
Mixtures of Trees for Object Recognition

Sergey Ioffe David Forsyth

Abstract
Efficient detection of objects in images is complicated by

variations of object appearance due to intra-class object

differences, articulation, lighting, occlusions, and aspect

variations. To reduce the search required for detection, we

employ the bottom-up approach where we find candidate

image features and associate some of them with parts of

the object model. We represent objects as collections of

local features, and would like to allow any of them to be

absent, with only a small subset sufficient for detection; fur-

thermore, our model should allow efficient correspondence

search. We propose a model, Mixture of Trees, that achieves

these goals. With a mixture of trees, we can model the in-

dividual appearances of the features, relationships among

them, and the aspect, and handle occlusions. Indepen-

dences captured in the model make efficient inference pos-

sible. In our earlier work, we have shown that mixtures of

trees can be used to model objects with a natural tree struc-

ture, in the context of human tracking. Now we show that a

natural tree structure is not required, and use a mixture of

trees for both frontal and view-invariant face detection. We

also show that by modeling faces as collections of features

we can establish an intrinsic coordinate frame for a face,

and estimate the out-of-plane rotation of a face.

1. Introduction
One of the main difficulties in object recognition is being
able to represent the variations in object appearance and to

detect objects efficiently. Template-based approaches (e.g.,
to detect frontal views of faces [8, 11] and pedestrians [7])

are not general because they do not allow object parts to

move with respect to each other. An alternative is to use a
model that, instead of regarding an object as rigid, models

local appearance of parts and the relationships among the

parts. Such representations have been used extensively to
represent people (e.g. [1, 3]) and have been applied to faces

[10, 13, 14]. Detecting articulated objects requires a search

of a very large configuration space, which, in the context of
tracking, is often made possible by constraining the config-

uration of the object in one of the frames. However, if our

object detector is to be entirely automatic, we need a method
that allows us to explore the search space efficiently.

Among the ways to make the search efficient is the
bottom-up approach, where the candidate object parts are

first detected and then grouped into arrangements obeying

the constraints imposed by the object model. Examples in
face detection include [13] and [14], who model faces as

flexible arrangements of local features. However, if many

features are used to represent an object, and many candidate

features of each type are found in the image, it is imprac-

tical to evaluate each feature arrangement, due to the over-
whelming number of such arrangements. The correspon-

dence search, where a part of the object model is associ-
ated with some of the candidate features, can be made more

efficient by pruning arrangements of a few features before

proceeding to bigger ones [5]. Alternatively, the model can
be constrained to allow efficient search. One example of

such a model is a tree, in which correspondence search can

be performed efficiently with dynamic programming (e.g.
[3, 4]).

Representing an object with a fixed number of features
makes recognition vulnerable to occlusions, aspect varia-

tions, and failures of local feature detectors. Instead, we
would like to model objects with a large number of features,

only several of which may be enough for recognition. To

avoid the combinatorial complexity of the correspondence
search, we propose a novel model that uses a mixture of

trees to represent the aspect (which features are present and

which are not) as well as the relationships among the fea-
tures; by capturing conditional independences among the

features composing an object, mixtures of trees allow effi-

cient inference using a Viterbi algorithm.

Some objects, such as human bodies, have a natural tree

representation (with the torso as the root, for example), and
we have shown [4] that mixtures of trees can be used to rep-

resent, detect and track such objects. However, our model is
not limited to articulated objects, and, because we learn the

tree structure automatically, can be used for objects without

an intuitive tree representation. We illustrate this by apply-
ing our model to face detection. By using a large number

of features only a few of which are sufficient for detection,

we can model the variations of appearance due to different
individuals, facial expressions, lighting, and pose.

In section 2, we describe mixtures of trees, and show
how to model faces with a mixture of trees in section 3.

We use our model for frontal (section 4) and view-invariant

(section 5) face detection. The feature arrangements rep-
resenting faces carry implicit orientation information. We

illustrate this in section 6, where we use the automatically
extracted feature representation of faces to infer the angle

of out-of-plane rotation.

2. Modeling with mixtures of trees
Let us suppose that an object is a collection of

�
primitives,✁✄✂✆☎✞✝✟✝✄✝✠✂☛✡✌☞

, each of which can be treated as a vector rep-

resenting its configuration (e.g., the position in the image).

