296, 11272.7).

We use the normal approximation based on Sanathanan’s results (1972 [27]).

5.2 Other Mixtures

In generalizing the model, a first step would be to use mixtures of Gamma distri-

butions for the distribution of Poisson means. However, there is no restriction

on the form of the distributions. Mixtures of Exponential distributions were
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chosen for their simplicity.

When using mixture distributions to model the Poisson means, a useful

result for more complicated components, shown by Böhning and Kuhnert (2005

[2]), is that each zero-truncated mixture distribution can be written as a mixture

of zero-truncated count distributions. This is a useful result since a mixture of

zero-truncated count distributions usually has a more tractable analytic form.

The zero-truncated mixture distribution is often more complicated due to the

denominator in equation 1.2. Writing the model as a mixture of zero-truncated

count distributions eliminates the need for a nested EM, and a single stage

EM can be used on the new finite mixture model. However, maximizing the

likelihood in the M step may still be difficult depending on the form of the

zero-truncated components.

5.3 Estimating Number of Components

A usual way of comparing models is using a likelihood ratio test statistic ,

2{log L(θ̂1)− log L(θ̂0)}, (5.1)

where ÃL(θ̂1) and ÃL(θ̂0) are the likelihoods given the MLE estimates under an

alternative and null model, respectively. However, due to the non-identifiability

of the parameters in the mixture model, the usual distributional results do not

hold. However, there are some ways to modify the likelihood ratio test statistic

as described in McLachlan and Peel (2000 [23] section 6.5).

Another approach is by a parametric bootstrap (McLachlan and Peel 2000

[23]). Bootstrap samples can be generated under the null model with the maxi-

mum likelihood parameter estimates. The value of 2{log L(θ̂1)− log L(θ̂0)} can

be calculated for each bootstrap sample, and the original value of 2{log L(θ̂1)−
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log L(θ̂0)} from the data can be assessed by seeing where it lies in the distri-

bution of the statistic from the bootstrap samples. One disadvantage of this

approach is that it takes a substantial amount of computation time.

Other common methods use Akaike’s Information Criterion, Cross Valida-

tion Based Information Criterion, and Schwarz’s Bayesian Information Crite-

rion. These criteria are often used to evaluate the number of components in a

mixture model, even though they often do not meet regularity conditions, often

due to unidentifiable parameters.

5.4 A Fully Bayesian Model

Bayesians may categorize the model proposed in this paper as an empirical

Bayes model. The Exponential distribution is used as a prior on the nuisance

parameters, λj, for j = 1, . . . , C. Additionally, if we specify a prior distribution

for the unknown parameter, C, then the model can be viewed as a fully Bayesian

model.

Rodrigues, Milan, and Leite (2001 [25]) consider a noninformative and a

Poisson prior for C. A Gamma prior is considered for the distribution of λj.

Lewins and Joanes (1984 [21]) specify a zero-truncated negative binomial distri-

bution for the number of classes. The distribution of the abundance proportions,

given the number of classes, is described with a Dirichlet distribution. Solow

(1994 [30]) discusses several possibilities for the distribution of C including a

noninformative prior, a zero-truncated negative binomial distribution, and a

sequential broken stick model. The Dirichlet distribution is used as a prior on

the abundance proportions.

Rodrigues, Milan, and Leite (2001 [25]) compare the empirical Bayes ap-
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proach with the fully Bayesian approach. They describe how the empirical

Bayes approach approximates to the fully Bayesian approach, with a nonin-

formative prior, for large values of C. They cite (Berger et al. 1999 [1]) for

discussion on choosing between the two approaches. The authors point out

that the use of noninformative priors gives justification to Sanathanan’s (1972

[27]) asymptotic results.

5.5 Model Assumptions

We assume that the number of individuals each class contributes to the sam-

ple is from a mixture of Geometric random variables, and that each of these

random variables is independent of each other. In terms of the mixed Poisson

model, we assume each class contributes a number of individuals to the sample

independently of all other classes. However, this may not be true in applied sit-

uations. Consider a biological example where the numbers of individuals from

two species are correlated due to symbiotic relationships between the species.

In a predator-prey or competitive relationship, the numbers of individuals in

the sample may be negatively correlated. When the existence of one species

benefits the other, the numbers may be positively correlated. Also, sampling

techniques may invalidate the independence assumption.

Another important assumption is that the frequency distribution is mono-

tonically decreasing. Other distributions such as the negative binomial model

from section 1.3.1 are able to have a non-zero mode, showing more flexibility in

the abundance distribution.
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5.6 Use of Other Computer Software

The computer code appears in the Appendix and currently runs with Maple

version 10. The use of Maple is helpful for other mixed Poisson models which

have more complicated forms than a mixture of Exponentials. Because of the

simplicity of the algorithm and simple form of the Exponential mixed Poisson

probability density function, it is possible for the code to be ported to other

user friendly programs, such as Microsoft Excel.



Appendix A

Maple Code

This appendix contains Maple code to fit the model for mixtures of two and three

exponential distributions. In the version presented here, Aitken’s acceleration is

used in both the two-mixed-Exponential and three mixed-Exponential models.

This program has been used in the data analysis for Hong et al. (2006 [19]).

The analysis described in this paper can be used to estimate the number of

unobserved classes for any frequency data set. The user only needs to save the

data in an appropriate format and fill in the appropriate program specifications

labeled “user defined” in the code below. The frequency data is read in as a

two column tab delimited file with frequencies in the first column and number

of classes observed of that frequency in the second column. This data format

represents the distribution of the number of individuals observed from each class.

The other specifications that are defined by the user include the following.

1. data file: Path name indicating location of the data file

2. output fits file: Path name indicating location where fits file is to be saved

(See below for content of fits file.)

3. output analysis file: Path name indicating location where analysis file is

to be saved (See below for content of analysis file.)
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4. f min: Smallest value of τ for analysis

5. f max: Largest value of τ for analysis

6. Digits: Number of significant digits used (Default= 16)

7. mle nonzt iter: Maximum number of iterations for both outer and inner

EM (Default= 5000)

8. mle nonzt tol: Convergence tolerance for EM in negative powers of ten

(Default= 6 indicating ε = 10−6)

9. std err tol: Convergence tolerance for standard error series computation

in negative powers of ten (Default= 2)

The program creates two output files. One is an analysis file containing all

of the relevant summary statistics. The second is a fits file which contains fitted

values for the model. The output of the program contains several fields many of

which are not of direct interest in this report. For completeness, we will define

all fields in the program output.

In the analysis file the following statistics are reported from a single analysis:

1. Tuning parameter: τ

2. Maximum likelihood parameter estimates, θ̂: θ̂1 =“t1”, θ̂2 =“t2”, . . .

3. Estimated non-coverage: P [Yi = 0|θ̂]

4. Estimate for the number of unobserved classes: Ĉ0

5. Estimate for the total number of classes based on the subset of the data

defined by the tuning parameter: Ĉ
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6. Estimate for the total number of classes based on full data:

Ĉ +
∑

I[Xi > τ ]

7. Asymptotic standard error of Ĉ: SE(Ĉ)

8. Lower bound for standard error of Ĉ0

(
Ĉ

p0 (0)

1− p0 (0)

)1/2

9. Näıve goodness of fit statistic (non-binned cells)

10. Asymptotically correct goodness of fit statistic (binned cells)

11. Program error report: Error is 1 if either EM loop has reached maximum

number of iterations; 0 otherwise.

