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Mixtures of Lightweight Deep Convolutional Neural

Networks: applied to agricultural robotics

Chris McCool1, Tristan Perez1, and Ben Upcroft1

Abstract—We propose a novel approach for training deep
convolutional neural networks (DCNNs) that allows us to tradeoff
complexity and accuracy to learn lightweight models suitable for
robotic platforms such as AgBot II (which performs automated
weed management). Our approach consists of three stages, the
first is to adapt a pre-trained model to the task at hand.
This provides state-of-the-art performance but at the cost of
high computational complexity resulting in a low frame rate of
just 0.12 frames per second (fps). Second, we use the adapted
model and employ model compression techniques to learn a
lightweight DCNN that is less accurate but has two orders of
magnitude fewer parameters. Third, K lightweight models are
combined as a mixture model to further enhance the performance
of the lightweight models. Applied to the challenging task of
weed segmentation, we improve accuracy from 85.9%, using
a traditional approach, to 93.9% by adapting a complicated
pre-trained DCNN with 25M parameters (Inception-v3). The
downside to this adapted model, Adapted-IV3, is that it can only
process 0.12fps. To make this approach fast while still retaining
accuracy, we learn lightweight DCNNs which when combined
can achieve accuracy greater than 90% while using considerably
fewer parameters capable of processing between 1.07 and 1.83
frames per second, up to an order of magnitude faster and up
to an order of magnitude fewer parameters.

Index Terms—Computer Vision for Automation, Recognition,
Agricultural Automation

I. INTRODUCTION

A
GRICULTURAL robotics is rapidly gaining interest as

shown by the advent of weed management robots such

as AgBot II [1] and harvesting platforms such as Harvey [2],

see Figure 1. Robotic vision algorithms that allows them to

understand the diverse environments in which they operate

are key for the operation of these robots. For instance, AgBot

II uses vision to detect and classify weeds at different stages

of growth. whereas harvesting robots detect and segment crop,

which are often occluded or are similar in colour to the foliage

(green on green).

The current approach to performing weed segmentation is

to combine a set of shape and pixel statistic features. Haug et

al. [3] proposed to combine shape features such as the area and

length of the skeleton with pixel-based statistics including the
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Fig. 1. Top is an image of AgBot II which performs weed management and
bottom is Harvey a robotic sweet pepper harvester.

mean, median, skew and kurtosis. A random forest classifier

was then used to perform classification. This approach requires

the definition of features by the researcher, in the hope that

they are robust to varying conditions such as differences in

stages of growth, illumination and viewpoint.

The advent of deep learning [4], and in particular deep con-

volutional neural networks (DCNNs), has opened the potential

to jointly learn the most appropriate features and classifiers

from data. This has the potential to obviate the need to hand

craft the best features for a particular task. However, this has

yet to receive widespread acceptance and use for challenging

agricultural robotic tasks. One of the reasons for this has

been the difficulty in training a DCNN from limited data

and that many state-of-the-art networks are large making their

deployment on resource limited robotic platforms difficult. For

instance, even the relatively small Inception-v3 model consists

of 25M parameters which is small compared to the 180M

parameters for VGG [5].

In this paper, we propose a novel approach for training

deep convolutional neural networks (DCNNs) that allows us

to tradeoff complexity (e.g. memory size and speed) with

accuracy. This is achieved through a three-step process. First,

we adapt a pre-trained model (Inception-v3 [5]) to the task

at hand which leads to state-of-the-art performance. However,

as the pre-trained model has been derived for general object
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classification, using 1 million (1M) images to classify 1,000

objects, the adapted model (Adapted-IV3) is complicated

consisting of 25M parameters. This makes it relatively slow

and so in the second step we use the adapted model to teach

much smaller, or lightweight, DCNNs that can have orders of

magnitude fewer parameters. Model compression and “distil-

lation” techniques are used to achieve this. In the third step,

inspired by [6], we combine a set of K-lightweight models

as a mixture model to further enhance the performance of the

lightweight models—this has a linear relationship between the

number of models and the resultant model complexity.

This approach leads to impressive results for weed

segmentation—a critical task for agricultural robots such as

AgBot II. The Adapted-IV3 model provides state-of-the-art

performance, improving accuracy from 85.9% [7] to 93.9%.