1

Given an image, the local detectors will provide us with a

finite set of possible configurations for each primitive
✂✎✍

.
These are candidate primitives; the objective is to build an

assembly by choosing an element from each candidate set,

so that the resulting set of primitives satisfies some global
constraints.

The global constraints can be captured in a distribu-
tion ✏☛✑ ✂ ☎ ✝✄✝✟✝✠✂ ✡✓✒ , which will be high when the assembly

looks like the object of interest, and low when it doesn’t.

Assuming exactly one object present in the image, we can
localize the object by finding the assembly maximizing the

value of ✏ . In general, this maximization requires a combi-

natorial correspondence search. However, if ✏☛✑ ✂✔☎✕✝✟✝✄✝✠✂☛✡ ✒
is represented with a tree, correspondence search is effi-

ciently accomplished with a Viterbi algorithm. If there are✖
candidate configurations for each of the

�
primitives,

then the search takes ✗✘✑ �✙✖✛✚ ✒
time, whereas for a general

distribution ✏ the complexity would be ✗✘✑ ✖ ✡ ✒
.

2.1. Learning the tree model
In addition to making correspondence search efficient, the

conditional independences captured in the tree model sim-

plify learning, by reducing the number of parameters to be
estimated, due to the factorized form of the distribution:

✏☛✑ ✂✆☎✕✝✄✝✟✝✜✂✘✡ ✒✣✢ ✏☛✑ ✂✘✤✦✥✧✥✜★ ✒✪✩✍✬✫✭ ✤✦✥✧✥✜★ ✏☛✑ ✂☛✍✯✮✄✰✲✱✳✍ ✒✧✴
where

✂☛✤✦✥✧✥✜★
is the node at the root of the tree, and

✰✲✱✵✍
denotes the parent of the node

✂✶✍
. Learning the model in-

volves learning the structure (i.e., the tree edges) as well

as the parameters of the prior ✏☛✑ ✂✷✤✦✥✧✥✜★ ✒ and conditionals✏☛✑ ✂✸✍✘✮✹✰✲✱✬✍ ✒ . We learn the model by maximizing the log-

likelihood of the training data, which can be shown to be

equivalent to minimizing the entropy of the distribution,
subject to the prior ✏☛✑ ✂ ✤✺✥✧✥✠★✜✒ and conditionals ✏☛✑ ✂ ✍ ✮✻✰✲✱ ✍✹✒
being set to their MAP estimates. The entropy can be min-
imized efficiently [2, 12] by finding the minimum spanning

tree in the directed graph, whose edge weights are the ap-

propriate conditional entropies.

2.2. Mixtures of trees
It is difficult to use a tree to model cases where some of the

primitives constituting an object are missing – due to occlu-

sions, variations in aspect or failures of the local detectors.
Mixtures of trees, introduced in [6], provide a solution. In

particular, we can think of assemblies as being generated

by a mixture model, whose class variable specifies what set✼
of primitives will constitute an object, while conditional

class distributions ✏✲✽✞✑ ✁✾✂✸✍✯✿❁❀✆❂ ✼ ☞ ✒ generate the configu-
rations of those primitives. The mixture distribution is

✏☛✑ ✁✾✂☛✍✯✿✳❀❃❂ ✼ ☞ ✒❄✢❆❅ ✑ ✼ ✒ ✏✕✽✕✑ ✁✄✂✸✍❇✿❁❀✆❂ ✼ ☞ ✒
where

❅ ✑ ✼ ✒ is the probability that a random view of an ob-

ject consists of those primitives. This mixture has ❈ ✡ com-

ponents – one for each possible subset
✼

of primitive types.
Learning a mixture of trees involves estimating the mixture

weights
❅ ✑ ✼ ✒ , as well the structure and the model parame-

ters for each of the component trees.

Figure 1: Using a generating tree to derive the structure for

a mixture component. The dashed lines are the edges in the

generating tree, which spans all of the nodes. The nodes

of the mixture component are shaded, and its edges (shown

as solid) are obtained by making a grandparent “adopt”

a node if its parent is not present in this tree (i.e., is not

shaded). Thus mixture components are encoded implicitly,

which allows efficient representation, learning and infer-

ence for mixtures with a large number of components. The

structure of the generating tree is learned by entropy mini-

mization.