The second output file contains the fitted values for each value of the tun-

ing parameter used. The first column contains the values of Xi from the ob-

served data. The second column contains the observed frequency counts Ok,

for k = 1, . . . , K = max Xi. The following columns contain the fitted values for

ascending values of the tuning parameter.

A.1 Two-Mixed-Exponential

# DEFINE DATA and OUTPUT FILES

data_file:="user_defined";

output_fits_file:="user_defined";

output_analysis_file:="user_defined";

#DEFINE FREQUENCY RANGE FOR ANALYSIS

# minimum frequency for analysis

f_min:=user_defined;

# maximum frequency for analysis
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f_max:=user_defined;

# significant digits for computations

Digits:=user_defined;

# maximum iterations for EM algorithm

mle_nonzt_iter:=user_defined;

# convergence tolerance for EM algorithm

mle_nonzt_tol:=user_defined;

# convergence tolerance for standard error series computation

std_err_tol:=user_defined;

# SET MAPLE INTERFACE SCREEN DISPLAY DIMENSION

interface(rtablesize=infinity):

### ANALYTICAL MATH

# Ordinary mixed exponential mixed poisson density

p:=t3*(t1/(1+t1))^j*1/(1+t1)+(1-t3)*(t2/(1+t2))^j*1/(1+t2):

# probability j=0

p0:=eval(p,j=0):

# Zero-truncated mixed exponential mixed poisson

p_zt:=p/(1-p0):

# Pre-information matrix and vectors for ordinary mixed expl

p_t1t1:=-simplify(diff(diff(ln(p),t1),t1)):

p_t1t2:=-simplify(diff(diff(ln(p),t1),t2)):

p_t1t3:=-simplify(diff(diff(ln(p),t1),t3)):

p_t2t2:=-simplify(diff(diff(ln(p),t2),t2)):

p_t2t3:=-simplify(diff(diff(ln(p),t2),t3)):

p_t3t3:=-simplify(diff(diff(ln(p),t3),t3)):

v_t1:=simplify(diff(p0,t1)):

v_t2:=simplify(diff(p0,t2)):

v_t3:=simplify(diff(p0,t3)):

### DATA INPUT

entrydata:=ImportMatrix(data_file):
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rowdim:=LinearAlgebra[RowDimension](entrydata):

fmaxdata:=entrydata[rowdim,1]:

freqdata:=<<seq(i,i=1..fmaxdata)>|<seq(0,i=1..fmaxdata)>>:

for n from 1 to fmaxdata do:

for m from 1 to rowdim do:

if entrydata[m,1]=n then freqdata[n,2]:=entrydata[m,2]: break:

fi:

od:

od:

unassign(’n’): unassign(’m’):

#print(freqdata):

### SET FMIN & FMAX FOR ANALYSIS

fmin:=max(5,f_min);

fmax:=min(fmaxdata,f_max);

### SET UP LOOP ON CUTOFFS OF INTEREST

for t from fmin to fmax do:

if freqdata[t,2]=0 then next

fi:

# SET ERROR CONDITIONS

tracking[t]:=0:

# BASIC STATISTICS AT UPPER NONEMPTY CUTOFFS FROM FMIN TO FMAX

s[t]:=add(freqdata[i,2],i=1..t):

sum1:=evalf(add(freqdata[i,1]*freqdata[i,2],i=1..t)):

# initial value for s0

# first find geometric parameter based on

# first four frequencies

# create raw data

raw_data:=\

<<[seq(1,i=1..freqdata[1,2]),seq(2,i=1..freqdata[2,2]),\

seq(3,i=1..freqdata[3,2]),seq(4,i=1..freqdata[4,2])]>>;

# mle for right and left truncated geometric

geom_par:=fsolve((-1*add(raw_data[i,1],\
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i=1..LinearAlgebra[RowDimension](raw_data))/(1-par))\

+LinearAlgebra[RowDimension](raw_data)*\

add(j*(1-par)^(j-1),j=1..4)/add((1-par)^j,j=1..4),par);

s0:=(geom_par/(add(geom_par*(1-geom_par)^j,j=0..4))\

*add(raw_data[i,1],i=1..LinearAlgebra[RowDimension]\

(raw_data)))/\

(1-geom_par/(add(geom_par*(1-geom_par)^j,j=0..4)));

# initialize values for t1, t2, t3

t1_init:=1:t2_init:=1:t3_init:=1/2:

### append s0 to freqdata to make a new full data set

fulldata:=<<seq(x,x=0..t)>|<[s0,seq(0,x=1..t)]>>;

for x from 1 to t do:

fulldata[x+1,2]:=freqdata[x,2]:

od:

print("full data",fulldata);

### obtain starting values for t1, t2

## subset fulldata for low frequencies

low_freq:=LinearAlgebra[SubMatrix]\

(fulldata,1..floor(2*(t+1)/3)+1,1..2);

# print("low_freq",low_freq);

# fist find sample size

n_low_freq:=add(low_freq[i,2],i=1..floor(2*(t+1)/3)+1);

# next calculate sample mean

low_freq_mean:=evalf(add(low_freq[i,1]*low_freq[i,2],\

i=1..floor(2*(t+1)/3)+1)/n_low_freq);

# calculate geometric success probability, which is 1/mean

geom_success_prob:=1/(low_freq_mean+1);

# calculate starting value for t1 using mle of low_feq data

t1_init:=(1-geom_success_prob)/geom_success_prob;

## subset freqdata for high frequencies

high_freq:=LinearAlgebra[SubMatrix]\
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(fulldata,floor(1*(t+1)/3)+1..t+1,1..2);

# print("high_freq",high_freq);

# find row dim of high_freq

high_freq_dim:=LinearAlgebra[RowDimension](high_freq);

# fist find sample size

n_high_freq:=add(high_freq[i,2],i=1..high_freq_dim);

# next calculate sample mean

high_freq_mean:=evalf(add(high_freq[i,1]*high_freq[i,2],\

i=1..high_freq_dim)/n_high_freq);

# calculate geometric success probability

geom_success_prob:=1/(high_freq_mean+1-(floor(1*(t+1)/3)-1));

# calculate starting value for t2 using mle of high_feq data

t2_init:=(1-geom_success_prob)/geom_success_prob;

## define mles with starting values

mles:={t1=t1_init,t2=t2_init,t3=t3_init}:

print("init mles",mles);

### initialize number of consecutive em iterations

ncem:=0;

### start loop for imputed zero count

for h from 1 to mle_nonzt_iter do;

