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Abstract. Mixtures of distributions concern modeling a probability dis-
tribution by a weighted sum of other distributions. Kikuchi approxi-
mations of probability distributions follow an approach to approximate
the free energy of statistical systems. In this paper, we introduce the
mixture of Kikuchi approximations as a probability model. We present
an algorithm for learning Kikuchi approximations from data based on
the expectation-maximization (EM) paradigm. The proposal is tested in
the approximation of probability distributions that arise in evolutionary
computation.
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1 Introduction

Probabilistic modeling by finite mixture of distributions [8] concerns model-
ing a statistical distribution by a mixture (or weighted sum) of other distribu-
tions. Let X = (X1, . . . , Xn) denote a vector of discrete random variables, and
x = (x1, . . . , xn) denote an assignment to the variables. A mixture qm(x) of
distributions pj(x) is defined to be a distribution of the form:

qm(x) =
m∑

j=1

λjpj(x) (1)

with λj > 0, j = 1, . . . , m,
∑m

j=1 λj = 1.
The pj(x) are called mixture components, and the λj are called mixture coeffi-

cients. m is the number of components of the mixture. A mixture of distributions
can be viewed as containing an unobserved choice variable Z which takes value
j ∈ {1, . . . , m} with probability p(Z = j) = λj . In some cases the choice variable
Z is known.

Probabilistic modeling based on mixtures of distributions has been used in
many domains. Two of the most frequent applications are data clustering and
approximation of probability distributions [8]. Mixtures are specially suited for
modeling problems that exhibit complex interactions between their variables.

Much research has gone into elucidating the properties of mixture distribu-
tions as well as into designing efficient algorithms to learn them. One important
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issue is whether the capacity of mixtures for probabilistic modeling can be en-
hanced by considering as components of the mixture probability distributions
able to represent a higher number of dependencies of the data. Mixtures of mean
field distributions [1] are one example of the way this type of models can improve
the results achieved with simple factorial models.

Recently, the research on probability distribution approximation has widened
its scope by the emergence of approximation methods inspired on region-based
decompositions of the free energy [16]. These methods have been applied in the
context of probabilistic modeling for classification [5] and evolutionary computa-
tion [13], where algorithms for learning Kikuchi approximations from data have
been introduced.

One of these methods is the Kikuchi approximation of a probability that uses
clique-based decomposition of independence graphs [13,14]. Kikuchi approxima-
tions can represent complex interactions between the variables of a problem. This
provides our motivation to define a class of mixture of Kikuchi approximations
and an algorithm to learn this approximation from data. The main goal in tack-
ling this problem is to combine the capacity of mixtures to exploit asymmetric
independence assertions with the power of Kikuchi approximations to represent
complex interactions. To evaluate the efficiency of this model, we apply it in
the context of function optimization by means of estimation of distribution al-
gorithms (EDAs) [7,10] and for unsupervised learning. EDAs are optimization
algorithms that explicitly model probabilistic dependencies between variables of
the problem domain to make an efficient search for optimal solutions.

The remainder part of the paper is ordered as follows. In the next section,
the Kikuchi approximation defined on clique-based decompositions is presented.
Section 3 introduces the mixture of Kikuchi approximations and an algorithm
for learning these approximation from data. Section 4 briefly explains EDAs and
introduces an EDA that uses mixtures of Kikuchi approximations. Section 5
presents a number of experiments that analyze the dynamics of the introduced
learning algorithm, and the effect of using the mixture of Kikuchi approximations
as the probability model in EDAs. The conclusions of our paper are presented
in Section 6.

2 Kikuchi Approximation: Recapitulation

Kikuchi approximations of the free energy [6] are region-based decompositions
of the free energy that satisfy certain constraints. The Kikuchi approximation
of a probability distribution from a clique-based decomposition of an indepen-
dence graph [13] is a particular type of factorization in probability marginals.
The marginals in the factorization are completely determined by the indepen-
dence graph. Given this graph, the clique-based decomposition is formed by the
maximal cliques of the graphs and their intersections. All these cliques are called
regions. More formally: let S denote a set of indices in N = {1, . . . , n}, and XS

(respectively xS) a subset of the variables of X (respectively a subset of values
of x) determined by the indices in S. We will work with positive probability
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distributions denoted by p(x). Similarly, p(xS) will denote the marginal proba-
bility for XS . We use p(xi | xj) to denote the conditional probability distribution
of Xi given Xj = xj .