2.3. Mixtures of trees with shared structure
Explicitly representing ❈ ✡ mixture components is unac-

ceptable if the number of object parts
�

is large. Instead,
we use a single generating tree which is used to generate

the structures of all of the mixture components.

A generating tree is a directed tree ❉ whose nodes are✂✆☎✕✝✟✝✄✝❊✂☛✡
, with

✂☛✤✦✥✧✥✠★
at the root. It provides the struc-

ture of the graphical model representing
❅ ✑ ✼ ✒ : ❅ ✑ ✼ ✒❋✢✏☛✑✠● ✂✘✤✦✥✧✥✠★■❍ ✒❑❏ ✍✬✫✭ ✤✦✥✧✥✜★ ✏☛✑✠● ✂✸✍✾❍▲✮ ● ✰✲✱✬✍▼❍ ✒◆✴ where ● ✂✆✍✾❍ denotes

the event that
✂❖✍

is one of the primitives constituting a ran-

dom view of the object, and the distributions are learned by
counting occurrences of each primitive and pairs of prim-

itives in the training data. For a subset
✼

of object part

types, the mixture component ✏P✽ contains all the edges✑ ✂✌◗❙❘❚✂ ✍❯✒
such that

✂❙◗
is an ancestor of

✂ ✍
in the gen-

erating tree, and none of the nodes on the path from
✂✎◗

to✂ ✍
is in the set

✁✄✂ ✍ ✿❑❀❱❂ ✼ ☞
. This means that, if the par-

ent of node
✂ ✍

is not present in a view of the object, then✂ ✍
is “adopted” by its grandparent, or, if that one is ab-

sent as well, a great-grandparent, etc. If we assume that the
root

✂☛✤✦✥✧✥✜★
is always a part of the object, then ✏❲✽ will be a

tree, since
✂✸✤✦✥✧✥✠★

will ensure that the graphical model is con-

nected. An example of obtaining the structure of a mixture
component is shown in figure 1. We ensure connectivity by

using a “dummy” feature as the root
✂❱❳

, representing the
rough position of the assembly; candidate root features are

added to test images at the nodes of a sparse grid.

The distribution ✏✣✽ is the product of the prior ✏☛✑ ✂✷✤✦✥✧✥✜★ ✒
and conditionals ✏☛✑ ✂ ✍ ✮✵✂✯◗ ✒ corresponding to the edges

of the tree representing ✏ ✽ . We learn the structure of the

generating tree ❉ that minimizes the entropy of the distri-
bution. We are not aware of an efficient algorithm that pro-

duces the minimum; instead, we obtain a local minimum by

iteratively applying entropy-reducing local changes (such
as replacing a node’s parent with another node) to ❉ until

convergence.

2

RLA

RUA

TOR

(a)

RLA

RUA

TOR

RUA

TOR

RLA

TOR

(b)

TOR

TOR

RUA

RLA

(c)

Figure 2: Converting a mixture of trees into a graph with

choice nodes, on which correspondence search is performed

using dynamic programming. (a) A fragment of the gener-

ating tree for a person, containing the torso, right upper

arm, and right lower arm. (b) The mixture of 4 trees that

results if we require the torso to be always present. The

triangle represents a choice node; only one of its children

is selected, and the mixture weights are given by the model

of the aspect. (c) The shared structure of the mixture com-

ponents is captured using extra choice nodes. The empty

nodes correspond to adding no extra segments; the mixture

weight corresponding to each child of a choice node is de-

rived from the prior for an aspect.

2.4. Grouping using mixtures of trees
To localize an object in an image, we find the assembly that
maximizes the posterior

✰❄❨ ✑ object
✮
assembly

✒
or, equiva-

lently, the Bayes Factor ❩ ✢ ✏☛✑ ✁✄✂ ✍ ☞ ✒❭❬ ✏✕❪✬❫❵❴❛✑ ✁✾✂ ✍ ☞ ✒ where

the numerator is the probability of a configuration in a ran-
dom view of the object, and the denominator is the proba-

bility of seeing it in the background. We model the back-
ground as a Poisson process: ✏ ❪✳❫❵❴ ✑ ✁✾✂☛✍✛✿❙❀✪❂ ✼ ☞ ✒✔✢❏ ✍✾❜ ✽▲❝ ✍ where ❝ ✍ is the rate (or density) of the Poisson