## append s0 to freqdata to make a new full data set

fulldata:=<<seq(x,x=0..t)>|<[s0,seq(0,x=1..t)]>>;

for x from 1 to t do:

fulldata[x+1,2]:=freqdata[x,2]:

od:

# print("full data",fulldata);

##### start a new loop(i) here for EM for non-zt data

for i from 1 to mle_nonzt_iter do:
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##

## E step

##

# initialize imputed values vectors

z1_impute:=<<seq(0,k=1..t+1)>>;

z2_impute:=<<seq(0,k=1..t+1)>>;

# define geometric density

geom_den:=(theta/(1+theta))^(j)*(1/(1+theta));

for w from 0 to t do:

# calculate pr(z=1|x=w) =

# pr(x=w|z=1)pr(z=1)/[pr(x=w|z=1)pr(z=1)+pr(x=w|z=0)pr(z=0)]

z1_impute[w+1,1]:=subs(j=w,theta=eval(t1,mles),geom_den)\

*eval(t3,mles)/\

(\

subs(j=w,theta=eval(t1,mles),geom_den)*eval(t3,mles)+\

subs(j=w,theta=eval(t2,mles),geom_den)*(1-eval(t3,mles))

);

od; unassign(’w’);

# use constraint to define z2

for w from 0 to t do:

z2_impute[w+1,1]:=1-z1_impute[w+1,1];

od; unassign(’w’);

# print imputed values for each iteration of EM

# print("z1_impute",z1_impute);

# print("z2_impute",z2_impute);

##

## M step

##

### calculate t3 estimate

# initialize vector of products; we will weight each
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# imputed value by its count

z1_count_prod:=<<seq(0,i=1..t+1)>>;

for r from 0 to t do;

z1_count_prod[r+1,1]:=z1_impute[r+1,1]*fulldata[r+1,2];

od;

unassign(’r’);

# print("z1 count prod",z1_count_prod);

z2_count_prod:=<<seq(0,i=1..t+1)>>;

for r from 0 to t do;

z2_count_prod[r+1,1]:=z2_impute[r+1,1]*fulldata[r+1,2];

od;

unassign(’r’);

# print("z2 count prod",z2_count_prod);

# sum the z_count_prod vector and divide by sample size(s)

# then solve for t3

t3_new:=add(z1_count_prod[i,1],i=1..t+1)/(s[t]+s0);

### now estimate t1, t2 given z_impute

# closed form for estimates of t1, t2 derived from

# eq. (2.33) McLachlan

t1_new:=add(z1_count_prod[j,1]*(fulldata[j,1]),j=1..t+1)/\

add(z1_count_prod[j,1],j=1..t+1);

t2_new:=add(z2_count_prod[j,1]*(fulldata[j,1]),j=1..t+1)/\

add(z2_count_prod[j,1],j=1..t+1);

# define mles_try as current iteration mles

mles_try:={t1=t1_new,t2=t2_new,t3=t3_new};

# print mles_try at each iteration

# print(i,"mle estimates","t1=",eval(t1,mles),\

# "t2=",eval(t2,mles),"t3=",eval(t3,mles));

# break for loop if convergence is reached

if eval(t1,mles_try)/eval(t1,mles) > 1-10^(-mle_nonzt_tol)

and eval(t1,mles_try)/eval(t1,mles) < 1+10^(-mle_nonzt_tol)

and eval(t2,mles_try)/eval(t2,mles) > 1-10^(-mle_nonzt_tol)
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and eval(t2,mles_try)/eval(t2,mles) < 1+10^(-mle_nonzt_tol)

and eval(t3,mles_try)/eval(t3,mles) > 1-10^(-mle_nonzt_tol)

and eval(t3,mles_try)/eval(t3,mles) < 1+10^(-mle_nonzt_tol)

then break;

fi;

# if mles not converged, update parameter estimates

mles:=mles_try;

# track error if EM step reaches max # of iterations

if i=mle_nonzt_iter+1

then tracking[t]:=1;

fi;

# end EM loop

od;

#### Impute a new value for s0

s0_new:=evalf(eval(p0,mles))*(s[t]+s0);

print(t,h,"s0_new",s0_new);

# if new s0 has converged, break out of loop

if s0/s0_new > 1-10^(-mle_nonzt_tol)

and s0/s0_new < 1+10^(-mle_nonzt_tol)

then break;

fi;

### keep track of number of consecutive em iterations

ncem:=ncem+1;

print("ncem",ncem,"so_old",s0_old,"s0",s0,"s0_new",s0_new);

#### acceleration step

print("max i",i);

if h>10 and abs(s0-s0_old)>abs(s0_new-s0) and ncem>1

then s0_step:=s0_new-s0;

num_step:=(s0_new-s0)/((s0-s0_old)-(s0_new-s0));

print("s0_step",s0_step,"num_step",num_step);

s0_new:=s0_new+num_step*s0_step;
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# reset nem

ncem:=0;

fi;

#### end of acceleration step

### save s0 as old s0

s0_old:=s0;

### save new s0 if no convergence

s0:=s0_new;

# track error if s0 loop reaches max # of iterations

if h=mle_nonzt_iter+1

then tracking[t]:=2;

fi;

## end outer loop

od;

# save converged mles

mles_final[t]:=mles;

print("mles final","t1=",eval(t1,mles_final[t]),\

"t2=",eval(t2,mles_final[t]),"t3=",eval(t3,mles_final[t]));

### COMPUTE FITTED VALUES

# we will export these in the fits file later

for j from 1 to t do;

fitzt[j,t]:=evalf(s[t]*eval(p_zt,mles_final[t]));

od;

unassign(’j’);

### GOODNESS OF FIT BASED ON FINAL MLES

accum_obs:=0: accum_fit:=0:

# k is concatenated cell number

k:=0:

# add fits and observations for each frequency



70

for j from 1 to t do:

accum_obs:=accum_obs+freqdata[j,2]:

accum_fit:=accum_fit+fitzt[j,t]:

# if fits >=5 then assign to cell[k]

if accum_fit >= 5 then

k:=k+1: cell_obs[k]:=accum_obs:

cell_fit[k]:=accum_fit: j_stop:=j: k_stop:=k:

accum_obs:=0: accum_fit:=0:

# print concatenated cells with fits >= 5

# print("k",k,"cell_fit[k]",cell_fit[k]):

fi:

od:

# if fits in last cells do not sum to 5,

# then add them to the previous cell

if j_stop < t then

cell_obs[k]:=cell_obs[k]+add(freqdata[l,2],l=j_stop+1..t):

cell_fit[k]:=cell_fit[k]+add(fitzt[l,t],l=j_stop+1..t):

fi:

unassign(’j’):

unassign(’k’):

# print all concatenated cells with observed values

for k from 1 to k_stop do:

print("k",k,"cell_fit[k]",cell_fit[k],\

"cell_obs[k]",cell_obs[k]):

od:

# print freq where last fits>=5, and number of

# concatenated cells

# print("j_stop",j_stop,"k_stop",k_stop):

unassign(’k’):