However, this model is only able to run at 0.12 frames per

second (fps). To make this approach scalable (low memory

requirements and fast) while still being accurate, we demon-

strate that K = 4 lightweight DCNNs can be learnt and then

combined as a mixture model to achieve an accuracy of 90.3%.

This model uses just 1/25th the number of parameters of the

Adapted-IV3 model and improves the frame rate by an order

of magnitude to 1.83fps.

In the next section, we describe the previous literature and

highlight the myriad of boutique features that have previously

been proposed. Section III then details the proposed methods

and in Section IV we present the experimental results. We

then discuss these results and in Section V we summarise our

contributions.

II. LITERATURE REVIEW

Weed and crop classification has been explored in robotic

vision literature for more than three decades [8], [9], [10],

[11], [3]. In 1986, Shearer [8] proposed the use of pixel-level

co-occurrence features to perform plant classification from

camera images. In 1998, Zwiggelaar [9] reviewed the spectral

properties and their potential use for weed/crop discrimina-

tion. A downside of this approach is the need for expensive

specialised hyper-spectral cameras.

More recently, researchers have explored methods to clas-

sify weeds and plants using shape features. In [11], area,

compactness, and major axis were tested as features to dis-

tinguish between crop and weed. Area was found to be one

of the most effective features, however, in their work the

crop had grown to a size much larger than the surrounding

weeds. Lin [10] found that utilising seven shape features (area

to length, compactness, elongation, aspect ratio, logarithm of

height to width, ratio of perimeter to broadness, and ratio of

length to perimeter) provided the best classification accuracy

for crop/weed classification.

In 2014, Haug et al. [3] proposed to combine shape features

with pixel intensity statistics. This combination of features

achieved impressive accuracy for weed/crop classification on

the publicly available weed/crop dataset [7]. An example

image from this challenging dataset is provided in Figure 2.

This idea of combining features was further extended by

Hall et al. [12] in 2015. Hall et al. proposed to combine

Fig. 2. An example of the challenging weed vs crop segmentation problem.
Top is the original image and bottom is the associated ground truth where
green represents the crop and red represents the weed.

traditional features (such as shape and pixel statistics) with

features extracted from a DCNN. A pre-trained DCNN was

used as a feature extractor and it was combined with the shape

and pixel intensity statistics to train random forest classifiers.

This led to impressive improvements in accuracy for plant

(leaf) classification. Despite the gains demonstrated by Hall

et al., such an approach has yet to be applied to agricultural

robotics. One of the reasons for this is that the network used

to extract the DCNN features, AlexNet, is quite complicated,

consisting of 60M parameters.

Each solution described above follows a similar pipeline

consisting of: (i) empirically finding the best features and (ii)

training an appropriate classifier with these features. A recent

trend in robotics and computer vision has been to replace this

pipeline by learning the features from data so that the feature

extraction and classification process can be jointly learnt and

optimised. Below we describe some of the prior work in

feature learning and its relevance for robotics followed by a

brief review of recent advances in deep learning.

A. Learning Features

Learning or selecting features has a rich history. One of

the first practical examples of this was the Viola and Jones

detector for face detection [13] which selected and combined

the most appropriate features, from a very large pool of

potential features, using boosting [14]. More recently, deep

learning has provided a considerable advance in this area by
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using the raw data (image) as input and learning features as

well as the classifier all in the same framework. This led to

famous results for general object classification (e.g. cars vs

ships) [15] and has been a hot trend in computer vision and

machine learning over the last few years [4].

Because of their success, deep learning approaches have

been used increasingly in robotics applications. An early

example of this, for agricultural robotics, is the sparse auto-

encoder features of Hung et al. [16] for almond detection.

Hung et al. learnt efficient auto-encoder features by stacking

several layers together, this was trained on general image

data and then applied to almond segmentation. Despite the

success of this approach for almond segmentation, it had

limited success on other crops such as sweet pepper [17].

Other examples include the use of DCNN features in place

recognition. Chen et al. [18] and Sunderhauf et al. [19] used

a pre-trained DCNN simply as a feature extractor to obtain

robust features, but no further training on the DCNN was

performed.