process according to which the primitives of type
✂✎✍

are
distributed in the background. Because of the independent

structure of ✏ ❪✬❫❵❴ , the Bayes factor can be obtained by as-

sociating the term ❝❲❞ ☎✍ with each member of
✂❡✍

’s candi-

date set, and multiplying those terms into the likelihood✏☛✑ ✁✄✂ ✍ ☞ ✒ .
We perform the correspondence search using a Viterbi

algorithm on tree ❉ ; at each node, we select not only the

best primitives to choose from the children’s candidate sets,

but also the edges to be included in the tree (i.e., which
parts constitute an object instance). This is equivalent to

dynamic programming on a graph with choice nodes, illus-
trated in figure 2. This algorithm runs in time ✗✘✑ �✙❢✵✖✪✚ ✒✣✢✗✘✑ �✶✚✾✖❣✚ ✒ where

✖
is the number of primitives in each

candidate set,
�

is the number of object parts, and
❢

is the
depth of the generating tree.

3. Learning the model of a face
Representing a face as an assembly of local features allows

us to model both the relative rigidity of the facial features

and the flexibility of their arrangements. Other approaches
modeling faces with local feature arrangements (e.g. [13])

usually rely on a specific, small set of features, because they

Figure 3: Cluster centers found by grouping subimages

extracted from training face images with the modified K-

Means algorithm. The clustering procedure learns both the

average grey-level appearance of each feature and its av-

erage warped position (according to which each cluster is

positioned in the figure).

cannot handle missing features and lack an efficient group-

ing mechanism. With a mixture of trees, we can address
these issues. Because of the efficient inference on mixtures

of trees, we can use a very large number of features (❤❥✐✾❦✬❧),
but require only a few (❤❣✐✾❧) to declare a detection. There-
fore, we can handle occlusions and multiple aspects, and

use the same model to represent all orientations of a face.

However, the orientation is not discarded; instead, it is im-
plicitly encoded by the mixture of trees. We can recover the

pose by examining the feature arrangement obtained for a

face image, and using the types of the features constituting
an arrangement, as well as their geometric relationships, to

estimate the orientation.

3.1. Facial features
Each facial feature is represented as a small image patch; an

assembly is a group of features satisfying some constraints
imposed by the geometry of a face. For each feature type,

the candidate features are image patches whose appearance

is sufficiently similar to the “canonical” appearance of that
feature.

To reduce the time it takes to find candidate features,

each image – both training and test – is represented as a

collection of small (♠☛♥❡♠) image patches centered at inter-
est points (found with the Harris operator, e.g. [9]). Local

contrast normalization is applied to counter the variations in

brightness and contrast due to different lighting.

Instead of manually specifying what features compose a
face, we learn a set of features that are stable, (i.e., present

in a large number of face images, at roughly the same place

relative to the face), distinct from other features, and distinct
from the background. First, we cluster the image patches

in training images using the K-Means algorithm which we

modified so that it learns not only the appearances but also
the warped positions of the cluster centers; the warp for

each training image is computed as an affine transforma-

3

Figure 4: Examples of faces detected in the test data (with the threshold ♦ ✢ ✐). The boxes indicate the bounding boxes of

the feature assemblies representing the faces, and the dot shows the position of the root node in the mixture of trees, which

indicates the “general position” of a face.

tion that maps 3 “landmark points” on a face image to their

canonical positions. The similarity between a patch and
a cluster center is computed as the Euclidean distance be-

tween their pixel representations, subject to proximity be-
tween their warped positions. By clustering image patches,

we convert each training image to an assembly; these as-

semblies are now used to learn the face model. Figure 3
shows the cluster centers obtained with our algorithm.

Because pixels within a patch are not independent, we

represent each image patch with its projections onto sev-
eral (e.g. 15) dominant independent components (found by

applying PCA to the sub-images of face images). We can

capture dependences among these projections conditional
on the feature type and still maintain the linear complexity

of the model with a tree-structured model. All conditionals

in this model are Gaussian, and the tree structure is learned
by maximizing mutual information [2].