# calculate chi-sq statistic and p-value for concatenated cells

if k_stop>4 then

chistat_cell:=add((cell_obs[k]-cell_fit[k])^2/\

cell_fit[k],k=1..k_stop) + s[t]-add(fitzt[i,t],i=1..t);

GOF_mles_cell[t]:=\

evalf(1-stats[statevalf,cdf,chisquare[k_stop+1-3-1]]\

(chistat_cell));
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# print GOF chi-sq statistic and p-value

print(t,"cells chi-sq stat", chistat_cell,\

"concatenated cells GOF",GOF_mles_cell[t]):

fi:

# calculate (naive) chi-sq statistic and p-value for all cells

chistat_all:=add((freqdata[i,2]-fitzt[i,t])^2/\

fitzt[i,t],i=1..t)+s[t]-add(fitzt[i,t],i=1..t);

GOF_mles_all[t]:=\

evalf(1-stats[statevalf,cdf,chisquare[t+1-3-1]](chistat_all)):

# print GOF (naive) chi-sq stat and p-value

print(t,"all cells chi-sq stat",chistat_all,\

"all cells GOF",GOF_mles_all[t]):

### SET UP ORDINARY NON-ZERO-TRUNCATED INFORMATION MATRIX,

### ASSOCIATED VECTOR, & EMPIRICAL QUANTITIES

p_mles_final[t]:=eval(p,mles_final[t]):

p0_mles_final[t]:=evalf(eval(p0,mles_final[t])):

s0_mles_final[t]:=evalf(s[t]*p0_mles_final[t]/\

(1-p0_mles_final[t])):

s_hat[t]:=s[t]+s0_mles_final[t]:

p_t1t1_mles_final:=eval(p_t1t1,mles_final[t]):

p_t1t2_mles_final:=eval(p_t1t2,mles_final[t]):

p_t1t3_mles_final:=eval(p_t1t3,mles_final[t]):

p_t2t2_mles_final:=eval(p_t2t2,mles_final[t]):

p_t2t3_mles_final:=eval(p_t2t3,mles_final[t]):

p_t3t3_mles_final:=eval(p_t3t3,mles_final[t]):

v_t1_mles_final:=eval(v_t1,mles_final[t]):

v_t2_mles_final:=eval(v_t2,mles_final[t]):

v_t3_mles_final:=eval(v_t3,mles_final[t]):

### EVALUATE STANDARD ERROR

inf_t1t1_mles_final:=0:

inf_t1t2_mles_final:=0:

inf_t1t3_mles_final:=0:

inf_t2t2_mles_final:=0:

inf_t2t3_mles_final:=0:

inf_t3t3_mles_final:=0:

std_err_try:=0:
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std_err[t]:=1:

for j from 0 to 1000 do;

inf_t1t1_mles_final:=inf_t1t1_mles_final+\

evalf(p_mles_final[t]*p_t1t1_mles_final):

inf_t1t2_mles_final:=inf_t1t2_mles_final+\

evalf(p_mles_final[t]*p_t1t2_mles_final):

inf_t1t3_mles_final:=inf_t1t3_mles_final+\

evalf(p_mles_final[t]*p_t1t3_mles_final):

inf_t2t2_mles_final:=inf_t2t2_mles_final+\

evalf(p_mles_final[t]*p_t2t2_mles_final):

inf_t2t3_mles_final:=inf_t2t3_mles_final+\

evalf(p_mles_final[t]*p_t2t3_mles_final):

inf_t3t3_mles_final:=inf_t3t3_mles_final+\

evalf(p_mles_final[t]*p_t3t3_mles_final):

infomat_mles_final:=evalf(Matrix(3,3,[\

[inf_t1t1_mles_final,inf_t1t2_mles_final,\

inf_t1t3_mles_final],\

[inf_t1t2_mles_final,inf_t2t2_mles_final,\

inf_t2t3_mles_final],\

[inf_t1t3_mles_final,inf_t2t3_mles_final,\

inf_t3t3_mles_final]])):

v_mles_final:=evalf(Matrix(3,1,[[v_t1_mles_final],\

[v_t2_mles_final],[v_t3_mles_final]])):

if LinearAlgebra[Rank](infomat_mles_final) = 3

then std_err_try:=evalf(sqrt(s_hat[t]*p0_mles_final[t])*\

(1-p0_mles_final[t]-(1/p0_mles_final[t])*LinearAlgebra\

[Multiply](LinearAlgebra[Multiply]\

(LinearAlgebra[Transpose](v_mles_final),\

LinearAlgebra[MatrixInverse]\

(infomat_mles_final)),v_mles_final)[1,1])^(-1/2))

else next fi:

if std_err_try>0

and std_err_try/std_err[t] > 1-10^(-std_err_tol)

and std_err_try/std_err[t] < 1+10^(-std_err_tol)\

then break

else std_err[t]:=std_err_try: next: fi:

od:

# print(t,j):

unassign(’j’):
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# end t loop

od;

### OUTPUT FITTED VALUES

# first, find max non-zero frequency in interval (fmin,fmax)

nonzero:=0:

for u from fmin to fmax do:

if freqdata[u,2]=0 then next

fi:

# nonzero is the max non-zero frequency in interval (fmin,fmax)

nonzero:=nonzero+1:

od:

unassign(’u’):

fits:=Matrix(fmax,nonzero+2):

for w from 1 to fmax do:

# first column lists frequencies

fits[w,1]:=w:

# second column lists counts

fits[w,2]:=freqdata[w,2]:

od:

# rest of columns fill in fitted values for non-zero t values

u:=0:

for z from fmin to fmax do:

if freqdata[z,2]=0 then next

fi:

u:=u+1:

for v from 1 to z do:

fits[v,u+2]:=fitzt[v,z]:

od:

od:

unassign(’w’):

unassign(’u’):

unassign(’v’):

unassign(’z’):

# print fitted values

print("fits",fits):
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ExportMatrix(output_fits_file,fits):

### OUTPUT ANALYSIS FILE

results:=Matrix(nonzero,11):

u:=0:

for t from fmin to fmax do:

if freqdata[t,2]=0 then next

fi:

u:=u+1:

# right truncation point

results[u,1]:=t:

# final mle estimates

results[u,2]:=mles_final[t]:

# non-coverage

results[u,3]:=p0_mles_final[t]:

# estimate of unobserved species

results[u,4]:=s0_mles_final[t]:

# estimate of total species based on subset

results[u,5]:=s_hat[t]:

# estimate of total species based on full data

results[u,6]:=add(freqdata[i,2],i=1..fmaxdata)\

+s0_mles_final[t]:

# standard error

results[u,7]:=std_err[t]:

# lower bound for standard error

results[u,8]:=sqrt(s_hat[t]*p0_mles_final[t]/\

(1-p0_mles_final[t])):

# naive GOF

results[u,9]:=GOF_mles_all[t]:

# concatenated GOF

results[u,10]:=GOF_mles_cell[t]:
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# error tracking

results[u,11]:=tracking[t]:

od:

# print analysis file

print(results):

# export analysis file

ExportMatrix(output_analysis_file, results):