In computer vision, the task of fine-grained (species-level)

image classification has highlighted the potential to transfer,

or adapt, pre-trained networks to the particular task. This

is in contrast to using a pre-trained network as a feature

extractor such as for place recognition, as all of the parameters

of the network are adapted for the task at hand. Such an

approach has been at the heart of state-of-the-art fine-grained

classification techniques such as joint parts localisation and

image classification [20] and the recently proposed mixture of

DCNNs [6], as well as state-of-the-art image segmentation

approaches such as the fully connected network (FCN) of

Long et al. [21]. Long et al. demonstrated that classification

networks, such as AlexNet, VGG and GoogLeNet, can be

treated as a 1 × 1 convolution. A deconvolution layer can

then be integrated to upsample the classification layer (1 × 1
convolution) to achieve dense (per-pixel) image segmentation

results. These approaches have all achieved impressive results,

however, they still rely on the use of complicated network

structures such as AlexNet, VGG or GoogLeNet.

An issue with the above methods is that they make use

of complicated DCNNs. For instance, the relatively compact

Inception-v3 model [5], which achieves impressive object

classification performance (for 1,000 classes), consists of 25M

parameters. Other state-of-the-art DCNNs such as AlexNet and

VGG are even more complicated consisting of 60M and 180M

parameters respectively. In the following section we describe

work towards compressing these complicated networks.

B. Model Compression

Model compression for DCNNs was first introduced in 2006

by Buclia et al. [22] and extended in 2014 by Hinton et al. [23]

using the concept of model “distillation”.

Model compression takes a well trained complicated model

that is then used to “teach” a less complicated model, the

student. This is achieved by changing the classification loss

to an L2 regression loss so that the student network learns to

replicate the output, y, of the teacher given the same input,

X. The output of the teacher, y, is its logit output, prior

to the softmax for classification, and in this case the input

X is the colour image. Minor improvements were obtained

by averaging this L2 regression loss with the traditional

classification loss.

Other work has used model compression to examine the

question “do deep networks really need to be deep?”, or if

they can be converted into shallow networks (with only one

or two layers) [24], [25]. Recent work by Urban et al. [25]

indicates that deep network structures are still important, even

for compressed models. All of the previous work using model

compression has learnt the complicated teacher on the same

dataset that the student is then applied to.

Alternative methods for reducing the memory size of DC-

NNs include the recent work of Anwar et al. [26] and Han

et al. [27]. Anwar et al. proposed to reduce the memory of

DCNNs by first pruning a network and then retraining the

network to recover for the loss in performance. Han et al.

proposed a three-stage process to reduce the memory (size)

of a DCNN by applying pruning, trained quantization and

finally Huffman coding. This led to considerable reductions

in memory size, with the overall model size being reduced

by up to 49 times without any reduction in model accuracy.

Despite this impressive reduction in memory size it led to only

modest speed improvements of 3.5 times.

III. PROPOSED METHODS

In this paper we propose a novel approach for training

deep convolutional neural networks (DCNNs) that allows us

to tradeoff both speed and memory size against accuracy. This

is achieved through a three-step process.

1) We adapt a pre-trained model to the task at hand. In

this work we adapt the Inception-v3 [5] model and refer

to this adapted model as Adapted-IV3. The process for

adaptation is described in Section III-A.

2) The adapted model, Adapted-IV3, is then used to teach

(train) a much smaller (lightweight) DCNN. The way in

which the adapted network is used to teach the smaller

network is described in Section III-B.

3) Inspired by [6], we combine a set of K lightweight

models as a mixture model to further enhance the

performance of the lightweight models. This involves

further training which is described in Section III-C.

We apply our approach to the problem of weed segmentation

for robotic platforms such as AgBot II. Based on prior

art [3], we extract regions based on a sliding window1 of

size W × W × 3 across the colour image and the class of

the central pixel is declared (either weed or crop). The FCN

approach is not trialled here as it is designed to be trained and

evaluated on problems where dense (for every pixel) decisions

are required; the training data requires a label for each pixel.

However, many robotic vision problems are sparse problems

where classification decisions are only required for some of

the pixels. For example, weed segmentation only requires a

classification for pixels containing vegetation, see Figure 2.

1Haug et al. used a window of W = 80, we use W = 81 to ensure a
symmetric window around the location of interest.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2017

Fig. 3. An illustration of the AgNet and MiniInception DCNNs. Top is the AgNet model which is a deep model consisting of 8 convolutional layers and
one fully connected layer. Despite the depth of this model it is lightweight as it has less than 0.25M parameters. Bottom is the MiniInception model which
has a similar structure to the AgNet model, however, the later convolutional layers incorporate two inception modules (highlighted in yellow). This leads to
a more complicated model consisting of 5.1M parameters.