3.2. Modeling feature arrangements
To model faces with a mixture of trees, we need to learn
the pairwise relationships first, and then use entropy mini-

mization to obtain the structure of the generating tree. Con-

ditional probability tables for feature visibility are learned
by simple counting. The distributions of the relative posi-

tions have the form ✏☛✑ ✂ ✚ ✮✳✂✆☎ ✒✯✢ ✏☛✑q♣ ✚ ✴✻r ✚ ✮ ♣ ☎ ✴❭r ☎ ✒✯✢✏☛✑q♣ ✚ts ♣ ☎ ✴✻r ✚ts r ☎ ✒
where ✑q♣ ✚ts ♣ ☎ ✴❭r ✚❲s r ☎ ✒

is the dis-
placement between the two features. We use a Gaussian to

represent ✏☛✑ ✂ ✚ ✮✄✂✆☎ ✒ .
To be able to detect faces, we need to learn the model

of the background as well as that of a face. We can in-

corporate the background model into the efficient inference

mechanism if it obeys the same independences as those cap-
tured in the mixture of trees modeling a face. We choose

the simplest such model, in which the features detected in
background are independent, and modeled with a Poisson

process. The appearance of image patches in non-face im-

ages is modeled with a mixture of distributions of the same
type as used to model facial features. This allows us to more

accurately model the background image patches that look

similar to facial features. The probability density of gen-
erating an assembly

✁✾✂❖✍✶✿✞❀✔❂ ✼ ☞
in the background be-

comes ✏ ❪✬❫❵❴ ✑ ✁✄✂✸✍❙✿✉❀❖❂ ✼ ☞ ✒✣✢ ❏ ✍✾❜ ✽✈❝ ✍ ✏ ❳ ✑ ✂✸✍ ✒ where ❝ ✍

✇②① ♦ -10 -3 0 3 5 10

Detection 90% 80% 76% 69% 66% 56%

False alarms 1364 279 129 50 22 1

Table 1: Frontal face detection results. The database con-

tained 117 images, with a total of 511 faces. We show the

fraction of faces correctly detected, and the number of non-

faces mistakenly detected, for different values of the thresh-

old ♦ with which the posterior is compared

is the rate of the Poisson process we assume to be generat-

ing the candidate features of type
❀

.

To find face-like assemblies of image patches, we com-

pute, for each feature type
❀

and each image patch ③t④ , the

probability ✏ ✍ ✑✦③✵④ ✒ of seeing this patch in a random view
of feature

✂ ✍
, and the probability ✏ ❳ ✑✦③ ④ ✒ of seeing the

patch in a random view of a non-face. In maximizing the

Bayes factor, we associate an extra multiplicative weight✏ ✍ ✑✦③ ④ ✒✻❬ ✑ ❝ ✍ ✏ ❳ ✑✺③ ④ ✒✜✒ with each feature
❀

and patch ③ ④ . In

practice, we will make ③ ④ a candidate for feature
❀

only if

the ratio ✏ ✍ ✑✦③ ④ ✒✜❬ ✏ ❳ ✑✦③ ④ ✒ is sufficiently large – a condition
that does not hold for most patch/feature pairs.

4. Detecting frontal faces
We have used mixtures of trees to learn the model of the

frontal faces. The training data was kindly provided by
Henry Schneiderman. The training background images are

chosen at random from the Corel image database.

We tested our face finder on images from the MIT and

CMU face databases — 117 photographs with 511 frontal
faces. Faces were detected at a range of scales, spaced by a

factor of ❈ ☎✠⑤✜⑥ . If two assemblies’ bounding boxes overlap
by more than a small amount, we remove the one with the

smaller posterior. Table 1 shows the performance for our

detector for some values of the threshold ♦ for the Bayes
factor. Figure 4 shows some examples of faces we detected

in test images. In figure 5, we show an example of our face

detector applied to a large group photo (with ♦ set very low;
this does not result in many false detections, since most of

those are suppressed by the real faces).

4

Figure 5: Faces found in a large group photo. The threshold ♦ is set very low; most false detections are suppressed by

the correctly detected faces. Out of 93 faces in the image, 79 were correctly detected, 14 were missed, and 5 false alarms

occurred. Most of the missed faces were not found because they were smaller than the size of the training faces.

a b c

Figure 6: Examples of the view-invariant face detector applied to faces and backgrounds. (a) examples of face assemblies

detected correctly. The squares show the features in the assembly, the circle corresponds to the root node of the mixture

of trees, and the edges show the edges of the mixture component corresponding to the assembly. (b) False detections in

background images. (c) An example of a missed detection. Even though a feature assembly is found corresponding to a face,

its posterior is too low to declare a face detection.