A.2 Three-Mixed-Exponential

# DEFINE DATA and OUTPUT FILES

data_file:="user_defined";

output_fits_file:="user_defined";

output_analysis_file:="user_defined";

#DEFINE FREQUENCY RANGE FOR ANALYSIS

# minimum frequency for analysis

f_min:=user_defined;

# maximum frequency for analysis

f_max:=user_defined;

# significant digits for computations

Digits:=user_defined;

# maximum iterations for EM algorithm

mle_nonzt_iter:=user_defined;

# convergence tolerance for EM algorithm

mle_nonzt_tol:=user_defined;

# convergence tolerance for standard error series computation

std_err_tol:=user_defined;

# SET MAPLE INTERFACE SCREEN DISPLAY DIMENSION

interface(rtablesize=infinity):
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### Mixture of three exponentials

### ANALYTICAL MATH

# Ordinary three mixed exponential mixed poisson density

p:=t4*(t1/(1+t1))^j*1/(1+t1)+t5*(t2/(1+t2))^j*1/(1+t2)+(1-t4-t5)\

*(t3/(1+t3))^j*1/(1+t3):

# probability j=0

p0:=eval(p,j=0):

# Zero-truncated mixed exponential mixed poisson

p_zt:=p/(1-p0):

# Pre-information matrix and vectors for ordinary mixed expl

p_t1t1:=-simplify(diff(diff(ln(p),t1),t1)):

p_t1t2:=-simplify(diff(diff(ln(p),t1),t2)):

p_t1t3:=-simplify(diff(diff(ln(p),t1),t3)):

p_t1t4:=-simplify(diff(diff(ln(p),t1),t4)):

p_t1t5:=-simplify(diff(diff(ln(p),t1),t5)):

p_t2t2:=-simplify(diff(diff(ln(p),t2),t2)):

p_t2t3:=-simplify(diff(diff(ln(p),t2),t3)):

p_t2t4:=-simplify(diff(diff(ln(p),t2),t4)):

p_t2t5:=-simplify(diff(diff(ln(p),t2),t5)):

p_t3t3:=-simplify(diff(diff(ln(p),t3),t3)):

p_t3t4:=-simplify(diff(diff(ln(p),t3),t4)):

p_t3t5:=-simplify(diff(diff(ln(p),t3),t5)):

p_t4t4:=-simplify(diff(diff(ln(p),t4),t4)):

p_t4t5:=-simplify(diff(diff(ln(p),t4),t5)):

p_t5t5:=-simplify(diff(diff(ln(p),t5),t5)):

v_t1:=simplify(diff(p0,t1)):

v_t2:=simplify(diff(p0,t2)):

v_t3:=simplify(diff(p0,t3)):

v_t4:=simplify(diff(p0,t4)):

v_t5:=simplify(diff(p0,t5)):

### DATA INPUT

entrydata:=ImportMatrix(data_file):

rowdim:=LinearAlgebra[RowDimension](entrydata):

fmaxdata:=entrydata[rowdim,1]:

freqdata:=<<seq(i,i=1..fmaxdata)>|<seq(0,i=1..fmaxdata)>>:

for n from 1 to fmaxdata do:
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for m from 1 to rowdim do:

if entrydata[m,1]=n then freqdata[n,2]:=entrydata[m,2]: break:

fi:

od:

od:

unassign(’n’): unassign(’m’):

print(freqdata):

### SET FMIN & FMAX FOR ANALYSIS

fmin:=max(7,f_min);

fmax:=min(fmaxdata,f_max);

### SET UP LOOP ON CUTOFFS OF INTEREST

for t from fmin to fmax do:

if freqdata[t,2]=0 then next

fi:

# SET ERROR CONDITIONS

tracking[t]:=0:

# BASIC STATISTICS AT UPPER NONEMPTY CUTOFFS FROM FMIN TO FMAX

s[t]:=add(freqdata[i,2],i=1..t):

sum1:=evalf(add(freqdata[i,1]*freqdata[i,2],i=1..t)):

# initial value for s0

# first find geometric parameter based on

# first four frequencies

# create raw data

raw_data:=\

<<[seq(1,i=1..freqdata[1,2]),seq(2,i=1..freqdata[2,2]),\

seq(3,i=1..freqdata[3,2]),seq(4,i=1..freqdata[4,2])]>>;

# mle for right and left truncated geometric

geom_par:=fsolve((-1*add(raw_data[i,1],\

i=1..LinearAlgebra[RowDimension](raw_data))/(1-par))\

+LinearAlgebra[RowDimension](raw_data)*\

add(j*(1-par)^(j-1),j=1..4)/add((1-par)^j,j=1..4),par);

s0:=(geom_par/(add(geom_par*(1-geom_par)^j,j=0..4))\

*add(raw_data[i,1],i=1..LinearAlgebra[RowDimension](raw_data)))/\

(1-geom_par/(add(geom_par*(1-geom_par)^j,j=0..4)));
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# initialize values for t1, t2, t3

t1_init:=1:t2_init:=1:t3_init:=1:t4_init:=1/3:t5_init:=1/3:

## append s0 to freqdata to make a new full data set

fulldata:=<<seq(x,x=0..t)>|<[s0,seq(0,x=1..t)]>>;

for x from 1 to t do:

fulldata[x+1,2]:=freqdata[x,2]: od:

print("full data",fulldata);

### obtain starting values for t1, t2, t3

## subset fulldata for low frequencies

low_freq:=LinearAlgebra[SubMatrix]\

(fulldata,1..floor(2*(t+1)/4)+1,1..2);

print("low_freq",low_freq);

# fist find sample size

n_low_freq:=add(low_freq[i,2],i=1..floor(2*(t+1)/4)+1);

# next calculate sample mean

low_freq_mean:=evalf(add(low_freq[i,1]*low_freq[i,2],\

i=1..floor(2*(t+1)/4)+1)/n_low_freq);

# calculate geometric success probability

geom_success_prob:=1/(low_freq_mean+1);

# calculate starting value for t1 using mle of low_feq data

t1_init:=(1-geom_success_prob)/geom_success_prob;

## subset fulldata for middle frequencies

mid_freq:=LinearAlgebra[SubMatrix](fulldata,\

floor((t+1)/4)+1..floor(3*(t+1)/4)+1,1..2);

print("mid_freq",mid_freq);

# find row dim of mid_freq

mid_freq_dim:=LinearAlgebra[RowDimension](mid_freq);

# fist find sample size

n_mid_freq:=add(mid_freq[i,2],i=1..mid_freq_dim);
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# next calculate sample mean

mid_freq_mean:=evalf(add(mid_freq[i,1]*mid_freq[i,2],\

i=1..mid_freq_dim)/n_mid_freq);

# calculate geometric success probability

geom_success_prob:=1/(mid_freq_mean+1-(floor((t+1)/4)-1));

# calculate starting value for t2 using mle of low_feq data

t2_init:=(1-geom_success_prob)/geom_success_prob;

