
LETTER Communicated by Todd Leen

Mixtures of Probabilistic Principal Component Analyzers

Michael E. Tipping
Christopher M. Bishop
Microsoft Research, St. George House, Cambridge CB2 3NH, U.K.

Principal component analysis (PCA) is one of the most popular techniques
for processing, compressing, and visualizing data, although its effective-
ness is limited by its global linearity. While nonlinear variants of PCA
have been proposed, an alternative paradigm is to capture data complex-
ity by a combination of local linear PCA projections. However, conven-
tional PCA does not correspond to a probability density, and so there is
no unique way to combine PCA models. Therefore, previous attempts to
formulate mixture models for PCA have been ad hoc to some extent. In
this article, PCA is formulated within a maximum likelihood framework,
based on a specific form of gaussian latent variable model. This leads
to a well-defined mixture model for probabilistic principal component
analyzers, whose parameters can be determined using an expectation-
maximization algorithm. We discuss the advantages of this model in the
context of clustering, density modeling, and local dimensionality reduc-
tion, and we demonstrate its application to image compression and hand-
written digit recognition.

1 Introduction

Principal component analysis (PCA) (Jolliffe, 1986) has proved to be an ex-
ceedingly popular technique for dimensionality reduction and is discussed
at length in most texts on multivariate analysis. Its many application areas
include data compression, image analysis, visualization, pattern recogni-
tion, regression, and time-series prediction.

The most common definition of PCA, due to Hotelling (1933), is that for a
set of observed d-dimensional data vectors {tn}, n ∈ {1 . . .N}, the q principal
axes wj, j ∈ {1, . . . , q}, are those orthonormal axes onto which the retained
variance under projection is maximal. It can be shown that the vectors wj
are given by the q dominant eigenvectors (those with the largest associated
eigenvalues) of the sample covariance matrix S = ∑

n(tn − t̄)(tn − t̄)T/N
such that Swj = λjwj and where t̄ is the sample mean. The vector xn =
WT(tn − t̄), where W = (w1,w2, . . . ,wq), is thus a q-dimensional reduced
representation of the observed vector tn.

A complementary property of PCA, and that most closely related to
the original discussions of Pearson (1901), is that the projection onto the
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principal subspace minimizes the squared reconstruction error
∑ ‖tn− t̂n‖2.

The optimal linear reconstruction of tn is given by t̂n =Wxn+ t̄, where xn =
WT(tn − t̄), and the orthogonal columns of W span the space of the leading
q eigenvectors of S. In this context, the principal component projection is
often known as the Karhunen-Loève transform.

One limiting disadvantage of these definitions of PCA is the absence of
an associated probability density or generative model. Deriving PCA from
the perspective of density estimation would offer a number of important
advantages, including the following:

• The corresponding likelihood would permit comparison with other
density-estimation techniques and facilitate statistical testing.

• Bayesian inference methods could be applied (e.g., for model compar-
ison) by combining the likelihood with a prior.

• In classification, PCA could be used to model class-conditional densi-
ties, thereby allowing the posterior probabilities of class membership
to be computed. This contrasts with the alternative application of PCA
for classification of Oja (1983) and Hinton, Dayan, and Revow (1997).

• The value of the probability density function could be used as a mea-
sure of the “degree of novelty” of a new data point, an alternative
approach to that of Japkowicz, Myers, and Gluck (1995) and Petsche
et al. (1996) in autoencoder-based PCA.

• The probability model would offer a methodology for obtaining a prin-
cipal component projection when data values are missing.

• The single PCA model could be extended to a mixture of such models.

This final advantage is particularly significant. Because PCA defines only
a linear projection of the data, the scope of its application is necessarily some-
what limited. This has naturally motivated various developments of non-
linear PCA in an effort to retain a greater proportion of the variance using
fewer components. Examples include principal curves (Hastie & Stuetzle,
1989; Tibshirani, 1992), multilayer autoassociative neural networks (Kramer,
1991), the kernel-function approach of Webb (1996), and the generative to-
pographic mapping (GTM) of Bishop, Svensén, and Williams (1998). An
alternative paradigm to such global nonlinear approaches is to model non-
linear structure with a collection, or mixture, of local linear submodels. This
philosophy is an attractive one, motivating, for example, the mixture-of-
experts technique for regression (Jordan & Jacobs, 1994).

A number of implementations of “mixtures of PCA” have been proposed
in the literature, each defining a different algorithm or a variation. The vari-
ety of proposed approaches is a consequence of ambiguity in the formulation
of the overall model. Current methods for local PCA generally necessitate
a two-stage procedure: a partitioning of the data space followed by esti-
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mation of the principal subspace within each partition. Standard Euclidean
distance-based clustering may be performed in the partitioning phase, but
more appropriately, the reconstruction error may be used as the criterion
for cluster assignments. This conveys the advantage that a common cost
measure is used in both stages. However, even recently proposed models
that adopt this cost measure still define different algorithms (Hinton et al.,
1997; Kambhatla & Leen, 1997), while a variety of alternative approaches
for combining local PCA models have also been proposed (Broomhead, In-
dik, Newell, & Rand, 1991; Bregler & Omohundro, 1995; Hinton, Revow,
& Dayan, 1995; Dony & Haykin, 1995). None of these algorithms defines a
probability density.

One difficulty in implementation is that when using “hard” clustering in
the partitioning phase (Kambhatla & Leen, 1997), the overall cost function
is inevitably nondifferentiable. Hinton et al. (1997) finesse this problem by
considering the partition assignments as missing data in an expectation-
maximization (EM) framework, and thereby propose a “soft” algorithm
where instead of any given data point being assigned exclusively to one
principal component analyzer, the responsibility for its generation is shared
among all of the analyzers. The authors concede that the absence of a prob-
ability model for PCA is a limitation to their approach and propose that
the responsibility of the jth analyzer for reconstructing data point tn be
given by rnj = exp (−E2

j /2σ
2)/{∑j′ exp (−E2

j′/2σ
2)}, where Ej is the corre-

sponding reconstruction cost. This allows the model to be determined by
the maximization of a pseudo-likelihood function, and an explicit two-stage
algorithm is unnecessary. Unfortunately, this also requires the introduction
of a variance parameter σ 2 whose value is somewhat arbitrary, and again,
no probability density is defined.

Our key result is to derive a probabilistic model for PCA. From this a
mixture of local PCA models follows as a natural extension in which all
of the model parameters may be estimated through the maximization of a
single likelihood function. Not only does this lead to a clearly defined and
unique algorithm, but it also conveys the advantage of a probability density
function for the final model, with all the associated benefits as outlined
above.

In section 2, we describe the concept of latent variable models. We then
introduce probabilistic principal component analysis (PPCA) in section 3,
showing how the principal subspace of a set of data vectors can be obtained
within a maximum likelihood framework. Next, we extend this result to
mixture models in section 4, and outline an efficient EM algorithm for es-
timating all of the model parameters in a mixture of probabilistic principal
component analyzers. The partitioning of the data and the estimation of local
principal axes are automatically linked. Furthermore, the algorithm implic-
itly incorporates a soft clustering similar to that implemented by Hinton et
al. (1997), in which the parameter σ 2 appears naturally within the model.
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Indeed, σ 2 has a simple interpretation and is determined by the same EM
procedure used to update the other model parameters.

The proposed PPCA mixture model has a wide applicability, and we
discuss its advantages from two distinct perspectives. First, in section 5,
we consider PPCA for dimensionality reduction and data compression in
local linear modeling. We demonstrate the operation of the algorithm on a
simple toy problem and compare its performance with that of an explicit
reconstruction-based nonprobabilistic modeling method on both synthetic
and real-world data sets.

A second perspective is that of general gaussian mixtures. The PPCA
mixture model offers a way to control the number of parameters when esti-
mating covariance structures in high dimensions, while not overconstrain-
ing the model flexibility. We demonstrate this property in section 6 and
apply the approach to the classification of images of handwritten digits.

Proofs of key results and algorithmic details are provided in the ap-
pendixes.

2 Latent Variable Models and PCA

2.1 Latent Variable Models. A latent variable model seeks to relate a d-
dimensional observed data vector t to a corresponding q-dimensional vector
of latent variables x:

t = y(x;w)+ ε, (2.1)

where y(·; ·) is a function of the latent variables x with parameters w, and
ε is an x-independent noise process. Generally, q < d such that the latent
variables offer a more parsimonious description of the data. By defining a
prior distribution over x, together with the distribution of ε, equation 2.1
induces a corresponding distribution in the data space, and the model pa-
rameters may then be determined by maximum likelihood techniques. Such
a model may also be termed generative, as data vectors t may be generated
by sampling from the x and ε distributions and applying equation 2.1.