5. View-invariant face detection
Out-of-plane face rotations suggest that a model that is

able to represent aspect would perform well. Our data
was kindly provided by M. Weber et al., authors of [13].

It contained faces of 22 subjects, photographed against a

uniform background (which we synthetically replaced with
random images from the Corel database) at 9 different an-

gles, spaced by ✐▼❦✉⑦ and spanning the entire range between
the frontal view and the profile; 18 to 36 pictures of each

person, for different poses and facial expressions, were in-

cluded. We randomly chose 14 individuals and placed all of
their images into the test set, using the photographs of the

remaining 8 subjects for testing.

Each face image was rescaled to be between 40 and 55

pixels in height, and each non-face image was a ✐✾❈✹⑧✘♥✎✐✾♠✳❈
image taken from the Corel database. For each image,

we decide whether or not it contains a face by compar-

ing the posterior of the highest Bayes factor feature ar-
rangement with a threshold. The error rate (✑✺⑨❶⑩✉❷❹❸✾❺▼✏❶❻✹❸P❼⑨❶⑩❁❷q❸✾❺✾❽✶❺✟❾ ✒✜❬ ❈) ranged between 4% and 8%. Our perfor-

mance is better than the about 15% error rates reported in
[13] for a single detector trained and tested on the entire

range of rotations, which shows that a mixture of trees is

able to represent the variations of the face appearance as it
rotates. In figure 6, we show examples of correctly detected

faces, as well as false detections reported in background im-

ages.

6. Pose estimation
Representing a face with a large number of features, al-

lowing any features to be absent, and modeling the way in

which the feature visibilities and configurations affect one
another, allows our face-detection system to be view invari-

ant. However, the orientation is not discarded, but is instead

implicitly encoded in the model. By examining the feature
arrangement found for a face image, we can estimate an

intrinsic coordinate frame for the face. The types of the

features constituting a face, as well as their geometric con-
figuration, can be used to derive correspondences between

different views of a face, or between an image and a 3D

model of the head, and also carry implicit aspect informa-
tion. For example, having found a feature corresponding to

the left eye, we know that the view is not the right profile.

To determine the pose of a face, we learn, for each
feature

✂❃✍
and each view direction ❿ , the probability✰❄❨ ✑✠● ✂☛✍▼❍P✮ ❿ ✒ that this feature is present in the view. Our

5

data set contains 9 different view directions, and the feature

frequency information is captured in a ♠✸♥ � table, where�
is the number of available features. The entries of the

table are estimated from the training face assemblies.

Given an assembly ➀ ✢ ✁✄✂❖✍✎✿✲❀➁❂ ✼ ☞
, we can com-

pute the probability that it has been generated by a particular

view ❿ : ✰❄❨ ✑✦❿ ✮ ➀ ✒❲➂ ✏☛✑❹➀ ✮ ❿ ✒ ✰✣❨ ✑✺❿ ✒P➂➃❏ ✍✾❜ ✽ ✰❄❨ ✑✜● ✂✸✍✾❍✞✮ ❿ ✒
for a uniform

✰❄❨ ✑✺❿ ✒ . As our estimate of the pose, we use

the expected value ➄ ✢✛➅➇➆ ✰❄❨ ✑✦❿ ✮ ➀ ✒ ❿ . If ❿✉➈ is the correct

view angle, the estimation error is given by ➄ s ❿➉➈ , and the

RMS error is ➊ ➅❆➋❪ ✭ ☎ ✑q➄ ❪ s ❿ ➈❪ ✒ ✚ ❬ ❽ , for ❽ test images.

In our experiments, the RMS error was ✐✾❦➌⑦ , i.e. on the av-

erage (and in fact for most test images) the estimated angle
is within one angle step of the actual angle. Compare this

with the RMS error of ➍✳♠➎⑦ that would result from always

reporting the average face angle (➏❁❦➐⑦).
7. Conclusions
Mixtures of trees allow us to represent objects as flexible

collections of parts, where some part can be missing, and we

model the aspect, geometric relationships among the parts,
and the individual part appearances. Due to the conditional

independences in the model, inference can be performed

efficiently, in a bottom-up fashion, where candidate object
parts are first detected and then grouped into arrangements

using dynamic programming on the mixture of trees. In

addition to being able to represent and track people, as we
have shown in [4], mixtures of trees can model objects with-

out an intuitive tree decomposition, and we have shown this
by applying our model to frontal and view-invariant face

detection.