A. Transfer Learning: adapting complicated pre-trained net-

works

Adapting pre-trained networks is a common approach for

fine-grained classification [6]. In [28] it was shown that when

there is limited data to train a network from scratch it is

better practice to take a pre-trained network, trained on a large

dataset such as ImageNet (1M images for 1,000 classes), and

adapt it for the task at hand. For this reason we first adapt a

pre-trained network to the task of weed segmentation.

We take the latest version of GoogLeNet, Inception-v3 [5],

which consists of 25M parameters. This model was initially

trained on the ImageNet dataset using 1,000 classes each

with 1,000 images and achieved impressive classification

performance. The Inception-v3 model was derived for mobile

applications and so consists of a low number of parameters,

however, it is still quite a complicated model. To reduce the

number of parameters and improve the speed of the network

while retaining high accuracy we apply model compression,

where the adapted Inception-v3 model acts as the teacher.

When performing transfer learning we have to upsample

the original images to match the template required by the

Inception-v3 architecture which is WIV 3 = 299 (a 299×299×
3 image); this high resolution input is referred to as XIV 3. To

do this we upsample the much smaller image size of W = 81
referred to as Xorig. (an 81× 81× 3 image).

B. Model Compression: training lightweight DCNNs

Model compression is often performed by first training a

complicated classifier for a dataset and then training a less

complicated student network on the same, or a subset, of

this dataset [22], [23] (see Section II-B). In this work, we

propose to instead adapt a complicated pre-trained model to

the particular task at hand, this is the teacher network. We

then learn a lightweight student DCNN from this model.

The teacher network takes as input XIV 3 and produces the

logit output yIV 3, prior to applying the softmax operation.

Fig. 4. An illustration of the Inception module that we use, it consists
of four sub-modules (a)-(d). The kernel size for each of the sub-modules
is smaller than the input, however, by concatenating them at the end the
output feature vector is larger. Module (a) acts as a 5 × 5 convolution that
incorporates downsampling of 2, it is calculated efficiently by stacking two
3× 3 convolutions. Module (b) is a 3× 3 convolution that downsamples by
a factor of 2 and (c) first pools to downsample by a factor of 2 followed by
a 1× 1 convolution. Module (d) is a 1× 1 convolution that dowsamples the
image by a factor of 2.

The student network takes as input Xorig. and produces the

logit output y∗, prior to applying the softmax operation. For

training, both the classification loss (between the student and

groundtruth) and the L2 loss (between yIV 3 and y∗) are used.

This allows the student to represent the input signal in the same

manner as the teacher while still requiring the classification

accuracy to be optimised.

The student network uses the original image size, Xorig.,

as the upsampling operation to obtain XIV 3 was only per-
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TABLE I
THE NUMBER OF PARAMETERS FOR THE DIFFERENT PARTS OF THE

SUB-MODULES FOR THE TWO INCEPTION MODULES USED FOR THE

MINIINCEPTION DCNN. FOR SUB-MODULE (A) THE NUMBER OF

PARAMETERS ARE (FROM TOP TO BOTTOM) FOR THE 1times1 LAYER,
AND THEN FOR THE TWO 3× 3 LAYERS. FOR THE SUB-MODULE (B) THE

NUMBER OF PARAMETERS ARE FOR THE 1times1 LAYER, AND THEN THE

3× 3 LAYER. FOR SUB-MODULES (C) AND (D) THE NUMBER OF

PARAMETERS ARE FOR THE 1× 1 LAYERS.

Sub-Module

(a) (b) (c) (d)

Inception Module 1
(1× 1) 16 96 32 64
(3× 3) 32 128
(3× 3) 32

Inception Module 2
(1× 1) 32 128 64 128
(3× 3) 96 192
(3× 3) 96

formed to match the required input size of the Inception-v3

network. This means that the student network is already less

complicated as it is operating on a lower resolution image.

The student network is a lightweight DCNN that is still a

deep network and we consider two potential structures. The

structures for these two networks have been chosen so that the

advantages of a DCNN, increasingly complex representation

with a low number of parameters, are still retained. Each

layer is kept to a low number of parameters as the DCNN

is designed to solve one particular task (weed segmentation)

rather than general object classification of 1, 000 classes.