2.2 Factor Analysis. Perhaps the most common example of a latent vari-
able model is that of statistical factor analysis (Bartholomew, 1987), in which
the mapping y(x;w) is a linear function of x:

t =Wx+µ+ ε. (2.2)

Conventionally, the latent variables are defined to be independent and gaus-
sian with unit variance, so x ∼ N (0, I). The noise model is also gaussian
such that ε ∼ N (0,Ψ), with Ψ diagonal, and the (d× q) parameter matrix
W contains the factor loadings. The parameter µ permits the data model to
have nonzero mean. Given this formulation, the observation vectors are
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also normally distributed t ∼ N (µ,C), where the model covariance is
C = Ψ +WWT. (As a result of this parameterization, C is invariant under
postmultiplication of W by an orthogonal matrix, equivalent to a rotation
of the x coordinate system.) The key motivation for this model is that be-
cause of the diagonality of Ψ, the observed variables t are conditionally
independent given the latent variables, or factors, x. The intention is that
the dependencies between the data variables t are explained by a smaller
number of latent variables x, while ε represents variance unique to each ob-
servation variable. This is in contrast to conventional PCA, which effectively
treats both variance and covariance identically. There is no closed-form an-
alytic solution for W and Ψ, so their values must be determined by iterative
procedures.

2.3 Links from Factor Analysis to PCA. In factor analysis, the subspace
defined by the columns of W will generally not correspond to the principal
subspace of the data. Nevertheless, certain links between the two methods
have been noted. For instance, it has been observed that the factor load-
ings and the principal axes are quite similar in situations where the esti-
mates of the elements of Ψ turn out to be approximately equal (e.g., Rao,
1955). Indeed, this is an implied result of the fact that if Ψ = σ 2I and an
isotropic, rather than diagonal, noise model is assumed, then PCA emerges
if the d − q smallest eigenvalues of the sample covariance matrix S are ex-
actly equal. This homoscedastic residuals model is considered by Basilevsky
(1994, p. 361), for the case where the model covariance is identical to its data
sample counterpart. Given this restriction, the factor loadings W and noise
variance σ 2 are identifiable (assuming correct choice of q) and can be de-
termined analytically through eigendecomposition of S, without resort to
iteration (Anderson, 1963).

This established link with PCA requires that the d− q minor eigenvalues
of the sample covariance matrix be equal (or, more trivially, be negligible)
and thus implies that the covariance model must be exact. Not only is this
assumption rarely justified in practice, but when exploiting PCA for di-
mensionality reduction, we do not require an exact characterization of the
covariance structure in the minor subspace, as this information is effectively
discarded. In truth, what is of real interest in the homoscedastic residuals
model is the form of the maximum likelihood solution when the model
covariance is not identical to its data sample counterpart.

Importantly, we show in the following section that PCA still emerges in
the case of an approximate model. In fact, this link between factor analysis
and PCA had been partially explored in the early factor analysis literature
by Lawley (1953) and Anderson and Rubin (1956). Those authors showed
that the maximum likelihood solution in the approximate case was related
to the eigenvectors of the sample covariance matrix, but did not show that
these were the principal eigenvectors but instead made this additional as-
sumption. In the next section (and in appendix A) we extend this earlier
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work to give a full characterization of the properties of the model we term
probabilistic PCA. Specifically, with ε ∼ N (

0, σ 2I
)
, the columns of the max-

imum likelihood estimator WML are shown to span the principal subspace
of the data even when C 6= S.

3 Probabilistic PCA

3.1 The Probability Model. For the case of isotropic noiseε ∼ N (
0, σ 2I

)
,

equation 2.2 implies a probability distribution over t-space for a given x of
the form

p(t|x) = (2πσ 2)−d/2 exp
{
− 1

2σ 2 ‖t−Wx−µ‖2
}
. (3.1)

With a gaussian prior over the latent variables defined by

p(x) = (2π)−q/2 exp
{
−1

2
xTx

}
, (3.2)

we obtain the marginal distribution of t in the form

p(t) =
∫

p(t|x)p(x)dx, (3.3)

= (2π)−d/2|C|−1/2 exp
{
−1

2
(t−µ)TC−1(t−µ)

}
, (3.4)

where the model covariance is

C = σ 2I+WWT. (3.5)

Using Bayes’ rule, the posterior distribution of the latent variables x given
the observed t may be calculated:

p(x|t) = (2π)−q/2|σ−2M|1/2

× exp
[
− 1

2

{
x−M−1WT(t−µ)

}T
(σ−2M){

x−M−1WT(t−µ)
} ]
, (3.6)

where the posterior covariance matrix is given by

σ 2M−1 = σ 2(σ 2I+WTW)−1. (3.7)

Note that M is q× q while C is d× d.
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The log-likelihood of observing the data under this model is

L =
N∑

n=1

ln
{
p(tn)

}
,

= −N
2

{
d ln(2π)+ ln |C| + tr

(
C−1S

)}
, (3.8)

where

S = 1
N

N∑
n=1

(tn −µ)(tn −µ)T, (3.9)

is the sample covariance matrix of the observed {tn}.

3.2 Properties of the Maximum Likelihood Estimators. The maximum
likelihood estimate of the parameter µ is given by the mean of the data:

µML =
1
N

N∑
n=1

tn. (3.10)

We now consider the maximum likelihood estimators for the parameters W
and σ 2.

3.2.1 The Weight Matrix W. The log-likelihood (see equation 3.8) is max-
imized when the columns of W span the principal subspace of the data. To
show this we consider the derivative of equation 3.8 with respect to W:

∂L
∂W
= N(C−1SC−1W− C−1W). (3.11)

In appendix A it is shown that with C given by equation 3.5, the only nonzero
stationary points of equation 3.11 occur for

W = Uq(Λq − σ 2I)1/2R, (3.12)

where the q column vectors in the d × q matrix Uq are eigenvectors of S,
with corresponding eigenvalues in the q×q diagonal matrix Λq, and R is an
arbitrary q×q orthogonal rotation matrix. Furthermore, it is also shown that
the stationary point corresponding to the global maximum of the likelihood
occurs when Uq comprises the principal eigenvectors of S, and thus Λq
contains the corresponding eigenvalues λ1, . . . , λq, where the eigenvalues
of S are indexed in order of decreasing magnitude. All other combinations of
eigenvectors represent saddle points of the likelihood surface. Thus, from
equation 3.12, the latent variable model defined by equation 2.2 effects a
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mapping from the latent space into the principal subspace of the observed
data.

3.2.2 The Noise Variance σ 2. It may also be shown that for W = WML,
the maximum likelihood estimator for σ 2 is given by

σ 2
ML =

1
d− q

d∑
j=q+1

λj, (3.13)

where λq+1, . . . , λd are the smallest eigenvalues of S, and so σ 2
ML has a clear

interpretation as the average variance “lost” per discarded dimension.

3.3 Dimensionality Reduction and Optimal Reconstruction. To imple-
ment probabilistic PCA, we would generally first compute the usual eigen-
decomposition of S (we consider an alternative, iterative approach shortly),
after which σ 2

ML is found from equation 3.13 followed by WML from equa-
tion 3.12. This is then sufficient to define the associated density model for
PCA, allowing the advantages listed in section 1 to be exploited.

In conventional PCA, the reduced-dimensionality transformation of a
data point tn is given by xn = UT

q (tn−µ)and its reconstruction by t̂n = Uqxn+
µ. This may be similarly achieved within the PPCA formulation. However,
we note that in the probabilistic framework, the generative model defined by
equation 2.2 represents a mapping from the lower-dimensional latent space
to the data space. So in PPCA, the probabilistic analog of the dimensionality
reduction process of conventional PCA would be to invert the conditional
distribution p(t|x) using Bayes’ rule, in equation 3.6, to give p(x|t). In this
case, each data point tn is represented in the latent space not by a single
vector, but by the gaussian posterior distribution defined by equation 3.6. As
an alternative to the standard PCA projection, then, a convenient summary
of this distribution and representation of tn would be the posterior mean
〈xn〉 = M−1WT

ML(tn − µ), a quantity that also arises naturally in (and is
computed in) the EM implementation of PPCA considered in section 3.4.
Note also from equation 3.6 that the covariance of the posterior distribution
is given by σ 2M−1 and is therefore constant for all data points.

However, perhaps counterintuitively given equation 2.2, WML〈xn〉 + µ
is not the optimal linear reconstruction of tn. This may be seen from the
fact that for σ 2 > 0, WML〈xn〉 + µ is not an orthogonal projection of tn,
as a consequence of the gaussian prior over x causing the posterior mean
projection to become skewed toward the origin. If we consider the limit as
σ 2 → 0, the projection WML〈xn〉 = WML(WT

MLWML)
−1WT

ML(tn − µ) does
become orthogonal and is equivalent to conventional PCA, but then the
density model is singular and thus undefined.

Taking this limit is not necessary, however, since the optimal least-squares
linear reconstruction of the data from the posterior mean vectors 〈xn〉 may
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be obtained from (see appendix B)

t̂n =WML

(
WT

MLWML

)−1
M〈xn〉 +µ, (3.14)

with identical reconstruction error to conventional PCA.
For reasons of probabilistic elegance, therefore, we might choose to ex-

ploit the posterior mean vectors 〈xn〉 as the reduced-dimensionality rep-
resentation of the data, although there is no material benefit in so doing.
Indeed, we note that in addition to the conventional PCA representation
UT

q (tn − µ), the vectors x̂n = WT
ML(tn − µ) could equally be used without

loss of information and reconstructed using

t̂n =WML

(
WT

MLWML

)−1
x̂n +µ.