Given a probability distribution p(x), its independence graph G = (V, E) as-
sociates one vertex with every variable of X, and two vertices are connected if
the corresponding variables are conditionally dependent given the rest of the
variables. We define a region R of the independence graph G = (V, E) of a prob-
ability distribution p(x) as a subset of V . A graph region-based decomposition
(R, U), is a set of regions R that covers all the V , and an associated set of
overcounting numbers U which is formed by assigning one overcounting number
cR for each R ∈ R. cR will always be an integer, and might be zero or negative
for some R.

To find a region-based decomposition, the cluster variation method (CVM)
can be used [6,16]. In CVM, R is formed recursively by an initial set of regions
R0 such that all the nodes are in at least one region of R0, and any other region
in R is the intersection of one or more of the regions in R. The set of regions
R is closed under the intersection operation, and can be ordered as a partially
ordered set.

In a clique-based decomposition the CVM is applied making a particular
choice of the initial regions. The set R0 is formed by taking one region for each
maximal clique in G. As a result, all the regions R ∈ R will be cliques because
they are the intersection of two or more cliques.

We define the Kikuchi approximation of the probability distribution p(x) as-
sociated with a clique-based decomposition, k(x) as:

k(x) =
∏

R∈R
p(xR)cR (2)

where R comes from a clique-based decomposition and the overcounting numbers
cR are calculated using the following recursive formula:

cR = 1 −
∑

S∈R
R⊂S

cS (3)

where cS is the overcounting number of any region S in R such that S is a
superset of R. cR values corresponding to the initial maximal cliques are equal
to 1. If cR is different from zero, the region is included in the clique-based
decomposition.

From now on, when we refer to a Kikuchi approximation, we imply a Kikuchi
approximation obtained from a clique-based decomposition. The Kikuchi approx-
imation has a number of convenient properties for approximating distributions. If
the independence graph is chordal, the Kikuchi approximation calculated from a
clique-based decomposition corresponds to an exact factorization of the probabil-
ity distribution calculated from a junction tree of the independence graph. The
Kikuchi approximation also satisfies a number of Markov and decomposability
properties [14].
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3 Mixture of Kikuchi Approximations

In this section, we define the mixture of Kikuchi approximations and present an
algorithm for learning this type of model from data.

Definition 1. A mixture of Kikuchi approximations is defined to be an approx-
imation of the form:

km(x) =
m∑

j=1

λjkj(x) (4)

with λj > 0, j = 1, . . . , m,
∑m

j=1 λj = 1.

The components of km(x) are Kikuchi approximations. Since Kikuchi approx-
imations are not probability distributions in general, the mixture of Kikuchi
approximations is not either. However, notice that whenever the clique-based
decompositions correspond to chordal graphs, each component of the mixture
will be a junction tree, and km(x) will be a probability distribution. In fact, a
mixture of Kikuchi approximations opens the possibility of combining compo-
nents that are probability distributions with other that are not.

Approaches used to learn mixtures of distributions include [8]: graphical meth-
ods, minimum-distance methods, maximum likelihood, methods of moments, and
Bayesian approaches. If the choice variable is not observed, one of the alternatives
that can be used for learning the structure and parameters of the components
is the EM algorithm [4], that looks for a mixture that maximizes the likelihood
of the data. The iterative EM algorithm is a general, usually reliable numerical
method for obtaining maximum likelihood (or Bayesian maximum a posteriori)
estimates of parameters in incomplete-data contexts.