## subset freqdata for high frequencies

high_freq:=LinearAlgebra[SubMatrix](fulldata,\

floor(2*(t+1)/4)+1..t+1,1..2);

print("high_freq",high_freq);

# find row dim of high_freq

high_freq_dim:=LinearAlgebra[RowDimension](high_freq);

# fist find sample size

n_high_freq:=add(high_freq[i,2],i=1..high_freq_dim);

# next calculate sample mean

high_freq_mean:=evalf(add(high_freq[i,1]*high_freq[i,2],\

i=1..high_freq_dim)/n_high_freq);

# calculate geometric success probability

geom_success_prob:=1/(high_freq_mean+1-(floor(2*(t+1)/4)-1));

# calculate starting value for t2 using mle of high_feq data

t3_init:=(1-geom_success_prob)/geom_success_prob;

## define mles with starting values

mles:={t1=t1_init,t2=t2_init,t3=t3_init,t4=t4_init,t5=t5_init}:

print("init mles",mles);

### initialize number of em iterations

ncem:=0;

### start loop for imputed zero count
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for h from 1 to mle_nonzt_iter do;

## append s0 to freqdata to make a new full data set

fulldata:=<<seq(x,x=0..t)>|<[s0,seq(0,x=1..t)]>>;

for x from 1 to t do:

fulldata[x+1,2]:=freqdata[x,2]: od:

#print("full data",fulldata);

##### start a new loop(i) here for EM1 for non zt data

for i from 1 to mle_nonzt_iter do;

##

## E step

##

# initialize imputed value vectors

z1_impute:=<<seq(0,k=1..t+1)>>;

z2_impute:=<<seq(0,k=1..t+1)>>;

z3_impute:=<<seq(0,k=1..t+1)>>;

# define geometric density

geom_den:=(theta/(1+theta))^(j)*(1/(1+theta));

for w from 0 to t do:

# calculate E[Z=(1,0,0)|X=w] = P(Z=(1,0,0)|X=w) =

# P(X=w|Z=(1,0,0))P(Z=(1,0,0))/\

# [P(X=w|Z=(1,0,0))P(Z=(1,0,0))+\

# P(X=w|Z=(0,1,0))P(Z=(0,1,0))+\

# P(X=w|Z=(0,0,1))P(Z=(0,0,1))]

z1_impute[w+1,1]:=(subs(j=w,theta=eval(t1,mles),geom_den)\

*eval(t4,mles))/\

(\

(subs(j=w,theta=eval(t1,mles),geom_den)*eval(t4,mles))+\

(subs(j=w,theta=eval(t2,mles),geom_den)*eval(t5,mles))+\

(subs(j=w,theta=eval(t3,mles),geom_den)*(1-eval(t4,mles)\

-eval(t5,mles)))

);

od; unassign(’w’);
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for w from 0 to t do:

# calculate E[Z=(0,1,0)|X=w] = P(Z=(0,1,0)|X=w) =

# P(X=w|Z=(0,1,0))P(Z=(0,1,0))/

# [P(X=w|Z=(1,0,0))P(Z=(1,0,0))+\

# P(X=w|Z=(0,1,0))P(Z=(0,1,0))+\

# P(X=w|Z=(0,0,1))P(Z=(0,0,1))]

z2_impute[w+1,1]:=(subs(j=w,theta=eval(t2,mles),geom_den)\

*eval(t5,mles))/\

(\

(subs(j=w,theta=eval(t1,mles),geom_den)*eval(t4,mles))+\

(subs(j=w,theta=eval(t2,mles),geom_den)*eval(t5,mles))+\

(subs(j=w,theta=eval(t3,mles),geom_den)*(1-eval(t4,mles)\

-eval(t5,mles)))

);

od; unassign(’w’);

# use constraint to define z3

for w from 0 to t do:

z3_impute[w+1,1]:=1-z1_impute[w+1,1]-z2_impute[w+1,1];

od; unassign(’w’);

# print imputed values for each iteration of EM

# print("z1_impute",z1_impute);

# print("z2_impute",z2_impute);

# print("z3_impute",z3_impute);

##

## M step

##

### calculate t4 and t5 estimates

# initialize vector of products; we will weight each

# imputed value by its count

z1_count_prod:=<<seq(0,i=1..t+1)>>;

for r from 0 to t do;

z1_count_prod[r+1,1]:=z1_impute[r+1,1]*fulldata[r+1,2];
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od;

unassign(’r’);

# print("z1 count prod",z1_count_prod);

z2_count_prod:=<<seq(0,i=1..t+1)>>;

for r from 0 to t do;

z2_count_prod[r+1,1]:=z2_impute[r+1,1]*fulldata[r+1,2];

od;

unassign(’r’);

# print("z2 count prod",z2_count_prod);

z3_count_prod:=<<seq(0,i=1..t+1)>>;

for r from 0 to t do;

z3_count_prod[r+1,1]:=z3_impute[r+1,1]*fulldata[r+1,2];

od;

unassign(’r’);

# print("z3 count prod",z3_count_prod);

# sum the z_count_prod vector and divide by sample size(s)

# then solve for t4, t5

t4_new:=add(z1_count_prod[i,1],i=1..t+1)/(s[t]+s0);

t5_new:=add(z2_count_prod[i,1],i=1..t+1)/(s[t]+s0);

### now estimate t1, t2, t3 given z_impute

# closed form for estimates of t1, t2, t3 derived from

# eq. (2.33) McLachlan

t1_new:=add(z1_count_prod[j,1]*(fulldata[j,1]),j=1..t+1)/\

add(z1_count_prod[j,1],j=1..t+1);

t2_new:=add(z2_count_prod[j,1]*(fulldata[j,1]),j=1..t+1)/\

add(z2_count_prod[j,1],j=1..t+1);

t3_new:=add(z3_count_prod[j,1]*(fulldata[j,1]),j=1..t+1)/\

add(z3_count_prod[j,1],j=1..t+1);

# define mles_try as current iteration mles

mles_try:={t1=t1_new,t2=t2_new,t3=t3_new,t4=t4_new,t5=t5_new};

# print mles_try at each iteration

# print(i,"mle estimates","t1=",eval(t1,mles_try),\
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# "t2=",eval(t2,mles_try),"t3=",eval(t3,mles_try),\

# "t4=",eval(t4,mles_try),"t5=",eval(t5,mles_try));

# break for loop if convergence is reached

if eval(t1,mles_try)/eval(t1,mles) > 1-10^(-mle_nonzt_tol)

and eval(t1,mles_try)/eval(t1,mles) < 1+10^(-mle_nonzt_tol)

and eval(t2,mles_try)/eval(t2,mles) > 1-10^(-mle_nonzt_tol)

and eval(t2,mles_try)/eval(t2,mles) < 1+10^(-mle_nonzt_tol)

and eval(t3,mles_try)/eval(t3,mles) > 1-10^(-mle_nonzt_tol)

and eval(t3,mles_try)/eval(t3,mles) < 1+10^(-mle_nonzt_tol)

and eval(t4,mles_try)/eval(t4,mles) > 1-10^(-mle_nonzt_tol)

and eval(t4,mles_try)/eval(t4,mles) < 1+10^(-mle_nonzt_tol)

and eval(t5,mles_try)/eval(t5,mles) > 1-10^(-mle_nonzt_tol)

and eval(t5,mles_try)/eval(t5,mles) < 1+10^(-mle_nonzt_tol)

then break;

fi;