3.4 An EM Algorithm for PPCA. By a simple extension of the EM for-
mulation for parameter estimation in the standard linear factor analysis
model (Rubin & Thayer 1982), we can obtain a principal component projec-
tion by maximizing the likelihood function (see equation 3.8). We are not
suggesting that such an approach necessarily be adopted for probabilistic
PCA; normally the principal axes would be estimated in the conventional
manner, via eigendecomposition of S, and subsequently incorporated in
the probability model using equations 3.12 and 3.13 to realize the advan-
tages outlined in the introduction. However, as discussed in appendix A.5,
there may be an advantage in the EM approach for large d since the pre-
sented algorithm, although iterative, requires neither computation of the
d× d covariance matrix, which is O(Nd2), nor its explicit eigendecomposi-
tion, which is O(d3). We derive the EM algorithm and consider its properties
from the computational perspective in appendix A.5.

3.5 Factor Analysis Revisited. The probabilistic PCA algorithm was ob-
tained by introducing a constraint into the noise matrix of the factor analysis
latent variable model. This apparently minor modification leads to signifi-
cant differences in the behavior of the two methods. In particular, we now
show that the covariance properties of the PPCA model are identical to
those of conventional PCA and are quite different from those of standard
factor analysis.

Consider a nonsingular linear transformation of the data variables, so
that t → At. Using equation 3.10, we see that under such a transforma-
tion, the maximum likelihood solution for the mean will be transformed as
µML → AµML. From equation 3.9, it then follows that the covariance matrix
will transform as S→ ASAT.

The log-likelihood for the latent variable model, from equation 3.8, is
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given by

L(W,Ψ) = −N
2

{
d ln(2π)+ ln |WWT +Ψ|

+ tr
[
(WWT +Ψ)−1S

] }
, (3.15)

where Ψ is a general noise covariance matrix. Thus, using equation 3.15, we
see that under the transformation t→ At, the log-likelihood will transform
as

L(W,Ψ)→ L(A−1W,A−1ΨA−T)−N ln |A|, (3.16)

where A−T ≡ (A−1)T. Thus, if WML and ΨML are maximum likelihood
solutions for the original data, then AWML and AΨMLAT will be maximum
likelihood solutions for the transformed data set.

In general, the form of the solution will not be preserved under such
a transformation. However, we can consider two special cases. First, sup-
pose Ψ is a diagonal matrix, corresponding to the case of factor analysis.
Then Ψ will remain diagonal provided A is also a diagonal matrix. This
says that factor analysis is covariant under component-wise rescaling of the
data variables: the scale factors simply become absorbed into rescaling of
the noise variances, and the rows of W are rescaled by the same factors.
Second, consider the case Ψ = σ 2I, corresponding to PPCA. Then the trans-
formed noise covariance σ 2AAT will be proportional to the unit matrix
only if AT = A−1— in other words, if A is an orthogonal matrix. Trans-
formation of the data vectors by multiplication with an orthogonal matrix
corresponds to a rotation of the coordinate system. This same covariance
property is shared by standard nonprobabilistic PCA since a rotation of the
coordinates induces a corresponding rotation of the principal axes. Thus we
see that factor analysis is covariant under componentwise rescaling, while
PPCA and PCA are covariant under rotations, as illustrated in Figure 1.

4 Mixtures of Probabilistic Principal Component Analyzers

The association of a probability model with PCA offers the tempting prospect
of being able to model complex data structures with a combination of local
PCA models through the mechanism of a mixture of probabilistic princi-
pal component analysers (Tipping & Bishop, 1997). This formulation would
permit all of the model parameters to be determined from maximum likeli-
hood, where both the appropriate partitioning of the data and the determi-
nation of the respective principal axes occur automatically as the likelihood
is maximized. The log-likelihood of observing the data set for such a mixture
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Figure 1: Factor analysis is covariant under a componentwise rescaling of the
data variables (top plots), while PCA and probabilistic PCA are covariant under
rotations of the data space coordinates (bottom plots).

model is:

L =
N∑

n=1

ln
{
p(tn)

}
, (4.1)

=
N∑

n=1

ln

{
M∑

i=1

πip(tn|i)
}
, (4.2)

where p(t|i) is a single PPCA model and πi is the corresponding mixing
proportion, with πi ≥ 0 and

∑
πi = 1. Note that a separate mean vector µi

is now associated with each of the M mixture components, along with the
parameters Wi and σ 2

i . A related model has recently been exploited for data
visualization (Bishop & Tipping, 1998), and a similar approach, based on
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the standard factor analysis diagonal (Ψ) noise model, has been employed
for handwritten digit recognition (Hinton et al. 1997), although it does not
implement PCA.

The corresponding generative model for the mixture case now requires
the random choice of a mixture component according to the proportions πi,
followed by sampling from the x and ε distributions and applying equa-
tion 2.2 as in the single model case, taking care to use the appropriate pa-
rametersµi, Wi, and σ 2

i . Furthermore, for a given data point t, there is now a
posterior distribution associated with each latent space, the mean of which
for space i is given by (σ 2

i I+WT
i Wi)

−1WT
i (t−µi).

We can develop an iterative EM algorithm for optimization of all of the
model parameters πi, µi, Wi, and σ 2

i . If Rni = p(i|tn) is the posterior respon-
sibility of mixture i for generating data point tn, given by

Rni = p(tn|i)πi

p(tn)
, (4.3)

then in appendix C it is shown that we obtain the following parameter
updates:

π̃i = 1
N

N∑
n=1

Rni, (4.4)

µ̃i =
∑N

n=1 Rnitn∑N
n=1 Rni

. (4.5)

Thus the updates for π̃i and µ̃i correspond exactly to those of a stan-
dard gaussian mixture formulation (e.g., see Bishop, 1995). Furthermore, in
appendix C, it is also shown that the combination of the E- and M-steps
leads to the intuitive result that the axes Wi and the noise variance σ 2

i are
determined from the local responsibility–weighted covariance matrix:

Si = 1
π̃iN

N∑
n=1

Rni(tn − µ̃i)(tn − µ̃i)
T, (4.6)

by standard eigendecomposition in exactly the same manner as for a single
PPCA model. However, as noted in section 3.4 (and also in appendix A.5),
for larger values of data dimensionality d, computational advantages can be
obtained if Wi and σ 2

i are updated iteratively according to an EM schedule.
This is discussed for the mixture model in appendix C.

Iteration of equations 4.3, 4.4, and 4.5 in sequence followed by computa-
tion of Wi and σ 2

i , from either equation 4.6 using equations 2.12 and 2.13 or
using the iterative updates in appendix C, is guaranteed to find a local max-
imum of the log-likelihood in equation 4.2. At convergence of the algorithm
each weight matrix Wi spans the principal subspace of its respective Si.



Mixtures of Probabilistic Principal Component Analyzers 455

In the next section we consider applications of this PPCA mixture model,
beginning with data compression and reconstruction tasks. We then con-
sider general density modeling in section 6.

5 Local Linear Dimensionality Reduction

In this section we begin by giving an illustration of the application of the
PPCA mixture algorithm to a synthetic data set. More realistic examples are
then considered, with an emphasis on cases in which a principal component
approach is motivated by the objective of deriving a reduced-dimensionality
representation of the data, which can be reconstructed with minimum error.
We will therefore contrast the clustering mechanism in the PPCA mixture
model with that of a hard clustering approach based explicitly on recon-
struction error as used in a typical algorithm.

5.1 Illustration for Synthetic Data. For a demonstration of the mixture
of PPCA algorithm, we generated a synthetic data set comprising 500 data
points sampled uniformly over the surface of a hemisphere, with additive
gaussian noise. Figure 2a shows this data.

A mixture of 12 probabilistic principal component analyzers was then
fitted to the data using the EM algorithm outlined in the previous section,
with latent space dimensionality q = 2. Because of the probabilistic formal-
ism, a generative model of the data is defined, and we emphasize this by
plotting a second set of 500 data points, obtained by sampling from the fitted
generative model. These data points are shown in Figure 2b. Histograms of
the distances of all the data points from the hemisphere are also given to
indicate more clearly the accuracy of the model in capturing the structure
of the underlying generator.

5.2 Clustering Mechanisms. Generating a local PCA model of the form
illustrated above is often prompted by the ultimate goal of accurate data
reconstruction. Indeed, this has motivated Kambhatla and Leen (1997) and
Hinton et al. (1997) to use squared reconstruction error as the clustering
criterion in the partitioning phase. Dony and Haykin (1995) adopt a similar
approach to image compression, although their model has no set of indepen-
dent mean parameters µi. Using the reconstruction criterion, a data point
is assigned to the component that reconstructs it with lowest error, and the
principal axes are then reestimated within each cluster. For the mixture of
PPCA model, however, data points are assigned to mixture components (in
a soft fashion) according to the responsibility Rni of the mixture component
for its generation. Since Rni = p(tn|i)πi/p(tn) and p(tn) is constant for all
components, Rni ∝ p(tn|i), and we may gain further insight into the cluster-
ing by considering the probability density associated with component i at
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Figure 2: Modeling noisy data on a hemisphere. (a) On the left, the synthetic
data; on the right, a histogram of the Euclidean distances of each data point to
the sphere. (b) Data generated from the fitted PPCA mixture model with the
synthetic data on the left and the histogram on the right.

data point tn:

p(tn|i) = (2π)−d/2|Ci|−1/2 exp
{
−E2

ni/2
}
, (5.1)

where

E2
ni = (tn −µi)

TC−1
i (tn −µi), (5.2)