To learn a mixture of Kikuchi approximations, we propose to use a version of
the EM algorithm. The general scheme is similar to the procedure used to learn
mixture of trees [9]. However, fundamental differences arise in the expectation
and maximization steps. The learning problem can be established as: Given a
set of observations D = {x1,x2, . . . ,xN}, we are required to find the mixture of
Kikuchi approximations km(x) that satisfies

km(x) = arg max
k′m(x)

N∑

i=1

log k′m(xi) (5)

Within the framework of the EM algorithm, expresion (5) is commonly re-
ferred as the incomplete log-likelihood of the data given a probability distribu-
tion. Since Kikuchi and mixture of Kikuchi approximations are not probability
distributions in general, in these cases this expression will not correspond to
the incomplete log-likelihood. Nevertheless, we will use the right term in equa-
tion (5) as a measure of the accuracy of the approximation given by the mixture
of Kikuchi approximations.
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In the EM algorithm, the complete likelihood is defined as the log-likelihood
of both, the observed and the unobserved data, given the current model esti-
mate km(x). A version of the complete log-likelihood for the mixture of Kikuchi
approximations is shown in equation (6).

L(x1, . . . ,xN , z1, . . . , zN |km(x)) =
N∑

i=1

log

m∏

j=1

(λjkj(xi))
δj,zi

=
N∑

i=1

m∑

j=1

δj,zi(log λj + log kj(xi)) (6)

where δj,zi is equal to one if zi is equal to the jth value of the choice variable,
and zero otherwise.

By maximimizing (6), the mixture Kikuchi-EM learning algorithm pursues to
indirectly find a solution to the maximization problem defined by equation (5).
The idea underlying the Kikuchi-EM algorithm is to compute and optimize the
expected value of L(x1, . . . ,xN , z1, . . . , zN |km(x)). However, the way the ex-
pectation and maximization steps are implemented is very particular. In the
expectation step of the mixture Kikuchi-EM, we use Kikuchi approximations
values for estimating the posterior probability of the hidden variable for each
of the observations. In our case, this means estimating the probability of each
component of the mixture generating data point xi.

p(Zi = j|xi, km(x)) = γj(xi) =
λjkj(xi)

∑
j′

λj′ kj′
(xi)

(7)

One uses these posterior probabilities to compute the expectation of L, which
is a linear function of the γj(x) values. Let us introduce the following quantities:

Γj =
N∑

i=1

γj(xi), j = 1, . . . , m (8)

qj(xi) =
γj(xi)

Γj
(9)

The sums Γj ∈ [0, N ] can be interpreted as the total number of data points
that are generated by the j-th component. By normalizing the posteriors γj(xi)
with Γj we obtain a probability distribution qj(xi) over the data set. Notice that
even if kj(x) is not a probability distribution, qj(x) is a probability distribution
because it is the result of normalization.

The maximization step of the Kikuchi-EM algorithm looks for estimating
the parameters of the model so as to maximize E[L(x1, . . . ,xN |km(x))]. Con-
sequently, it is necessary to obtain the model that best fits the data in each
component. In the case of the mixtures of trees, this problem can be solved us-
ing an algorithm that is guaranteed to give the best structure [9]. For Kikuchi
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approximations, we use a learning algorithm introduced in [13]. This algorithm
serves for searching in the space of the Kikuchi approximations, but the optimum
is not guaranteed to be found.

The algorithm learns an independence graph from the data and finds its clique-
based decomposition. To learn the independence graph, independence tests are
used. We use the Chi-square independence test. If for two variables Xi and Xj, we
reject the null hypothesis of independence with a specified level of significance
α, they are joined by an edge. The pseudocode of the Kikuchi-EM learning
algorithm is shown in Algorithm 1. As a method for constructing the initial
mixture of Kikuchi approximations, we propose a heuristic approach in which
the learning algorithm proposed in [13] is used to learn each initial Kikuchi
approximation component from the data using a different value of parameter α
for each component. The termination criterion used is that the difference between
the likelihood achieved at iterations t + 1 and t is below a given threshold.

Algorithm 1. Mixture of Kikuchi EM

1 t ← 1; Set an initial mixture of Kikuchi approximations
2 do {
3 for j ⇐ 1 to m

4 for i ⇐ 1 to N

5 Compute γj(xi), Γj , qj(xi) using equations (7), (8) and (9) re-
spectively

6 for j ⇐ 1 to m

7 Compute the Kikuchi approximation kj(x) of qj(x)

8 λj = Γj

N

9 t ← t + 1
10 } until Termination criteria met

4 Application Domain: The Mixture of Kikuchi
Approximations EDA

The mixture of Kikuchi approximations can be used in classification and in the ap-
proximation of distributions. In this section, we will describe an application of mix-
tures of Kikuchi approximations to function optimization by means of EDAs [7].