The first network structure consists of 8 convolutional layers

of increasing complexity (number of parameters) and 1 fully

connected layer, similar to AlexNet. An illustration of this

network is given in Figure 3 (top). We refer to this as AgNet

as it has been derived with agricultural tasks in mind.

The second network structure consists of 4 convolutional

layers followed by 2 inception-style modules (similar to

GoogLeNet) and 1 fully connected layer. An illustration of

this network is given in Figure 3 (bottom). We refer to this a

MiniInception as it incorporates two inception modules. The

inception modules are inspired by [5]2. This consists of 4 sub-

modules, illustrated in Figure 4, including a 5 convolution

(made up of two 3 convolutions), a 3×3 convolution, a pooling

layer followed by a 1×1 convolution and a 1×1 convolution.

Details of the parameters used for these inception modules can

be found in Table I.

C. Mixtures and Ensembles of DCNNs

To enhance the performance of the compressed models

(AgNet or MiniInception) we use an Ensemble of these

lightweight models. Ensembles of K DCNNs is often used

to improve the performance of state-of-the-art object classi-

fiers [5] as the randomness of the initialisation and training

process will lead to each DCNN providing slightly different

decisions. Taking the average of these decisions consistently

improves performance at the cost of linear complexity with

the number of Ensembles, K.

We propose to further enhance the benefits of combining

K DCNNs by using the recently proposed Mixture of DCNNs

2In particular the architecture illustrated in Figure 5 of [5].

structure [6] (MixDCNN). The MixDCNN structure combines

K DCNNs by weighting the contribution of each DCNN by

their confidence for predicting the t-th sample. To do this, an

occupation probability αt is calculated based on the maximum

logit value from each of the K DCNNs3,

αt
k =

exp {Ck}∑K

j=1
exp {Cj}

(1)

where Ck is the maximum logit value from the k-th DCNN.

The final classification is given as a mixture of the classi-

fication decisions from the K networks, weighted by their

respective occupation probability,

cn =

K∑

k=1

αt
kck,n, (2)

where ck,n is the probability of the sample belonging to the n-

th class for the k-th component and cn is the final classification

probability for the n-th class. Using this MixDCNN structure,

we combine and re-train the K DCNNs.

IV. EXPERIMENTAL RESULTS

We apply our approach to the problem of weed segmentation

for robotic platforms such as AgBot II and produce results on

the publicly available weed/crop dataset [7]. All of our models

were implemented in Tensorflow4. The AdamOptimizer [29]

was used with a learning rate of γ = 1e−4, ǫ = 0.1, a batch

size of b = 60 and a dropout rate of 50%. When training

the lightweight DCNNs we use the same data as was used to

fine-tune the complicated (Inception-v3) network.

A. Accuracy of Weed Segmentation

Weed segmentation is key to enabling integrated weed man-

agement for intra-row weed management. This task is made

challenging by the fact that the weeds can overlap with the

crop making accurate classification difficult, see Figure 2. To

explore the performance of weed segmentation we make use

of the publicly available Crop/Weed Field Image Dataset (CW-

FID) [7] which consists of 20 training images and 40 testing

images; we make use of the agriculture protocol. We compare

to the baseline method presented by Haug and Ostermann [7]

which trains a random forest classifier on features obtained

from shape and pixel intensity information. The number of

convolutional parameters for each layer of the lightweight

AgNet model were [16, 16, 32, 32, 64, 64, 128, 128] with the

fully connected layer consisting of 256 neurons. The param-

eters for the MiniInceptions were [64, 96, 128, 192] for the

convolutional layers, [240, 480] for the two inception modules

(see Table I and Figure 4 for more details) followed by a fully

connected layer consisting of 960 neurons.

The results in Table II highlight the potential improvements

available by using a deep neural network based solution.

It shows that all of the presented deep learning solutions

3The logit value is used rather than softmax as the softmax is a normalised
value.

4TensorFlow r0.10: https://www.tensorflow.org/ using a GeForce Titan X
graphics card.
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TABLE II
CLASSIFICATION ACCURACY FOR THE VARIOUS MODELS ON THE

CROP/WEED FIELD IMAGE DATASET (CWFID) [7]. ALSO PRESENTED IS

THE MODEL COMPLEXITY IN TERMS OF NUMBER OF PARAMETERS (NUM.
PARAMS). THE ACCURACY FOR AGNET IS PRESENTED AS THE MEAN

ACCURACY AND STANDARD DEVIATION OF THE 8 TRAINED AGNET

MODELS.