# if mles not converged, update parameter estimates

mles:=mles_try;

# track error if EM step reaches max # of iterations

if i=mle_nonzt_iter+1

then tracking[t]:=1;

fi;

# end EM1 loop

od;

#### Impute a new value for s0

s0_new:=evalf(eval(p0,mles))*(s[t]+s0);

print(t,h,"s0_new",s0_new);

### S_0 CONVERGENCE TEST

# when new s0 has converged, break out of loop

if s0/s0_new > 1-10^(-mle_nonzt_tol)

and s0/s0_new < 1+10^(-mle_nonzt_tol)

then break;

fi;

### keep track of number of consecutive em iterations
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ncem:=ncem+1;

print("ncem",ncem,"so_old",s0_old,"s0",s0,"s0_new",s0_new);

#### acceleration step

print("max i",i);

if h>10 and abs(s0-s0_old)>abs(s0_new-s0) and ncem>1

then s0_step:=s0_new-s0;

num_step:=(s0_new-s0)/((s0-s0_old)-(s0_new-s0));

print("s0_step",s0_step,"num_step",num_step);

s0_new:=s0_new+num_step*s0_step;

# reset nem

ncem:=0;

fi;

#### end of acceleration step

### save s0 as old s0

s0_old:=s0;

## save new s0 if no convergence

s0:=s0_new;

# track error if s0 loop reaches max # of iterations

if h=mle_nonzt_iter+1

then tracking[t]:=2;

fi;

## end outer loop

od;

# save converged mles

mles_final[t]:=mles;

print("mles final","t1=",eval(t1,mles_final[t]),"t2=",\

eval(t2,mles_final[t]),"t3=",eval(t3,mles_final[t]),\

"t4=",eval(t4,mles_final[t]),"t5=",eval(t5,mles_final[t]));

### COMPUTE FITTED VALUES

# we will export these in the fits file later
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for j from 1 to t do;

fitzt[j,t]:=evalf(s[t]*eval(p_zt,mles_final[t]));

od;

unassign(’j’);

### GOODNESS OF FIT BASED ON FINAL MLES

accum_obs:=0: accum_fit:=0:

# k is concatenated cell number

k:=0:

# add fits and observations for each frequency

for j from 1 to t do:

accum_obs:=accum_obs+freqdata[j,2]:

accum_fit:=accum_fit+fitzt[j,t]:

# if fits >=5 then assign to cell[k]

if accum_fit >= 5 then

k:=k+1: cell_obs[k]:=accum_obs:

cell_fit[k]:=accum_fit: j_stop:=j: k_stop:=k:

accum_obs:=0: accum_fit:=0:

# print concatenated cells with fits >= 5

# print("k",k,"cell_fit[k]",cell_fit[k]):

fi:

od:

# if fits in last cells do not sum to 5,

# then add them to the previous cell

if j_stop < t then

cell_obs[k]:=cell_obs[k]+add(freqdata[l,2],l=j_stop+1..t):

cell_fit[k]:=cell_fit[k]+add(fitzt[l,t],l=j_stop+1..t):

fi:

unassign(’j’):

unassign(’k’):

# print all concatenated cells with observed values

for k from 1 to k_stop do:

print("k",k,"cell_fit[k]",cell_fit[k],"cell_obs[k]",\

cell_obs[k]):

od:
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# print freq where last fits>=5,

# and number of concatenated cells

# print("j_stop",j_stop,"k_stop",k_stop):

unassign(’k’):

# calculate chi-sq statistic and p-value for concatenated cells

if k_stop>6 then

chistat_cell:=add((cell_obs[k]-cell_fit[k])^2/\

cell_fit[k],k=1..k_stop) + s[t]-add(fitzt[i,t],i=1..t);

GOF_mles_cell[t]:=evalf(1-stats\

[statevalf,cdf,chisquare[k_stop+1-5-1]](chistat_cell));

# print GOF chi-sq statistic and p-value

print(t,"cells chi-sq stat",chistat_cell,\

"concatenated cells GOF",GOF_mles_cell[t]):

fi:

# calculate (naive) chi-sq statistic and p-value for all cells

chistat_all:=add((freqdata[i,2]-fitzt[i,t])^2/\

fitzt[i,t],i=1..t)+s[t]-add(fitzt[i,t],i=1..t);

GOF_mles_all[t]:=evalf(1-\

stats[statevalf,cdf,chisquare[t+1-5-1]](chistat_all)):

# print GOF (naive) chi-sq stat and p-value

print(t,"all cells chi-sq stat",chistat_all,\

"all cells GOF",GOF_mles_all[t]):

### SET UP ORDINARY NON-ZERO-TRUNCATED INFORMATION MATRIX,

### ASSOCIATED VECTOR, & EMPIRICAL QUANTITIES

p_mles_final[t]:=eval(p,mles_final[t]):

p0_mles_final[t]:=evalf(eval(p0,mles_final[t])):

s0_mles_final[t]:=evalf(s[t]*p0_mles_final[t]/\

(1-p0_mles_final[t])):

s_hat[t]:=s[t]+s0_mles_final[t]:

p_t1t1_mles_final:=eval(p_t1t1,mles_final[t]):

p_t1t2_mles_final:=eval(p_t1t2,mles_final[t]):

p_t1t3_mles_final:=eval(p_t1t3,mles_final[t]):

p_t1t4_mles_final:=eval(p_t1t4,mles_final[t]):

p_t1t5_mles_final:=eval(p_t1t5,mles_final[t]):

p_t2t2_mles_final:=eval(p_t2t2,mles_final[t]):

p_t2t3_mles_final:=eval(p_t2t3,mles_final[t]):
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p_t2t4_mles_final:=eval(p_t2t4,mles_final[t]):

p_t2t5_mles_final:=eval(p_t2t5,mles_final[t]):

p_t3t3_mles_final:=eval(p_t3t3,mles_final[t]):

p_t3t4_mles_final:=eval(p_t3t4,mles_final[t]):

p_t3t5_mles_final:=eval(p_t3t5,mles_final[t]):

p_t4t4_mles_final:=eval(p_t4t4,mles_final[t]):

p_t4t5_mles_final:=eval(p_t4t5,mles_final[t]):

p_t5t5_mles_final:=eval(p_t5t5,mles_final[t]):

v_t1_mles_final:=eval(v_t1,mles_final[t]):

v_t2_mles_final:=eval(v_t2,mles_final[t]):

v_t3_mles_final:=eval(v_t3,mles_final[t]):

v_t4_mles_final:=eval(v_t4,mles_final[t]):

v_t5_mles_final:=eval(v_t5,mles_final[t]):