Ci = σ 2
i I+WiWT

i . (5.3)

It is helpful to express the matrix Wi in terms of its singular value decompo-
sition (and although we are considering an individual mixture component
i, the i subscript will be omitted for notational clarity):

W = Uq(Kq − σ 2I)1/2R, (5.4)



Mixtures of Probabilistic Principal Component Analyzers 457

where Uq is a d × q matrix of orthonormal column vectors and R is an ar-
bitrary q×q orthogonal matrix. The singular values are parameterized, with-
out loss of generality, in terms of (Kq−σ 2I)1/2, where Kq = diag(k1, k2, . . . , kq)

is a q× q diagonal matrix. Then

E2
n = (tn −µ)T

{
σ 2I+Uq(Kq − σ 2I)UT

q

}−1
(tn −µ). (5.5)

The data point tn may also be expressed in terms of the basis of vectors
U = (Uq,Ud−q), where Ud−q comprises (d− q) vectors perpendicular to Uq,
which complete an orthonormal set. In this basis, we define zn = UT(tn−µ)
and so tn −µ = Uzn, from which equation 5.5 may then be written as

E2
n = zT

nUT
{
σ 2I+Uq(Kq − σ 2I)UT

q

}−1
Uzn, (5.6)

= zT
nD−1zn, (5.7)

where D = diag(k1, k2, . . . , kq, σ
2, . . . , σ 2) is a d× d diagonal matrix. Thus:

E2
n = zT

inK−1
q zin + zT

outzout

σ 2 , (5.8)

= E2
in + E2

rec/σ
2, (5.9)

where we have partitioned the elements of z into zin, the projection of tn−µ
onto the subspace spanned by W, and zout, the projection onto the cor-
responding perpendicular subspace. Thus, E2

rec is the squared reconstruc-
tion error, and E2

in may be interpreted as an in-subspace error term. At the
maximum likelihood solution, Uq is the matrix of eigenvectors of the local
covariance matrix and Kq = Λq.

As σ 2
i → 0, Rni ∝ πi exp

(−E2
rec/2

)
and, for equal prior probabilities,

cluster assignments are equivalent to a soft reconstruction-based clustering.
However, for σ 2

A, σ
2
B > 0, consider a data point that lies in the subspace of

a relatively distant component A, which may be reconstructed with zero
error yet lies closer to the mean of a second component B. The effect of the
noise variance σ 2

B in equation 5.9 is to moderate the contribution of E2
rec

for component B. As a result, the data point may be assigned to the nearer
component B even though the reconstruction error is considerably greater,
given that it is sufficiently distant from the mean of A such that E2

in for A is
large.

It should be expected, then, that mixture of PPCA clustering would result
in more localized clusters, but with the final reconstruction error inferior to
that of a clustering model based explicitly on a reconstruction criterion.
Conversely, it should also be clear that clustering the data according to
the proximity to the subspace alone will not necessarily result in localized
partitions (as noted by Kambhatla, 1995, who also considers the relationship
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Figure 3: Comparison of the partitioning of the hemisphere effected by a
VQPCA-based model (left) and a PPCA mixture model (right). The illustrated
boundaries delineate regions of the hemisphere that are best reconstructed by a
particular local PCA model. One such region is shown shaded to emphasize that
clustering according to reconstruction error results in a nonlocalized partition-
ing. In the VQPCA case, the circular effects occur when principal component
planes intersect beneath the surface of the hemisphere.

of such an algorithm to a probabilistic model). That this is so is simply
illustrated in Figure 3, in which a collection of 12 conventional PCA models
have been fitted to the hemisphere data, according to the VQPCA (vector-
quantization PCA) algorithm of Kambhatla and Leen (1997), defined as
follows:

1. Select initial cluster centers µi at random from points in the data set,
and assign all data points to the nearest (in terms of Euclidean dis-
tance) cluster center.

2. Set the Wi vectors to the first two principal axes of the covariance
matrix of cluster i.

3. Assign data points to the cluster that best reconstructs them, setting
each µi to the mean of those data points assigned to cluster i.

4. Repeat from step 2 until the cluster allocations are constant.

In Figure 3, data points have been sampled over the hemisphere, with-
out noise, and allocated to the cluster that best reconstructs them. The left
plot shows the partitioning associated with the best (i.e., lowest reconstruc-
tion error) model obtained from 100 runs of the VQPCA algorithm. The right
plot shows a similar partitioning for the best (i.e., greatest likelihood) PPCA
mixture model using the same number of components, again from 100 runs.
Note that the boundaries illustrated in this latter plot were obtained using
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Table 1: Data Sets Used for Comparison of Clustering Criteria.

Data Set N d M q Description

Hemisphere 500 3 12 2 Synthetic data used above

Oil 500 12 12 2 Diagnostic measurements from oil
pipeline flows

Digit 1 500 64 10 10 8 × 8 gray-scale images of handwritten
digit 1

Digit 2 500 64 10 10 8 × 8 gray-scale images of handwritten
digit 2

Image 500 64 8 4 8 × 8 gray-scale blocks from a photo-
graphic image

EEG 300 30 8 5 Delay vectors from an electroencephalo-
gram time-series signal

assignments based on reconstruction error for the final model, in identical
fashion to the VQPCA case, and not on probabilistic responsibility. We see
that the partitions formed when clustering according to reconstruction er-
ror alone can be nonlocal, as exemplified by the shaded component. This
phenomenon is rather contrary to the philosophy of local dimensionality re-
duction and is an indirect consequence of the fact that reconstruction-based
local PCA does not model the data in a probabilistic sense.

However, we might expect that algorithms such as VQPCA should offer
better performance in terms of the reconstruction error of the final solution,
having been designed explicitly to optimize that measure. In order to test
this, we compared the VQPCA algorithm with the PPCA mixture model on
six data sets, detailed in Table 1.

Figure 4 summarizes the reconstruction error of the respective models,
and in general, VQPCA performs better, as expected. However, we also note
two interesting aspects of the results.

First, in the case of the oil data, the final reconstruction error of the PPCA
model on both training and test sets is counterintuitively superior, despite
the fact that the partitioning of the data space was based only partially
on reconstruction error. This behavior is, we hypothesize, a result of the
particular structure of that data set. The oil data are known to comprise a
number of disjoint, but locally smooth, two-dimensional cluster structures
(see Bishop & Tipping, 1998, for a visualization).

For the oil data set, we observed that many of the models found by the
VQPCA algorithm exhibit partitions that are not only often nonconnected
(similar to those shown for the hemisphere in Figure 3) but may also span
more than one of the disjoint cluster structures. The evidence of Figure 4
suggests that these models represent poor local minima of the reconstruc-
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Figure 4: Reconstruction errors for reconstruction-based local PCA (VQPCA)
and the PPCA mixture. Errors for the latter (∗) have been shown relative to the
former (∇), and are averaged over 100 runs with random initial configurations.

tion error cost function. The PPCA mixture algorithm does not find such
suboptimal solutions, which would have low likelihood due to the locality
implied by the density model. The experiment indicates that by avoiding
these poor solutions, the PPCA mixture model is able to find solutions with
lower reconstruction error (on average) than VQPCA.
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These observations apply only to the case of the oil data set. For the
hemisphere, digit 1, image, and electroencephalogram (EEG) training sets,
the data manifolds are less disjoint, and the explicit reconstruction-based
algorithm, VQPCA, is superior. For the digit 2 case, the two algorithms
appear approximately equivalent.

A second aspect of Figure 4 is the suggestion that the PPCA mixture
model algorithm may be less sensitive to overfitting. As would be expected,
compared with the training set, errors on the test set increase for both algo-
rithms (although, because the errors have been normalized to allow com-
parisons between data sets, this is not shown in Figure 4). However, with
the exception of the case of the digit 2 data set, for the PPCA mixture model
this increase is proportionately smaller than for VQPCA. This effect is most
dramatic for the image data set, where PPCA is much superior on the test
set. For that data set, the test examples were derived from a separate portion
of the image (see below), and as such, the test set statistics can be expected to
differ more significantly from the respective training set than for the other
examples.

A likely explanation is that because of the soft clustering of the PPCA
mixture model, there is an inherent smoothing effect occurring when esti-
mating the local sets of principal axes. Each set of axes is determined from
its corresponding local responsibility–weighted covariance matrix, which
in general will be influenced by many data points, not just the subset that
would be associated with the cluster in a “hard” implementation. Because
of this, the parameters in the Wi matrix in cluster i are also constrained by
data points in neighboring clusters (j 6= i) to some extent. This notion is
discussed in the context of regression by Jordan and Jacobs (1994) as moti-
vation for their mixture-of-experts model, where the authors note how soft
partitioning can reduce variance (in terms of the bias-variance decomposi-
tion). Although it is difficult to draw firm conclusions from this limited set
of experiments, the evidence of Figure 4 does point to the presence of such
an effect.

5.3 Application: Image Compression. As a practical example, we con-
sider an application of the PPCA mixture model to block transform image
coding. Figure 5 shows the original image. This 720× 360 pixel image was
segmented into 8× 8 nonoverlapping blocks, giving a total data set of 4050
64-dimensional vectors. Half of these data, corresponding to the left half
of the picture, were used as training data. The right half was reserved for
testing; a magnified portion of the test image is also shown in Figure 5. A
reconstruction of the entire image based on the first four principal compo-
nents of a single PCA model determined from the block-transformed left
half of the image is shown in Figure 6.