The goal of EDAs is function optimization. One essential assumption of these
algorithms is that it is possible to build a probabilistic model of the search
space that can be used to guide the search for the optimum. The probabilistic
model can be built using available information about the function or learned
from samples.

EDAs work with a set (or population) of points. Initially, a random sample
of points is generated. These points are evaluated using the function, and a
subset of points is selected based on this evaluation. Usually, points with higher
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evaluation has a higher probability of being selected. A probabilistic model of
the selected solutions is built, and the model is sampled to obtain a new set
of points. The process iterates until the optimum has been found or another
termination criterion is fulfilled. A key characteristic and crucial step of EDAs
is the construction of the probabilistic model. These models may differ in the
order and number of the probabilistic dependencies that they represent.

Applications of mixtures of distributions in EDAs include the use of mixtures
of Gaussian models for the solution of multiobjective continuous problems [2],
the application of mixtures of Bayesian models [11] for clustering in continuous
optimization, and the use of mixtures of trees [15] in discrete optimization. In
Algorithm 2, the pseudo-code of the mixture of Kikuchi approximations EDA
(MKA-EDA) is presented.

Algorithm 2. Mixture of Kikuchi approximations EDA

1 Set t ⇐ 0. Generate N � 0 points randomly
2 do {
3 Evaluate the points using the fitness function
4 Select a set S of M ≤ N points according to a selection method
5 Calculate a mixture of Kikuchi approximations Q(x) using a learning

algorithm
6 Generate new points sampling from Q(x)
7 t ⇐ t + 1
8 } until Termination criteria are met

Algorithm 2 uses Kikuchi-EM algorithm to learn the model. To generate
points from the Kikuchi approximations, a Gibbs sampling algorithm introduced
in [13] is used. The selection method is truncation selection of parameter T , in
which the M = NT points with best function evaluation are selected.

The computational cost of MK-EDA depends on the cost of the algorithms
used to learn and sample the Kikuchi approximation plus the cost of the EM
algorithm. The complexity of learning the parameters depends n, N , the number
of cliques μ, and their size. The order of this steps is O(Nμ) ≈ O(Nn2). The
total complexity of the learning algorithm is roughly estimated as O(Nn3).

5 Experiments

We start this section by presenting the optimization problem and instances
used in our experiments. The following experiments study the dynamics of the
Kikuchi-EM learning algorithm and compare it with other probabilistic models.
Finally, the section shows the results of the MKA-EDA.

The satisfiability (SAT) problem consists in finding an assignment of values
to a set of n boolean variables such that they satisfy a given set of clauses
c1, c2, . . . , cr, where ci is a disjunction of literals, and a literal is a variable or
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its negation. The restriction of SAT to instances where all clauses have length
3 is denoted 3-SAT. This problem is NP-complete [3]. In our representation, a
variable Xi is associated to each boolean variable. As the objective function, we
use the sum of clauses satisfied by the solution.

The selected problems benchmark is composed by three sets of difficult in-
stances. These instances are contained in the files uf20-91, aim-50-3-4-yes1-j
and aim-100-3-4-yes1-j 1 . The uf20-91 file contains 1000 instances, all have 20
variables and 91 clauses, all are satisfiable. File aim-50-3-4-yes1-j and aim-100-
3-4-yes1-j contain four instance each. The number of the variables of instances
in these two files are, respectively, 50 and 100. The number of clauses are, re-
spectively, 170 and 340.

In a preprocessing step, the uf20-91 instances where classified in five groups
according to the difficulty they pose for a very simple EDA. The criterion for
classification was the EDA success rate in 100 runs. The most difficult class
comprises to instances for which the simple EDA converged in less than 20 runs.
This class includes 38 instances and was used to evaluate the performance of
MKA-EDA.