### EVALUATE STANDARD ERROR

inf_t1t1_mles_final:=0:

inf_t1t2_mles_final:=0:

inf_t1t3_mles_final:=0:

inf_t1t4_mles_final:=0:

inf_t1t5_mles_final:=0:

inf_t2t2_mles_final:=0:

inf_t2t3_mles_final:=0:

inf_t2t4_mles_final:=0:

inf_t2t5_mles_final:=0:

inf_t3t3_mles_final:=0:

inf_t3t4_mles_final:=0:

inf_t3t5_mles_final:=0:

inf_t4t4_mles_final:=0:

inf_t4t5_mles_final:=0:

inf_t5t5_mles_final:=0:

std_err_try:=0:

std_err[t]:=1:

for j from 0 to 1000 do;

inf_t1t1_mles_final:=inf_t1t1_mles_final+\

evalf(p_mles_final[t]*p_t1t1_mles_final):

inf_t1t2_mles_final:=inf_t1t2_mles_final+\

evalf(p_mles_final[t]*p_t1t2_mles_final):

inf_t1t3_mles_final:=inf_t1t3_mles_final+\

evalf(p_mles_final[t]*p_t1t3_mles_final):

inf_t1t4_mles_final:=inf_t1t4_mles_final+\

evalf(p_mles_final[t]*p_t1t4_mles_final):

inf_t1t5_mles_final:=inf_t1t5_mles_final+\
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evalf(p_mles_final[t]*p_t1t5_mles_final):

inf_t2t2_mles_final:=inf_t2t2_mles_final+\

evalf(p_mles_final[t]*p_t2t2_mles_final):

inf_t2t3_mles_final:=inf_t2t3_mles_final+\

evalf(p_mles_final[t]*p_t2t3_mles_final):

inf_t2t4_mles_final:=inf_t2t4_mles_final+\

evalf(p_mles_final[t]*p_t2t4_mles_final):

inf_t2t5_mles_final:=inf_t2t5_mles_final+\

evalf(p_mles_final[t]*p_t2t5_mles_final):

inf_t3t3_mles_final:=inf_t3t3_mles_final+\

evalf(p_mles_final[t]*p_t3t3_mles_final):

inf_t3t4_mles_final:=inf_t3t4_mles_final+\

evalf(p_mles_final[t]*p_t3t4_mles_final):

inf_t3t5_mles_final:=inf_t3t5_mles_final+\

evalf(p_mles_final[t]*p_t3t5_mles_final):

inf_t4t4_mles_final:=inf_t4t4_mles_final+\

evalf(p_mles_final[t]*p_t4t4_mles_final):

inf_t4t5_mles_final:=inf_t4t5_mles_final+\

evalf(p_mles_final[t]*p_t4t5_mles_final):

inf_t5t5_mles_final:=inf_t5t5_mles_final+\

evalf(p_mles_final[t]*p_t5t5_mles_final):

infomat_mles_final:=evalf(Matrix(5,5,[\

[inf_t1t1_mles_final,inf_t1t2_mles_final,\

inf_t1t3_mles_final,inf_t1t4_mles_final,\

inf_t1t5_mles_final],\

[inf_t1t2_mles_final,inf_t2t2_mles_final,\

inf_t2t3_mles_final,inf_t2t4_mles_final,\

inf_t2t5_mles_final],\

[inf_t1t3_mles_final,inf_t2t3_mles_final,\

inf_t3t3_mles_final,inf_t3t4_mles_final,\

inf_t3t5_mles_final],\

[inf_t1t4_mles_final,inf_t2t4_mles_final,\

inf_t3t4_mles_final,inf_t4t4_mles_final,\

inf_t4t5_mles_final],\

[inf_t1t5_mles_final,inf_t2t5_mles_final,\

inf_t3t5_mles_final,inf_t4t5_mles_final,\

inf_t5t5_mles_final]])):

v_mles_final:=evalf(Matrix(5,1,[[v_t1_mles_final],\

[v_t2_mles_final],[v_t3_mles_final],[v_t4_mles_final],\

[v_t5_mles_final]])):

if LinearAlgebra[Rank](infomat_mles_final) = 5

then std_err_try:=evalf(sqrt(s_hat[t]*p0_mles_final[t])\
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*(1-p0_mles_final[t]-(1/p0_mles_final[t])*\

LinearAlgebra[Multiply](LinearAlgebra[Multiply]\

(LinearAlgebra[Transpose](v_mles_final),\

LinearAlgebra[MatrixInverse](infomat_mles_final)),\

v_mles_final)[1,1])^(-1/2))

else next fi:

if std_err_try>0

and std_err_try/std_err[t] > 1-10^(-std_err_tol)

and std_err_try/std_err[t] < 1+10^(-std_err_tol) then break

else std_err[t]:=std_err_try: next: fi:

od:

# print(t,j):

unassign(’j’):

# end t loop

od;

### OUTPUT FITTED VALUES

# first, find max non-zero frequency in interval (fmin,fmax)

nonzero:=0:

for u from fmin to fmax do:

if freqdata[u,2]=0 then next

fi:

# nonzero is the max non-zero frequency in interval (fmin,fmax)

nonzero:=nonzero+1:

od:

unassign(’u’):

fits:=Matrix(fmax,nonzero+2):

for w from 1 to fmax do:

# first column lists frequencies

fits[w,1]:=w:

# second column lists counts

fits[w,2]:=freqdata[w,2]:

od:

# rest of columns fill in fitted values for non-zero t values
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u:=0:

for z from fmin to fmax do:

if freqdata[z,2]=0 then next

fi:

u:=u+1:

for v from 1 to z do:

fits[v,u+2]:=fitzt[v,z]:

od:

od:

unassign(’w’):

unassign(’u’):

unassign(’v’):

unassign(’z’):

# print fitted values

print("fits",fits):

ExportMatrix(output_fits_file,fits):

### OUTPUT ANALYSIS FILE

results:=Matrix(nonzero,11):

u:=0:

for t from fmin to fmax do:

if freqdata[t,2]=0 then next

fi:

u:=u+1:

# right truncation point

results[u,1]:=t:

# final mle estimates

results[u,2]:=mles_final[t]:

# non-coverage

results[u,3]:=p0_mles_final[t]:

# estimate of unobserved species

results[u,4]:=s0_mles_final[t]:

# estimate of total species based on subset

results[u,5]:=s_hat[t]:

# estimate of total species based on full data
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results[u,6]:=add(freqdata[i,2],i=1..fmaxdata)+s0_mles_final[t]:

# standard error

results[u,7]:=std_err[t]:

# lower bound for standard error

results[u,8]:=sqrt(s_hat[t]*p0_mles_final[t]/\

(1-p0_mles_final[t])):

# naive GOF

results[u,9]:=GOF_mles_all[t]:

# concatenated GOF

results[u,10]:=GOF_mles_cell[t]:

# error tracking

results[u,11]:=tracking[t]:

od:

# print analysis file

print(results):

# export analysis file

ExportMatrix(output_analysis_file, results):
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