Figure 7 shows the reconstruction of the original image when modeled by
a mixture of probabilistic principal component analyzers. The model param-
eters were estimated using only the left half of the image. In this example, 12
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Figure 5: (Left) The original image. (Right) Detail.

Figure 6: The PCA reconstructed image, at 0.5 bit per pixel. (Left) The original
image. (Right) Detail.

components were used, of dimensionality 4; after the model likelihood had
been maximized, the image coding was performed in a “hard” fashion, by
allocating data to the component with the lowest reconstruction error. The
resulting coded image was uniformly quantized, with bits allocated equally
to each transform variable, before reconstruction, in order to give a final bit
rate of 0.5 bits per pixel (and thus compression of 16 to 1) in both Figures 6
and 7. In the latter case, the cost of encoding the mixture component label
was included. For the simple principal subspace reconstruction, the nor-
malized test error was 7.1× 10−2; for the mixture model, it was 5.7× 10−2.
The VQPCA algorithm gave a test error of 6.2× 10−2.

6 Density Modeling

A popular approach to semiparametric density estimation is the gaussian
mixture model (Titterington, Smith, & Makov, 1985). However, such models
suffer from the limitation that if each gaussian component is described by
a full covariance matrix, then there are d(d + 1)/2 independent covariance
parameters to be estimated for each mixture component. Clearly, as the di-
mensionality of the data space increases, the number of data points required
to specify those parameters reliably will become prohibitive. An alternative
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Figure 7: The mixture of PPCA reconstructed image, using the same bit rate as
Figure 6. (Left) The original image. (Right) Detail.

approach is to reduce the number of parameters by placing a constraint on
the form of the covariance matrix. (Another would be to introduce priors
over the parameters of the full covariance matrix, as implemented by Or-
moneit & Tresp, 1996.) Two common constraints are to restrict the covariance
to be isotropic or to be diagonal. The isotropic model is highly constrained
as it assigns only a single parameter to describe the entire covariance struc-
ture in the full d dimensions. The diagonal model is more flexible, with d
parameters, but the principal axes of the elliptical gaussians must be aligned
with the data axes, and thus each individual mixture component is unable
to capture correlations among the variables.

A mixture of PPCA models, where the covariance of each gaussian is
parameterized by the relation C = σ 2I+WWT, comprises dq+1−q(q−1)/2
free parameters.1 (Note that the q(q−1)/2 term takes account of the number
of parameters needed to specify the arbitrary rotation R.) It thus permits
the number of parameters to be controlled by the choice of q. When q = 0,
the model is equivalent to an isotropic gaussian. With q = d− 1, the general
covariance gaussian is recovered.

6.1 A Synthetic Example: Noisy Spiral Data. The utility of the PPCA
mixture approach may be demonstrated with the following simple example.
A 500-point data set was generated along a three-dimensional spiral con-
figuration with added gaussian noise. The data were then modeled by both
a mixture of PPCA models and a mixture of diagonal covariance gaussians,
using eight mixture components. In the mixture of PPCA case, q = 1 for
each component, and so there are four variance parameters per component
compared with three for the diagonal model. The results are visualized in
Figure 8, which illustrates both side and end projections of the data.

1 An alternative would be a mixture of factor analyzers, implemented by Hinton et al.
(1997), although that comprises more parameters.



464 Michael E. Tipping and Christopher M. Bishop

Figure 8: Comparison of an eight-component diagonal variance gaussian mix-
ture model with a mixture of PPCA model. The upper two plots give a view
perpendicular to the major axis of the spiral; the lower two plots show the end
elevation. The covariance structure of each mixture component is shown by pro-
jection of a unit Mahalanobis distance ellipse, and the log-likelihood per data
point is given in parentheses above the figures.

The orientation of the ellipses in the diagonal model can be seen not to
coincide with the local data structure, which is a result of the axial alignment
constraint. A further consequence of the diagonal parameterization is that
the means are also implicitly constrained because they tend to lie where
the tangent to the spiral is parallel to either axis of the end elevation. This
qualitative superiority of the PPCA approach is underlined quantitatively
by the log-likelihood per data point given in parentheses in the figure. Such a
result would be expected given that the PPCA model has an extra parameter
in each mixture component, but similar results are observed if the spiral
is embedded in a space of much higher dimensionality where the extra
parameter in PPCA is proportionately less relevant.

It should be intuitive that the axial alignment constraint of the diagonal
model is, in general, particularly inappropriate when modeling a smooth
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Table 2: Log-Likelihood per Data Point Measured on Training and Test Sets for
Gaussian Mixture Models with Eight Components and a 100-Point Training Set.

Isotropic Diagonal Full PPCA

Training −3.14 −2.74 −1.47 −1.65
Test −3.68 −3.43 −3.09 −2.37

and continuous lower dimensional manifold in higher dimensions, regard-
less of the intrinsic dimensionality. Even with q = 1, the PPCA approach is
able to track the spiral manifold successfully.

Finally, we demonstrate the importance of the use of an appropriate
number of parameters by modeling a three-dimensional spiral data set of
100 data points (the number of data points was reduced to emphasize the
overfitting) as above with isotropic, diagonal, and full covariance gaussian
mixture models, along with a PPCA mixture model. For each model, the
log-likelihood per data point for both the training data set and an unseen
test set of 1000 data points is given in Table 2.

As would be expected in this case of limited data, the full covariance
model exhibits the best likelihood on the training set, but test set perfor-
mance is worse than for the PPCA mixture. For this simple example, there
is only one intermediate PPCA parameterization with q = 1 (q = 0 and
q = 2 are equivalent to the isotropic and full covariance cases respectively).
In realistic applications, where the dimensionality d will be considerably
larger, the PPCA model offers the choice of a range of q, and an appropriate
value can be determined using standard techniques for model selection.
Finally, note that these advantages are not limited to mixture models, but
may equally be exploited for the case of a single gaussian distribution.

6.2 Application: Handwritten Digit Recognition. One potential appli-
cation for high-dimensionality density models is handwritten digit recog-
nition. Examples of gray-scale pixel images of a given digit will generally
lie on a lower-dimensional smooth continuous manifold, the geometry of
which is determined by properties of the digit such as rotation, scaling, and
thickness of stroke. One approach to the classification of such digits (al-
though not necessarily the best) is to build a model of each digit separately,
and classify unseen digits according to the model to which they are most
similar.

Hinton et al. (1997) gave an excellent discussion of the handwritten digit
problem and applied a mixture of PCA approach, using soft reconstruction–
based clustering, to the classification of scaled and smoothed 8 × 8 gray-
scale images taken from the CEDAR U.S. Postal Service database (Hull,
1994). The models were constructed using an 11,000-digit subset of the br
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Figure 9: Mean vectors µi, illustrated as gray-scale digits, for each of the 10
digit models. The model for a given digit is a mixture of 10 PPCA models, one
centered at each of the pixel vectors shown on the corresponding row. Note how
different components can capture different styles of digit.

data set (which was further split into training and validation sets), and the
bs test set was classified according to which model best reconstructed each
digit (in the squared-error sense). We repeated the experiment with the same
data using the PPCA mixture approach using the same choice of parameter
values (M = 10 and q = 10). To help visualize the final model, the means of
each component µi are illustrated in digit form in Figure 9.

The digits were again classified, using the same method of classification,
and the best model on the validation set misclassified 4.64% of the digits in
the test set. Hinton et al. (1997) reported an error of 4.91%, and we would
expect the improvement to be a result partly of the localized clustering of
the PPCA model, but also the use of individually estimated values of σ 2

i for
each component, rather than a single, arbitrarily chosen, global value.

One of the advantages of the PPCA methodology is that the definition of
the density model permits the posterior probabilities of class membership
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to be computed for each digit and used for subsequent classification, rather
than using reconstruction error as above. Classification according to the
largest posterior probability for the M = 10 and q = 10 model resulted in an
increase in error, and it was necessary to invest significant effort to optimize
the parameters M and q for each model to provide comparable performance.
Using this approach, our best classifier on the validation set misclassified
4.61% of the test set. An additional benefit of the use of posterior probabilities
is that it is possible to reject a proportion of the test samples about which
the classifier is most “unsure” and thus hopefully improve the classification
performance. Using this approach to reject 5% of the test examples resulted
in a misclassification rate of 2.50%. (The availability of posteriors can be
advantageous in other applications, where they may be used in various
forms of follow-on processing.)

7 Conclusions

Modeling complexity in data by a combination of simple linear models is
an attractive paradigm offering both computational and algorithmic advan-
tages along with increased ease of interpretability. In this article, we have
exploited the definition of a probabilistic model for PCA in order to com-
bine local PCA models within the framework of a probabilistic mixture in
which all the parameters are determined from maximum likelihood using
an EM algorithm. In addition to the clearly defined nature of the resulting
algorithm, the primary advantage of this approach is the definition of an
observation density model.