5.1 Dynamics of the Kikuchi-EM Learning Algorithm

In the first experiment, we evaluate the behavior of the Kikuchi-EM learning
algorithm in the approximation of the empirical probability distribution of data
obtained from the optimization of the aim-50-3-4-yes1-1 instance. A population
size of 500 points and truncation selection with parameter T = 0.1 are used.
First, all the solutions are evaluated, the first selected set of solutions is used
for the experiment. The goal of the experiment is to evaluate the approximation
achieved at each step of the Kikuchi-EM learning algorithm.

To evaluate the quality of the approximation we use a quality measure similar
to the Kullback-Leibler divergence between the target empirical distribution and
the learned mixture of Kikuchi approximations D(p||km) =

∑
x p(x)log p(x)

km(x) .
Kullback-Leibler divergence is only defined between probability distributions.
We employ the same measure but warning that as mixture of Kikuchi approx-
imations are not in general probability distributions, the measure used does
not fulfill a number of properties satisfied by the Kullback-Leibler divergence.
Additionally, we measure the Kullback-Leibler divergence between the empiri-
cal distribution and the mixture of Kikuchi approximations normalized in the

set of data k̄m(x) =
m∑

j=1
λjq

j(x). Normalization of the Kikuchi approximation

guarantees to obtain a probability distribution on the set of data. Therefore,
the Kullback-Leibler divergence will be always non-negative in this case. Addi-
tionally, normalization is a required step of the EM method used to learn the
Kikuchi approximations. In each step of the learning algorithm, the divergences
are calculated from the current approximation learned by the model.

1 All files, together with a description about the instances, are available from
http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/benchm.html
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Fig. 1. Amount of decrease in the Kullback-Leibler divergence between the mix-
ture probability model and the target probability during the learning process. Left:
Kullback-Leibler divergence has been calculated from the mixture. Right: Kullback-
Leibler divergence has been calculated from the normalized mixture.

Figure 1 shows the results of this experiment for mixtures of Kikuchi ap-
proximations (MKik) with different number of components. In the figure, we
have included the results obtained using the mixture of trees (MT) EM learning
algorithm. For every mixture, the results are the average from 1000 runs. As
learning may take different number of steps for each selected population, the
average of the divergence at step i is calculated from all the experiments that
reach step i. It can be seen in Figure 1 that during the first steps of the learning
algorithm the divergence to the empirical distribution decreases. The best re-
sults are achieved for the mixtures of Kikuchi approximations of 4 components
(MKik4). For both types of mixtures, the divergence to the target probability
decreases with the increase in the number of components. It can be appreciated
that MT4 outperforms the behavior of MKik2.

We use the information collected from these experiments to calculate the gain
in the approximation measured as the difference between the Kullback-Leibler
obtained in the last and second iterations of the learning algorithms. Results
are shown in Figure 2. The value of divergence at the second iteration is taken
as a reference because the algorithm for learning mixtures of trees starts for
a complete random initialization, while the heuristic method used to initialize
the Kikuchi-EM learning algorithm takes profit of the information contained in
the data. It can be appreciated in the figure that also the gain achieved by the
Kikuchi-EM learning algorithm is higher than for the mixtures of trees.

Table 1. Percentage of success of MN-EDA and MKA-EDA for a set of difficult uf20-91
instances

Alg. MN-EDA MKA-EDA2 MKA-EDA3 MKA-EDA4 MKA-EDA5

72.78 84.11 78.63 75.84 72.96
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Fig. 2. Amount of decrease in the Kullback-Leibler divergence between the mixture
probability model and the target probability after the learning procedure is com-
plete. Left: Kullback-Leibler divergence has been calculated from the mixture. Right:
Kullback-Leibler divergence has been calculated from the normalized mixture.

5.2 Results of MKA-EDA

In the following experiments we investigate the ability of MKA-EDA to find
the solution of the SAT problem. In an initial experiment, we compare the per-
formance of MKA-EDA with an EDA based on Kikuchi aproximations (MN-
EDA)[13]. MN-EDA uses a probabilistic model based on a single Kikuchi ap-
proximation. We calculate the average success of MN-EDA and MKA-EDA with
different number of components for a set of difficult uf20-91 instances. MN-EDA
and MKA-EDA use a population size N = 500, a maximum of 25 generations,
and the parameter of truncation was T = 0.15.