Even though the results we have obtained for frontal face
detection are slightly behind the state of the art, our model

has the advantage that it can be used to do more than just

detection. We can determine not only whether a face is
present, but also the configuration of the face, i.e. what fa-

cial features are present, and where they are with respect to

each other. Our model can use a large number of features
(❤➑✐▼❦✹❧), with only a few (❤➑✐✾❧) needed for detection, and

implicitly encodes the aspect; we have shown that we can
recover the aspect information by examining the feature ar-

rangements obtained for a face to estimate the out-of-plane

rotation of a face. The future work includes using the fea-
ture representation of an object that mixtures of trees help

us obtain for applications such as recognition of individu-

als, genders, or facial expressions (by comparing features
of the same type in different faces, we do not have to rely

on the two faces being in the same pose), matching fea-

tures between two images of a face, or between an image
and a 3D face model, and face tracking (we have already

shown [4] that temporal coherence can be incorporated into

our model).

Another important advantage of our model is that it is not

tailored to a particular type of object: we have shown that
it can be used for such diverse objects as human bodies and

faces. One of the research directions is to use the model to

represent other objects, or entire classes of objects. For ex-

ample, just as we detect faces in an arbitrary view and then
determine the pose, we could use a single mixture of trees to

represent many kinds of animal, and use the resulting fea-

ture representation of an object in an image to determine
what type of animal it is.

Acknowledgements
We thank Michael Jordan for suggesting mixtures of trees

for object representation. This research was supported by

NSF Graduate Research Fellowship to SI and by the Digital
Library grants IIS-9817353 and IIS-9979201.

References
[1] C. Bregler and J. Malik. Tracking people with twists and

exponential maps. In IEEE Conf. on Computer Vision and

Pattern Recognition, pages 8–15, 1998.

[2] C. K. Chow and C. N. Liu. Approximating discrete probabil-

ity distributions with dependence trees. IEEE Transactions

on Information Theory, 14:462–467, 1968.

[3] P. Felzenszwalb and D. Huttenlocher. Efficient matching of

pictorial structures. In IEEE Conf. on Computer Vision and

Pattern Recognition, 2000.

[4] S. Ioffe and D. Forsyth. Human tracking with mixtures of

trees. In Int. Conf. on Computer Vision, 2001.

[5] S. Ioffe and D.A. Forsyth. Probabilistic methods for finding

people. Int. J. Computer Vision, 2001.

[6] M. Meila and M.I. Jordan. Learning with mixtures of trees.

Journal of Machine Learning Research, 1:1–48, 2000.

[7] M. Oren, C. Papageorgiou, P. Sinha, and E. Osuna. Pedes-

trian detection using wavelet templates. In IEEE Conf.

on Computer Vision and Pattern Recognition, pages 193–9,

1997.

[8] H.A. Rowley, S. Baluja, and T. Kanade. Neural network-

based face detection. IEEE T. Pattern Analysis and Machine

Intelligence, 20(1):23–38, 1998.

[9] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of inter-

est point detectors. Int. J. Computer Vision, 37(2):151–72,

2000.

[10] H. Schneiderman and T. Kanade. A statistical method for

3d object detection applied to faces and cars. In IEEE Conf.

on Computer Vision and Pattern Recognition, pages 746–51,

2000.

[11] K-K Sung and T. Poggio. Example-based learning for view-

based human face detection. PAMI, 20(1):39–51, 1998.

[12] R.E. Tarjan. Finding optimum branchings. Networks,

7(1):25–36, 1977.

[13] M. Weber, W. Einhauser, M. Welling, and P. Perona.

Viewpoint-invariant learning and detection of human heads.

In IEEE International Conference on Automatic Face and

Gesture Recognition, pages 20–7, 2000.

[14] L. Wiskott, J.-M. Fellous, N. Kuiger, and C. von der Mals-

burg. Face recognition by elastic bunch graph matching.

PAMI, 19(7):775–9, 1997.

6