A possible disadvantage of the probabilistic approach to combining local
PCA models is that by optimizing a likelihood function, the PPCA mixture
model does not directly minimize squared reconstruction error. For applica-
tions where this is the salient criterion, algorithms that explicitly minimize
reconstruction error should be expected to be superior. Experiments indeed
showed this to be generally the case, but two important caveats must be con-
sidered before any firm conclusions can be drawn concerning the suitability
of a given model. First, and rather surprisingly, for one of the data sets (‘oil’)
considered in the article, the final PPCA mixture model was actually supe-
rior in the sense of squared reconstruction error, even on the training set.
It was demonstrated that algorithms incorporating reconstruction-based
clustering do not necessarily generate local clusters, and it was reasoned
that for data sets comprising a number of disjoint data structures, this phe-
nomenon may lead to poor local minima. Such minima are not found by the
PPCA density model approach. A second consideration is that there was
also evidence that the smoothing implied by the soft clustering inherent in
the PPCA mixture model helps to reduce overfitting, particularly in the case
of the image compression experiment where the statistics of the test data
set differed from the training data much more so than for other examples.
In that instance, the reconstruction test error for the PPCA model was, on
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average, more than 10% lower.
In terms of a gaussian mixture model, the mixture of probabilistic prin-

cipal component analyzers enables data to be modeled in high dimensions
with relatively few free parameters, while not imposing a generally inap-
propriate constraint on the covariance structure. The number of free pa-
rameters may be controlled through the choice of latent space dimension q,
allowing an interpolation in model complexity from isotropic to full covari-
ance structures. The efficacy of this parameterization was demonstrated by
performance on a handwritten digit recognition task.

Appendix A: Maximum Likelihood PCA

A.1 The Stationary Points of the Log-Likelihood. The gradient of the
log-likelihood (see equation 3.8) with respect to W may be obtained from
standard matrix differentiation results (e.g., see Krzanowski & Marriott,
1994, p. 133):

∂L
∂W
= N(C−1SC−1W− C−1W). (A.1)

At the stationary points

SC−1W =W, (A.2)

assuming that σ 2 > 0, and thus that C−1 exists. This is a necessary and
sufficient condition for the density model to remain nonsingular, and we
will restrict ourselves to such cases. It will be seen shortly that σ 2 > 0 if
q < rank(S), so this assumption implies no loss of practicality.

There are three possible classes of solutions to equation A.2:

1. W = 0. This is shown later to be a minimum of the log-likelihood.

2. C = S, where the covariance model is exact, such as is discussed by
Basilevsky (1994, pp. 361–363) and considered in section 2.3. In this
unrealistic case of an exact covariance model, where the d−q smallest
eigenvalues of S are identical and equal to σ 2, W is identifiable since

σ 2I+WWT = S,

⇒ W = U(Λ− σ 2I)1/2R, (A.3)

where U is a square matrix whose columns are the eigenvectors of S,
with Λ the corresponding diagonal matrix of eigenvalues, and R is an
arbitrary orthogonal (i.e., rotation) matrix.

3. SC−1W =W, with W 6= 0 and C 6= S.
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We are interested in case 3 where C 6= S and the model covariance need
not be equal to the sample covariance. First, we express the weight matrix
W in terms of its singular value decomposition:

W = ULVT, (A.4)

where U is a d×q matrix of orthonormal column vectors, L = diag(l1, l2, . . . ,
lq) is the q×q diagonal matrix of singular values, and V is a q×q orthogonal
matrix. Now,

C−1W = (σ 2I+WWT)−1W,

= W(σ 2I+WTW)−1,

= UL(σ 2I+ L2)−1VT. (A.5)

Then at the stationary points, SC−1W =W implies that

SUL(σ 2I+ L2)−1VT = ULVT,

⇒ SUL = U(σ 2I+ L2)L. (A.6)

For lj 6= 0, equation A.6 implies that if U = (u1,u2, . . . ,uq), then the corre-
sponding column vector uj must be an eigenvector of S, with eigenvalue λj

such that σ 2 + l2j = λj, and so

lj = (λj − σ 2)1/2. (A.7)

For lj = 0, uj is arbitrary (and if all lj are zero, then we recover case 1). All
potential solutions for W may thus be written as

W = Uq(Kq − σ 2I)1/2R, (A.8)

where Uq is a d × q matrix comprising q column eigenvectors of S, and Kq
is a q× q diagonal matrix with elements:

kj =
{
λj, the corresponding eigenvalue to uj, or,
σ 2,

(A.9)

where the latter case may be seen to be equivalent to lj = 0. Again, R is
an arbitrary orthogonal matrix, equivalent to a rotation in the principal
subspace.

A.2 The Global Maximum of the Likelihood. The matrix Uq may con-
tain any of the eigenvectors of S, so to identify those that maximize the
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likelihood, the expression for W in equation A.8 is substituted into the log-
likelihood function (see equation 3.8) to give

L = −N
2

{
d ln(2π)+

q′∑
j=1

ln(λj)+ 1
σ 2

d∑
j=q′+1

λj

+ (d− q′) ln σ 2 + q′
}
, (A.10)

where q′ is the number of nonzero lj, {λ1, . . . , λq′ } are the eigenvalues cor-
responding to those retained in W, and {λq′+1, . . . , λd} are those discarded.
Maximizing equation A.10 with respect to σ 2 gives

σ 2 = 1
d− q′

d∑
j=q′+1

λj, (A.11)

and so

L = −N
2

{ q′∑
j=1

ln(λj)+ (d− q′) ln

 1
d− q′

d∑
j=q′+1

λj


+ d ln(2π)+ d

}
. (A.12)

Note that equation A.11 implies that σ 2 > 0 if rank(S) > q as stated earlier.
We wish to find the maximum of equation A.12 with respect to the choice of
eigenvectors/eigenvalues to retain in W, j ∈ {1, . . . , q′}, and those to discard,
j ∈ {q′ + 1, . . . , d}. By exploiting the constancy of the sum of all eigenvalues
with respect to this choice, the condition for maximization of the likelihood
can be expressed equivalently as minimization of the quantity

E = ln

 1
d− q′

d∑
j=q′+1

λj

− 1
d− q′

d∑
j=q′+1

ln(λj), (A.13)

which conveniently depends on only the discarded values and is nonnega-
tive (Jensen’s inequality).

We consider minimization of E by first assuming that d − q′ discarded
eigenvalues have been chosen arbitrarily and, by differentiation, consider
how a single such value λk affects the value of E:

∂E
∂λk
= 1∑d

j=q′+1 λj
− 1
(d− q′)λk

. (A.14)

From equation A.14, it can be seen that E(λk) is convex and has a single min-
imum when λk is equal to the mean of the discarded eigenvalues (including
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itself). The eigenvalue λk can only take discrete values, but if we consider
exchanging λk for some retained eigenvalue λj, j ∈ {1, . . . , q′}, then if λj lies
between λk and the current mean discarded eigenvalue, swapping λj and
λk must decrease E. If we consider that the eigenvalues of S are ordered,
for any combination of discarded eigenvalues that includes a gap occupied
by a retained eigenvalue, there will always be a sequence of adjacent eigen-
values with a lower value of E. It follows that to minimize E, the discarded
eigenvalues λq′+1, . . . , λd must be chosen to be adjacent among the ordered
eigenvalues of S.

This alone is not sufficient to show that the smallest eigenvalues must be
discarded in order to maximize the likelihood. However, a further constraint
is available from equation A.7, since lj = (λj − σ 2)1/2 implies that there can
be no real solution to the stationary equations of the log-likelihood if any
retained eigenvalue λj < σ 2. Since, from equation A.11, σ 2 is the average of
the discarded eigenvalues, this condition would be violated if the smallest
eigenvalue were not discarded. Now, combined with the previous result,
this indicates that E must be minimized when λq′+1, . . . , λd are the smallest
d− q′ eigenvalues and so L is maximized when λ1, . . . , λq are the principal
eigenvalues of S.

It should also be noted that the log-likelihood L is maximized, with
respect to q′, when there are fewest terms in the sum in equation A.13 that
occurs when q′ = q, and therefore no lj is zero. Furthermore,L is minimized
when W = 0, which is equivalent to the case of q′ = 0.

A.3 The Nature of Other Stationary Points. If stationary points repre-
sented by minor (nonprincipal) eigenvector solutions are stable maxima of
the likelihood, then local maximization (via an EM algorithm, for example)
is not guaranteed to find the principal eigenvectors. We may show, however,
that minor eigenvector solutions are in fact saddle points on the likelihood
surface.

Consider a stationary point of the log-likelihood, given by equation A.8,
at Ŵ = Uq(Kq−σ 2I)1/2R, where Uq may contain q arbitrary eigenvectors of
S and Kq contains either the corresponding eigenvalue or σ 2. We examine
the nature of this stationary point by considering a small perturbation of
the form W = Ŵ + εPR, where ε is an arbitrarily small, positive constant
and P is a d × q matrix of zeroes except for column W, which contains a
discarded eigenvector uP not contained in Uq. By considering each poten-
tial eigenvector uP individually applied to each column W of Ŵ, we may
elucidate the nature of the stationary point by evaluating the inner product
of the perturbation with the gradient at W (where we treat the parameter
matrix W or its derivative as a single column vector). If this inner product
is negative for all possible perturbations, then the stationary point will be
stable and represent a (local) maximum.