Accuracy Num. Params

Adapted-IV3 93.9% 25M

Mix-MiniInception (K = 4) 90.7% 20.4M

Mix-MiniInception (K = 2) 90.5% 10.2M

MiniInception 89.9% ± 0.1% 5.1M

Mix-Agnet (K = 8) 90.5% 2.0M

Mix-Agnet (K = 4) 90.3% 1.0M

Mix-Agnet (K = 2) 89.7% 0.5M

AgNet 88.9% ± 0.4% 0.25M

Shape+Stat. [7] 85.9% N/A

considerably outperform the previously proposed method, with

the highest accuracy achieved by the Adapted-IV3 model with

93.9% compared to 85.9% when using the previous approach

proposed by Haug and Ostermann [7].

The downside of the Adapted-IV3 system is that it is a com-

plex model with approximately 25M parameters. By contrast,

a lightweight model can be trained using the Adapted-IV3

model as a teacher to achieve an average accuracy of 88.9% ±
0.4% for the AgNet structure (0.25M parameters) and 89.9%

± 0.1% for the MinInception structure (5.1M parameters); we

present the mean accuracy and standard deviation of the 8

trained AgNet models and 4 trained MiniInception models.

Although these lightweight models have lower performance

they also consist of 100 and 5 times fewer parameters for

the lightweight AgNet and MiniInception models respectively.

This makes these models more appropriate for a robotic and

mobile solution, such as AgBot II. This is because reducing the

number of parameters reduces the memory requirements mak-

ing it a candidate for less powerful graphical processing units

(GPUs) and second by lowering the number of parameters we

also decrease the execution time. We will elucidate on this

second point, the decrease in execution time, in Section IV-C.

B. Mixtures of Lightweight DCNNs

To enhance the performance of the compressed models

(AgNet and MiniInception) we combine multiple lightweight

models as a mixture model, referred to as Mix-AgNet and

Mix-MiniInception. Similar to [6], our empirical evaluations

found that the MixDCNN approach always outperforms a sim-

ple Ensemble. For our experiments, the MixDCNN approach

provided an absolute average improvement in accuracy of

0.15% compared to using an Ensemble; when deploying on

a single GPU there is no added model complexity between

the Ensemble and MixDCNN approach.

It can be seen in Table II that increasing K, the number

of models, increases the overall performance of the system.

However, the relative performance improvement decreases as

K increases. A good tradeoff between model complexity and

accuracy is to use K = 4 AgNet DCNNs as this improves the

performance to 90.3% but results in just 1.0M parameters,

TABLE III
NUMBER OF PARAMETERS (NUM. PARAMETER) AND TIMING IN TERMS OF

REGIONS PROCESSED PER SECOND (REG./SEC.).

Num. Parameters reg./sec.

Adapted-IV3 25M 155

Mix-MiniInception (K = 4) 20.4M 767

Mix-MiniInception (K = 2) 10.2M 1,437

MiniInception 5.1M 2,737

Mix-AgNet (K = 8) 2.0M 1,394

Mix-AgNet (K = 4) 1.0M 2,445

Mix-AgNet (K = 2) 0.5M 3,736

AgNet 0.25M 6,300

this is 25.0 times fewer than the Adapted-IV3 model. For

the MiniInception model using K = 2 DCNNs improves the

performance to 90.5% but results in 10.2M parameters, this is

2.5 times smaller than the Adapted-IV3 model. Doubling to

K = 8 and K = 4 for the AgNet and MiniInception models

respectively results in an absolute improvement in accuracy of

just 0.2% but at the cost of doubling the number of parameters.

If the choice of model is based purely on the number of

parameters then the AgNet and Mix-AgNet models provide the

best tradeoff between the number of parameters and accuracy,

however, as we will show in the next section if speed is the

criteria the tradeoff is more complicated.

A visualisation of the results from the three DCNN models,

AgNet, MixAgNet (K = 4), and Adapted-IV3, are provided in

Figure 5; more visualisation results are available in the video.