Table 1 shows the results of experiments. Notice the improvement in the
results achieved by MKA-EDA compared to those obtained by MN-EDA. When
the number of components of the mixture of Kikuchi approximations is increased
results deteriorate. This fact may be due to the overfitting problem. However,
it is even better to use MKA-EDA with a mixture of five components than the
MN-EDA.

In the next experiment, we evaluate the behavior of MKA-EDA for instances
of higher size. We compare its performance to FDA, MN-FDA and MN-EDA
which are EDA with an increasing complexity in their probability models [12,13].
We employ a very simple local optimization method to accelerate the convergence
of all the EDAs. We apply this algorithm to every solution during the evaluation
step. Except in one case, all the experiments were done for a population size N =
1000, parameter of truncation T = 0.15, and a maximum number of generations
50. The only exception is MKA-EDA4. For this algorithm, N = 5000 and the
maximum number of generations was 200. The goal of including MKA-EDA with
these parameters was to evaluate the improvement in the convergence results
when the population size is increased.
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Table 2. Comparison among MN-EDAs for the aim instances of the SAT problem

FDA MN-FDA MN-EDA MKA-EDA2 MKA-EDA4

n mc mb v mb v mb v mb v mb v

50 170 169 10 170 2 170 1 170 2 170 10
50 170 170 6 170 7 170 9 170 9 170 10
50 170 170 7 170 8 170 9 170 10 170 10
50 170 170 9 170 9 170 10 170 10 170 10
100 340 337 1 336 6 337 2 337 1 336 4
100 340 337 1 337 2 337 4 337 3 340 1
100 340 336 7 336 7 336 9 336 6 336 10
100 340 340 2 340 3 340 2 340 2 340 6
Tot. 24 29 31 31 47

Table 2 shows the results achieved with the algorithms for instances aim-50-
3-4-yes1-j and aim-100-3-4-yes1-j. In the table, mc is the number of clauses in
each instance (optimum of the function), mb is the best value reached by the
corresponding algorithm, and v is the number of times that the best found value
was reached in 10 runs. The first rows correspond to the four instances of aim-
50-3-4-yes1-j, and the next four to the four instances of aim-100-3-4-yes1-j. The
last row shows the number of time the optimum was found in the 80 experiments.

It can be seen in Table 2 that MKA-EDA2 achieves better or equal results than
the rest of algorithms. For these intances however, the difference between results
achieved by MN-EDA and MKA-EDA2 is not statistically significant. The results
of MKA-EDA can be improved by augmenting the number of components in the
mixture, the population size, and the number of generations of the algorithm.
However, determining the exact number of components for mixture of Kikuchi
approximations is an open problem. Overfitting can arise and it is a general
problem for Kikuchi and other mixture of distributions. On the other hand,
EDAs based on trees and mixture of trees have good behavior for problems
with low dependencies between the variables. Kikuchi and mixture of Kikuchi
approximations outperform them for problems with more complex interactions.

6 Conclusions

In this paper, we have introduced a new class of probability models based on
Kikuchi approximations of probability distributions. An algorithm has been
introduced lo learn mixtures of Kikuchi approximations from data. The ap-
proximations learned by the algorithm can be more accurate, in terms of the
Kullback-Leibler divergence, than other approximations based on mixtures of
less complex components. The mixture of Kikuchi approximations combines the
capacity of mixtures to exploit asymmetric independence assertions with the
power of Kikuchi approximations to handle complex interactions. We recom-
mend its application to problems with very complex interactions that can not
be represented with simpler model.
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7. P. Larrañaga and J. A. Lozano, editors. Estimation of Distribution Algo-
rithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers,
Boston/Dordrecht/London, 2002.

8. G. McLachlan and D. Peel. Finite Mixture Models. John Wiley & Sons, 2000.
9. M. Meila and M. I. Jordan. Learning with mixtures of trees. Journal of Machine

Learning Research, 1:1–48, 2000.
10. H. Mühlenbein and G. Paaß. From recombination of genes to the estimation of

distributions I. Binary parameters. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and
H.-P. Schwefel, editors, Parallel Problem Solving from Nature - PPSN IV, pages
178–187, Berlin, 1996. Springer Verlag. LNCS 1141.
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