So defining G = (∂L/∂W)/N evaluated at W = Ŵ + εPR, then from
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equation A.1,

CG = SC−1W−W,

= SW(σ 2I+WTW)−1 −W,

= SW(σ 2I+ ŴTŴ+ ε2RTPTPR)−1 −W, (A.15)

since PTŴ = 0. Ignoring the term in ε2 then gives:

CG = S(Ŵ+ εPR)(σ 2I+ ŴTŴ)−1 − (Ŵ+ εPR),

= εSPR(σ 2I+ ŴTŴ)−1 − εPR, (A.16)

since SŴ(σ 2I + ŴTŴ) − Ŵ = 0 at the stationary point. Then substituting
for Ŵ gives σ 2I+ ŴTŴ = RTKqR, and so

CG = εSPR(RTK−1
q R)− εPR,

⇒ G = εC−1P(ΛK−1
q − I)R, (A.17)

where Λ is a d × d matrix of zeros, except for the Wth diagonal element,
which contains the eigenvalue corresponding to uP, such that (Λ)WW = λP.
Then the sign of the inner product of the gradient G and the perturbation
εPR is given by

sign
{

tr
(

GTPR
)}
= sign

{
εtr

[
RT(ΛK−1

q − I)PTC−1PR
]}
,

= sign
{
(λP/kW − 1)uT

PC−1uP

}
,

= sign
{
λP/kW − 1

}
, (A.18)

since C−1 is positive definite and where kW is the Wth diagonal element value
in Kq, and thus in the corresponding position to λP in Λ. When kW = λW , the
expression given by equation A.18 is negative (and the maximum a stable
one) if λP < λW . For λP > λW , Ŵ must be a saddle point.

In the case that kW = σ 2, the stationary point will generally not be stable
since, from equation A.11, σ 2 is the average of d−q′ eigenvalues, and so λP >

σ 2 for at least one of those eigenvalues, except when all those eigenvalues
are identical. Such a case is considered shortly.

From this, by considering all possible perturbations P, it can be seen
that the only stable maximum occurs when W comprises the q principal
eigenvectors, for which λP < λW , ∀P 6=W.

A.4 Equality of Eigenvalues. Equality of any of the q principal eigen-
values does not affect the maximum likelihood estimates. However, in terms
of conventional PCA, consideration should be given to the instance when
all the d − q minor (discarded) eigenvalue(s) are equal and identical to at
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least one retained eigenvalue. (In practice, particularly in the case of sample
covariance matrices, this is unlikely.)

To illustrate, consider the example of extracting two components from
data with a covariance matrix possessing eigenvalues λ1, λ2 and λ2, and
λ1 > λ2. In this case, the second principal axis is not uniquely defined within
the minor subspace. The spherical noise distribution defined by σ 2 = λ2, in
addition to explaining the residual variance, can also optimally explain the
second principal component. Because λ2 = σ 2, l2 in equation A.7 is zero,
and W effectively comprises only a single vector. The combination of this
single vector and the noise distribution still represents the maximum of the
likelihood, but no second eigenvector is defined.

A.5 An EM Algorithm for PPCA. In the EM approach to PPCA, we
consider the latent variables {xn} to be “missing” data. If their values were
known, estimation of W would be straightforward from equation 2.2 by
applying standard least-squares techniques. However, for a given tn, we
do not know the value of xn that generated it, but we do know the joint
distribution of the observed and latent variables, p(t, x), and we can calculate
the expectation of the corresponding complete-data log-likelihood. In the
E-step of the EM algorithm, this expectation, calculated with respect to the
posterior distribution of xn given the observed tn, is computed. In the M-
step, new parameter values W̃ and σ̃ 2 are determined that maximize the
expected complete-data log-likelihood, and this is guaranteed to increase
the likelihood of interest,

∏
n p(tn), unless it is already at a local maximum

(Dempster, Laird, & Rubin, 1977).
The complete-data log-likelihood is given by:

LC =
N∑

n=1

ln
{
p(tn, xn)

}
, (A.19)

where, in PPCA, from equations 3.1 and 3.4,

p(tn, xn) = (2πσ 2)−d/2 exp
{
−‖tn −Wxn −µ‖2

2σ 2

}
(2π)−q/2

× exp
{
−1

2
xT

nxn

}
. (A.20)

In the E-step, we take the expectation with respect to the distributions
p(xn|tn,W, σ 2):

〈LC〉=−
N∑

n=1

{
d
2

ln σ 2+ 1
2

tr
(
〈xnxT

n〉
)
+ 1

2σ 2 ‖tn−µ‖2

− 1
σ 2 〈xn〉TWT(tn −µ)+ 1

2σ 2 tr
(

WTW〈xnxT
n〉
)}
, (A.21)
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where we have omitted terms independent of the model parameters and

〈xn〉 = M−1WT(tn −µ), (A.22)

〈xnxT
n〉 = σ 2M−1 + 〈xn〉〈xn〉T, (A.23)

with M = (σ 2I +WTW). Note that these statistics are computed using the
current (fixed) values of the parameters and that equation A.22 is simply
the posterior mean from equation 3.6. Equation A.23 follows from this in
conjunction with the posterior covariance of equation 3.7.

In the M-step, 〈LC〉 is maximized with respect to W and σ 2 by differen-
tiating equation A.21 and setting the derivatives to zero. This gives:

W̃ =
[∑

n
(tn −µ)〈xT

n〉
][∑

n
〈xnxT

n〉
]−1

(A.24)

σ̃ 2 = 1
Nd

N∑
n=1

{
‖tn −µ‖2 − 2〈xT

n〉W̃T(tn −µ)

+ tr
(
〈xnxT

n〉W̃TW̃
)}

(A.25)

To maximize the likelihood then, the sufficient statistics of the posterior
distributions are calculated from the E-step equations A.22 and A.23, fol-
lowed by the maximizing M-step equations (A.24 and A.25). These four
equations are iterated in sequence until the algorithm is judged to have
converged.

We may gain considerable insight into the operation of equations A.24
and A.25 by substituting for 〈xn〉 and 〈xnxT

n〉 from A.22 and A.23. Taking care
not to confuse new and old parameters, some further manipulation leads
to both the E-step and M-step’s being combined and rewritten as:

W̃ = SW(σ 2I+M−1WTSW)−1, and (A.26)

σ̃ 2 = 1
d

tr
(

S− SWM−1W̃T
)
, (A.27)

where S is again given by

S = 1
N

N∑
n=1

(tn −µ)(tn −µ)T. (A.28)

Note that the first instance of W in equation A.27 is the old value of the
weights, while the second instance W̃ is the new value calculated from equa-
tion A.26. Equations A.26, A.27, and A.28 indicate that the data enter into the
EM formulation only through its covariance matrix S, as we would expect.
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Although it is algebraically convenient to express the EM algorithm in
terms of S, care should be exercised in any implementation. When q ¿ d,
it is possible to obtain considerable computational savings by not explicitly
evaluating the covariance matrix, computation of which is O(Nd2). This is
because inspection of equations A.24 and A.25 indicates that complexity is
only O(Ndq), and is reflected in equations A.26 and A.27 by the fact that
S appears only within the terms SW and tr (S), which may be computed
with O(Ndq) and O(Nd) complexity, respectively. That is, SW should be
computed as

∑
n(tn − µ)

{
(tn −µ)TW

}
, as that form is more efficient than{∑

n(tn −µ)(tn −µ)T
}

W, which is equivalent to finding S explicitly. How-
ever, because S need only be computed once in the single model case and the
EM algorithm is iterative, potential efficiency gains depend on the number
of iterations required to obtain the desired accuracy of solution, as well as
the ratio of d to q. For example, in our implementation of the model using
q = 2 for data visualization, we found that an iterative approach could be
more efficient for d > 20.

A.6 Rotational Ambiguity. If W is determined by the above algorithm,
or any other iterative method that maximizes the likelihood (see equa-
tion 3.8), then at convergence, WML = Uq(Λq − σ 2I)1/2R. If it is desired
to find the true principal axes Uq (and not just the principal subspace) then
the arbitrary rotation matrix R presents difficulty. This rotational ambiguity
also exists in factor analysis, as well as in certain iterative PCA algorithms,
where it is usually not possible to determine the actual principal axes if
R 6= I (although there are algorithms where the constraint R = I is imposed
and the axes may be found).

However, in probabilistic PCA, R may actually be found since

WT
MLWML = RT(Λq − σ 2I)R (A.29)

implies that RT may be computed as the matrix of eigenvectors of the q× q
matrix WT

MLWML. Hence, both Uq and Λq may be found by inverting the
rotation followed by normalization of WML. That the rotational ambiguity
may be resolved in PPCA is a consequence of the scaling of the eigenvectors
by (Λq − σ 2I)1/2 prior to rotation by R. Without this scaling, WT

MLWML =
I, and the corresponding eigenvectors remain ambiguous. Also, note that
while finding the eigenvectors of S directly requires O(d3) operations, to
obtain them from WML in this way requires only O(q3).

Appendix B: Optimal Least-Squares Reconstruction

One of the motivations for adopting PCA in many applications, notably
in data compression, is the property of optimal linear least-squares recon-
struction. That is, for all orthogonal projections x = ATt of the data, the
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least-squares reconstruction error,

E2
rec =

1
N

N∑
n=1

‖tn − BATtn‖2, (B.1)

is minimized when the columns of A span the principal subspace of the
data covariance matrix, and B = A. (For simplification, and without loss of
generality, we assume here that the data has zero mean.)