C. Speed and Model Complexity

In Table III the number of regions that can be processed

per second (reg./sec.) is presented. It can be seen that the

less complicated models are able to process more samples,

for instance AgNet which consists of 0.25M parameters can

process 6,300 regions (pixels) per second, this is approxi-

mately 40.6 times more than the Adapted-IV3 model. By

contrast, the MiniInception model which consists of 5.1M

parameters can process 2,737 regions (pixels) per second,

this is approximately 17.7 times more than the Adapted-IV3

model. This shows that there is not always a linear relationship

between the speed of a model and the number of parameters

(complexity) as the MiniInception model has 20.4 times the

number of parameters but is only 2.3 times slower.

Increasing the complexity, by adding more models, de-

creases the number of regions that can be processed per

second. This provides us with a method to tradeoff accuracy

and run-time speed. For the highly accurate Adapted-IV3

model we can achieve an accuracy of 93.9%, however, we

are only able to process 155 regions per second. By contrast,

the Mix-AgNet K = 4 model can achieve an accuracy of

90.3% but is able to process 15.8 times regions per second

(2,445 vs 155) and the Mix-MiniInception K = 2 model can

achieve an accuracy of 90.5% while processing 9.3 times the

regions per second (1,437 vs 155).

In terms of frames per second, we first note that when

performing weed segmentation often only a subset of the

potential vegetation regions are classified. In [3] the image was



MCCOOL et al.: MIXTURES OF LIGHTWEIGHT DCNNS 7

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 5. Example output of the three different deep learning approaches, red represents the weeds and green represents the crop. From left to right is results
for the ground truth, AgNet, MiniInception, Mix-AgNet (K = 4), Mix-MiniInception (K = 2) and the Adapted-IV3 models. Each row represents the result
for a different image, where the last row represents a failure case for the lightweight models.

sub-sampled using a sparse grid of 15× 15. Considering such

an approach but instead using a stride of S = 8 (horizontally

and vertically) between region evaluations, the average number

of regions to be classified per image for the CWFID dataset is

1,337. This allows our proposed approaches to operate at the

following frames per second (fps): 4.71 for AgNet, 1.83 for

Mix-AgNet K = 4, 1.07 for Mix-MiniInception K = 2 and

0.12 for Adapted-IV3.

From this it can be seen that the Adapted-IV3 approach,

which operates at just 0.12 fps, is usable either as a post-

processing method or for very slow moving vehicles. By

comparison, the AgNet, Mix-AgNet and Mix-MiniInception

approaches have the potential to be deployed on robotic

platform such as AgBot II as they can operate between 4.73

and 1.07 fps.

V. CONCLUSIONS

We have proposed a novel approach for training DCNNs that

allows us to trade-off memory size and speed against accuracy

by learning a set of lightweight models. The key approach

for training these models is to “distill” the knowledge from a

complex pre-trained model considered to be an expert for the

task at hand. This teacher is the used to train a much smaller

(lightweight) student DCNN, AgNet. A set of K-lightweight

models can then be combined as a mixture model, MixAgNet,

to further enhance the performance of the lightweight models.

Using this approach we have been able to considerably

improve the accuracy of robotic weed segmentation from

85.9%, using a traditional approach, to 93.9% using an adapted

DCNN (Adapted-IV3) with 25M parameters able to process

155 regions per second. The downside to this highly accurate

model is that it is current not able to be deployed for real-

time processing on a robotic system (such as AgBot II) as

it can only process 0.12 frames per second. However, we

have shown that this complex model can be made scalable (in

terms of memory and speed) by learning K = 4 lightweight

AgNet models or K = 2 MiniInception models leading to an

accuracy of 90.3% and 90.5% while using 25.0 and 2.5 times

fewer parameters respectively. These smaller, yet still accurate,

models are able to process 1.83 and 1.07 frames per second

respectively.

Future work will examine how to improve the accuracy

of the lightweight DCNNs. Alternative formulations of the

lightweight DCNN will be examined including if greater depth

needs to be introduced into the network as this was shown to

be important [25]. Finally, the applicability of this approach

to derive efficient versions of an FCN structure could also be

explored; at its core the FCN consists of a complicated DCNN

such as VGG or GoogLeNet.

REFERENCES

[1] O. Bawden, “Design of a lightweight, modular robotic vehicle for the
sustainable intensification of broadacre agriculture,” Master’s thesis,
Queensland University of Technology, 2015.