We can similarly obtain this property from our probabilistic formalism,
without the need to determine the exact orthogonal projection W, by finding
the optimal reconstruction of the posterior mean vectors 〈xn〉. To do this we
simply minimize

E2
rec =

1
N

N∑
n=1

‖tn − B〈xn〉‖2, (B.2)

over the reconstruction matrix B, which is equivalent to a linear regression
problem giving

B = SW(WTSW)−1M, (B.3)

where we have substituted for 〈xn〉 from equation A.22. In general, the
resulting projection B〈xn〉 of tn is not orthogonal, except in the maximum
likelihood case, where W = WML = Uq(Λq − σ 2I)1/2R, and the optimal
reconstructing matrix becomes

BML =W(WTW)−1M, (B.4)

and so

t̂n = W(WTW)−1M〈xn〉, (B.5)

= W(WTW)−1WTtn, (B.6)

which is the expected orthogonal projection. The implication is thus that
in the data compression context, at the maximum likelihood solution, the
variables 〈xn〉 can be transmitted down the channel and the original data
vectors optimally reconstructed using equation B.5 given the parameters W
and σ 2. Substituting for B in equation B.2 gives E2

rec = (d − q)σ 2, and the
noise term σ 2 thus represents the expected squared reconstruction error per
“lost” dimension.

Appendix C: EM for Mixtures of Probabilistic PCA

In a mixture of probabilistic principal component analyzers, we must fit a
mixture of latent variable models in which the overall model distribution
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takes the form

p(t) =
M∑

i=1

πip(t|i), (C.1)

where p(t|i) is a single probabilistic PCA model and πi is the corresponding
mixing proportion. The parameters for this mixture model can be deter-
mined by an extension of the EM algorithm. We begin by considering the
standard form that the EM algorithm would take for this model and high-
light a number of limitations. We then show that a two-stage form of EM
leads to a more efficient algorithm.

We first note that in addition to a set of xni for each model i, the missing
data include variables zni labeling which model is responsible for generating
each data point tn. At this point we can derive a standard EM algorithm by
considering the corresponding complete-data log-likelihood, which takes
the form

LC =
N∑

n=1

M∑
i=1

zni ln{πip(tn, xni)}. (C.2)

Starting with “old” values for the parameters πi, µi, Wi, and σ 2
i , we first

evaluate the posterior probabilities Rni using equation 4.3 and similarly
evaluate the expectations 〈xni〉 and 〈xnixT

ni〉:

〈xni〉 = M−1
i WT

i (tn −µi), (C.3)

〈xnixT
ni〉 = σ 2

i M−1
i + 〈xni〉〈xni〉T, (C.4)

with Mi = σ 2
i I+WT

i Wi.
Then we take the expectation of LC with respect to these posterior dis-

tributions to obtain

〈LC〉 =
N∑

n=1

M∑
i=1

Rni

{
lnπi − d

2
ln σ 2

i −
1
2

tr
(
〈xnixT

ni〉
)

− 1
2σ 2

i
‖tni −µi‖2 +

1
σ 2

i
〈xni〉TWT

i (tn −µi)

− 1
2σ 2

i
tr
(

WT
i Wi〈xnixT

ni〉
)}
, (C.5)

where 〈·〉 denotes the expectation with respect to the posterior distributions
of both xni and zni and terms independent of the model parameters have
been omitted. The M-step then involves maximizing equation C.5 with re-
spect to πi, µi, σ 2

i , and Wi to obtain “new” values for these parameters. The
maximization with respect to πi must take account of the constraint that
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∑
i πi = 1. This can be achieved with the use of a Lagrange multiplier λ (see

Bishop, 1995) and maximizing

〈LC〉 + λ
(

M∑
i=1

πi − 1

)
. (C.6)

Together with the results of maximizing equation C.5 with respect to the
remaining parameters, this gives the following M-step equations:

π̃i = 1
N

∑
n

Rni (C.7)

µ̃i =
∑

n Rni(tni − W̃i〈xni〉)∑
n Rni

(C.8)

W̃i =
[∑

n
Rni(tn − µ̃i)〈xni〉T

][∑
n

Rni〈xnixT
ni〉
]−1

(C.9)

σ̃ 2
i =

1
d
∑

n Rni

{∑
n

Rni‖tn − µ̃i‖2 − 2
∑

n
Rni〈xni〉TW̃T

i (tn − µ̃i)

+
∑

n
Rnitr

(
〈xnixT

ni〉W̃T
i W̃i

)}
(C.10)

where the symbol˜denotes “new” quantities that may be adjusted in the M-
step. Note that the M-step equations for µ̃i and W̃i, given by equations C.8
and C.9, are coupled, and so further (albeit straightforward) manipulation
is required to obtain explicit solutions.

In fact, simplification of the M-step equations, along with improved
speed of convergence, is possible if we adopt a two-stage EM procedure
as follows. The likelihood function we wish to maximize is given by

L =
N∑

n=1

ln

{
M∑

i=1

πip(tn|i)
}
. (C.11)

Regarding the component labels zni as missing data, and ignoring the pres-
ence of the latent x variables for now, we can consider the corresponding
expected complete-data log-likelihood given by

L̂C =
N∑

n=1

M∑
i=1

Rni ln
{
πip(tn|i)

}
, (C.12)

where Rni represent the posterior probabilities (corresponding to the ex-
pected values of zni) and are given by equation 4.2. Maximization of equa-
tion C.12 with respect to πi, again using a Lagrange multiplier, gives the



Mixtures of Probabilistic Principal Component Analyzers 479

M-step equation (4.4). Similarly, maximization of equation C.12 with re-
spect to µi gives equation 4.5. This is the first stage of the combined EM
procedure.

In order to update Wi and σ 2
i , we seek only to increase the value of L̂C,

and not actually to maximize it. This corresponds to the generalized EM
(or GEM) algorithm. We do this by considering L̂C as our likelihood of
interest and, introducing the missing xni variables, perform one cycle of the
EM algorithm, now with respect to the parameters Wi and σ 2

i . This second
stage is guaranteed to increase L̂C, and therefore L as desired.

The advantages of this approach are twofold. First, the new values µ̃i
calculated in the first stage are used to compute the sufficient statistics of
the posterior distribution of xni in the second stage using equations C.3 and
C.4. By using updated values of µi in computing these statistics, this leads
to improved convergence speed.

A second advantage is that for the second stage of the EM algorithm,
there is a considerable simplification of the M-step updates, since when
equation C.5 is expanded for 〈xni〉 and 〈xnixT

ni〉, only terms in µ̃i (and notµi)
appear. By inspection of equation C.5, we see that the expected complete-
data log-likelihood now takes the form

〈LC〉 =
N∑

n=1

M∑
i=1

Rni

{
ln π̃i − d

2
ln σ 2

i −
1
2

tr
(
〈xnixT

ni〉
)

− 1
2σ 2

i
‖tni − µ̃i‖2 +

1
σ 2

i
〈xT

ni〉WT
i (tn − µ̃i)

− 1
2σ 2

i
tr
(

WT
i Wi〈xnixT

ni〉
)}
. (C.13)

Now when we maximize equation C.13 with respect to Wi and σ 2
i (keeping

µ̃i fixed), we obtain the much simplified M-step equations:

W̃i = SiWi(σ
2
i I+M−1

i WT
i SiWi)

−1, (C.14)

σ̃ 2
i =

1
d

tr
(

Si − SiWiM−1
i W̃T

i

)
, (C.15)

where

Si = 1
π̃iN

N∑
n=1

Rni(tn − µ̃i)(tn − µ̃i)
T. (C.16)

Iteration of equations 4.3 through 4.5 followed by equations C.14 and C.15
in sequence is guaranteed to find a local maximum of the likelihood (see
equation 4.1).

Comparison of equations C.14 and C.15 with equations A.26 and A.27
shows that the updates for the mixture case are identical to those of the
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single PPCA model, given that the local responsibility-weighted covari-
ance matrix Si is substituted for the global covariance matrix S. Thus, at
stationary points, each weight matrix Wi contains the (scaled and rotated)
eigenvectors of its respective Si, the local covariance matrix. Each submodel
is then performing a local PCA, where each data point is weighted by the
responsibility of that submodel for its generation, and a soft partitioning,
similar to that introduced by Hinton et al. (1997), is automatically effected.

Given the established results for the single PPCA model, there is no need
to use the iterative updates (see equations C.14 and C.15) since Wi and σ 2

i
may be determined by eigendecomposition of Si, and the likelihood must
still increase unless at a maximum. However, as discussed in appendix A.5,
the iterative EM scheme may offer computational advantages, particularly
for q ¿ d. In such a case, the iterative approach of equations C.14 and
C.15 can be used, taking care to evaluate SiWi efficiently as

∑
n Rni(tn −

µ̃i)
{
(tn − µ̃i)

TWi
}
. In the mixture case, unlike for the single model, Si must

be recomputed at each iteration of the EM algorithm, as the responsibilities
Rni will change.

As a final computational note, it might appear that the necessary cal-
culation of p(t|i) would require inversion of the d × d matrix C, an O(d3)

operation. However, (σ 2I+WWT)−1 = {I−W(σ 2I+WTW)−1WT}/σ 2 and
so C−1 may be computed using the already calculated q× q matrix M−1.
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