[2] C. Lehnert, A. English, C. McCool, A. Tow, and T. Perez, “Autonomous
sweet pepper harvesting for protected cropping systems,” IEEE Robotics

and Automation Letters, 2017.
[3] S. Haug, A. Michaels, P. Biber, and J. Ostermann, “Plant classification

system for crop/weed discrimination without segmentation,” in IEEE

Winter Conference on Applications of Computer Vision, 2014.
[4] Y. LeCunn, Y. Bengio, and G. Hinton, “Deep learning,” Nature, p.

436444, 2015.
[5] C. Szegedy, V. Vanhoucke, S. Ioffe, and S. Shlens, “Rethinking the

inception architecture for computer vision,” in arXiv, 2015.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2017

[6] Z. Ge, A. Bewley, C. McCool, P. Corke, B. Upcroft, and C. Sanderson,
“Fine-grained classification via mixture of deep convolutional neural
networks,” in IEEE Winter Conference on Applications of Computer

Vision (WACV), 2016.
[7] S. Haug and J. Ostermann, “A crop /weed field image dataset for the

evaluation of computer vision based precision agriculture tasks,” in
ECCV Workshop on Computer Vision Problems in Plant Phenotyping,
2014.

[8] S. A. Shearer, “Plant identification using color co-occurrence matrices
derived from digitized images,” Ph.D. dissertation, Ohio State University,
1986.

[9] R. Zwiggelaar, “A review of spectral properties of plants and their po-
tential use for crop/weed discrimination in row-crops,” Crop Protection,
p. 189206, 1998.

[10] C. Lin, “A support vector machine embedded weed identification sys-
tem,” Ph.D. dissertation, University of Illinois, 2009.

[11] F. D. Rainville, A. Durand, F. Fortin, K. Tanguy, X. Maldague, B. Pan-
neton, and M. Simard, “Bayesian classification and unsupervised learn-
ing for isolating weeds in row crops,” Pattern Analysis and Applications,
p. 114, 2012.

[12] D. Hall, C. McCool, F. Dayoub, N. Sunderhauf, and B. Upcroft,
“Evaluation of features for leaf classification in challenging conditions,”
in IEEE International Winter Conference on Applications of Computer

Vision, 2015.
[13] P. Viola and M. Jones, “Rapid object detection using a boosted cascade

of simple features,” in IEEE CVPR, 2001.
[14] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-

line learning and an application to boosting,” in Computational Learning

Theory: Eurocolt, 1995, p. 2337.
[15] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in Neural Information

Processing, 2012.
[16] C. Hung, J. Nieto, Z. Taylor, J. Underwood, and S. Sukkarieh, “Orchard

fruit segmentation using multi-spectral feature learning,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, Nov 2013,
pp. 5314–5320.

[17] C. McCool, I. Sa, F. Dayoub, C. Lehnert, T. Perez, and B. Upcroft,
“Visual detection of occluded crop: For automated harvesting,” in IEEE

International Conference on Robotics and Automation (ICRA), 2016.
[18] Z. Chen, O. Lam, A. Jacobson, and M. Milford, “Convolutional neu-

ral network-based place recognition,” in Australasian Conference on

Robotics and Automation, 2014.
[19] N. Sunderhauf, S. Shirazi, F. Dayoub, B. Upcroft, and M. Milford, “On

the performance of convnet features for place recognition,” in IROS,
2015.

[20] D. Lin, X. Shen, C. Lu, and J. Jia, “Deep lac: Deep localization,
alignment and classification for fine-grained recognition,” in CVPR,
2015, p. 16661674.

[21] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in CVPR, 2015.

[22] C. Bucila, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in KDD, 2006.

[23] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in NIPS Deep Learning Workshop, 2014.

[24] L. Ba and R. Caruana, “Do deep convolutional nets really need to be
deep?” in NIPS, 2014.

[25] G. Urban, K. Geras, S. Kahou, O. Aslan, S. Wang, A. Mohamed,
M. Philipose, M. Richardson, and R. Caruana, “Do deep convolutional
nets really need to be deep (or even convolutional)?” in arXiv, 2016.

[26] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep
convolutional neural networks,” in ArXiv, 2015.

[27] S. Han, M. H, and W. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
in ICLR, 2016.

[28] Z. Ge, C. McCool, C. Sanderson, and P. Corke, “Subset feature learning
for fine-grained category classification,” in CVPR Workshop on Deep

Learning, 2015.
[29] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in ICLR, 2015.


