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Abstract

The use of intensive sampling methods, such as ecological momentary assessment (EMA), is increasingly prominent in

medical research. However, inferences from such data are often limited to the subject-specific mean of the outcome and

between-subject variance (i.e., random intercept), despite the capability to examine within-subject variance (i.e., random

scale) and associations between covariates and subject-specific mean (i.e., random slope). MixWILD (Mixed model analysis

With Intensive Longitudinal Data) is statistical software that tests the effects of subject-level parameters (variance and

slope) of time-varying variables, specifically in the context of studies using intensive sampling methods, such as ecological

momentary assessment. MixWILD combines estimation of a stage 1 mixed-effects location-scale (MELS) model, including

estimation of the subject-specific random effects, with a subsequent stage 2 linear or binary/ordinal logistic regression in

which values sampled from each subject’s random effect distributions can be used as regressors (and then the results are

aggregated across replications). Computations within MixWILD were written in FORTRAN and use maximum likelihood

estimation, utilizing both the expectation-maximization (EM) algorithm and a Newton–Raphson solution. The mean and

variance of each individual’s random effects used in the sampling are estimated using empirical Bayes equations. This

manuscript details the underlying procedures and provides examples illustrating standalone usage and features of MixWILD

and its GUI. MixWILD is generalizable to a variety of data collection strategies (i.e., EMA, sensors) as a robust and

reproducible method to test predictors of variability in level 1 outcomes and the associations between subject-level

parameters (variances and slopes) and level 2 outcomes.

Keywords Intensive longitudinal data · Ecological momentary assessment · Multilevel · Mixed models ·

Heteroscedasticity · Variance modeling

Introduction

Mixed-effects regression models (aka hierarchical linear

models or multilevel models) have become a popular

method for analysis of longitudinal and clustered (Gold-

stein, 2011; Raudenbush & Bryk, 2002) data. These models

include both fixed effects (standard regression coefficients)

and random effects (terms representing between-subject

heterogeneity). The random location effects, defined as the
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degree to which a subject deviates from the population

mean, are used to account for the non-independence of

observations within subjects (i.e., clusters)—observations

from the same subject will be more similar than observa-

tions from different subjects. Although the language and

examples in this manuscript apply to longitudinal data, the

same models can be used for observations within clusters

such as families, classrooms, and clinics.

In this setting, we are particularly interested in examining

if the characteristics of time-varying data shown by subjects

(both overall average as well as degree of consistency)

during a longitudinal study can predict other, potentially

future, subject-level characteristics. For example, does the

average level of a subject’s positive mood and the amount

of fluctuations around that level predict whether a subject is

obese, or how much time a subject is sedentary. We might

theorize that subjects showing a lot of fluctuations in mood
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would be less likely to be consistently exercising, and more

likely to be obese.

Typically, the intra-individual variability (i.e., error

variance), or the within-subjects (WS) variance, and the

variance of the random effects, or the between-subjects (BS)

variance, are treated as being homogeneous across subject

groups or levels of covariates. However, this may not be the

case, and assumptions of homogeneity of variance can be

relaxed by modeling differences in variances, both between

and within subjects. The study of intra-individual variability

has received increased attention (Fleeson, 2004; Hertzog

& Nesselroade, 2003; Martin & Hofer, 2004; Nesselroade,

2004); these articles describe many of the conceptual issues

and some traditional statistical approaches for examining

such variation.

Modern data collection procedures (i.e., ecological

momentary assessments (EMAs) (Bolger et al., 2003; Stone

et al., 1999; Stone & Shiffman, 1994; Dimotakis et al.,

2013; Feldman & Barrett, 2001; Larson & Csikszentmi-

halyi, 1983; Scollon et al., 2003)) allow for collection

of much richer datasets (sometimes referred to as inten-

sive longitudinal data (ILD) (Walls & Schafer, 2006))

than standard longitudinal studies. As a result of repeated

measurements per day over the course of a study, EMA

procedures allow for more flexibility in modeling. In par-

ticular, the mixed-effects location-scale (MELS) model

(Hedeker et al., 2008) extends the usual mixed-effects

regression model by allowing modeling of both the BS

and WS variances in terms of covariates, in addition to

the usual modeling of the mean in terms of covariates.

Specifically, log-linear sub-models for the BS and WS vari-

ances are specified, allowing covariates to influence both

types of variance. Additionally, a random subject (scale)

effect is added to the WS variance specification, allowing

the WS variance to be subject-specific, as well as influ-

enced by covariates. Thus, MELS models include both

random subject location and scale effects, which are esti-

mated using empirical Bayes methods (Bock, 1989). These

subject-specific estimates indicate a baseline mean level

(random intercept), the effect of a covariate on the mean

(random slope), and the degree of within-subject variabil-

ity (random scale). In some cases, it may be of interest to

examine whether these subject-estimated summaries of the

EMA data are related to other subject-level outcomes. In

MixWILD, the ability to create a variety of stage 1 MELS

models is combined with a stage 2 linear or binary/ordinal

(logistic) regression using the subject random effects esti-

mates from the stage 1 MELS model to predict subject-level

outcomes.

This manuscript describes the use of the software

program MixWILD, which allows estimation of a stage

1 MELS model including random subject location and

scale effects. These random subject effects can be used

as predictors of a subject-level outcome that could be

continuous (linear regression) or binary/ordinal (logistic

regression) in stage 2 of the joint model. Additional subject-

level predictors/covariates can be included, and these can

also interact with the stage 1 random effects in predicting

the stage 2 subject-level outcome.

Since the random subject effects are estimates, we used

the plausible value methodology to repeatedly impute the

random effects in the stage 2 analysis (Mislevy, 1991).

This approach accounts for the uncertainty in the random

effect estimates. The stage 2 analyses are repeated for each

set of imputed random effect estimates, and then averaged

(using Rubin’s rules for multiple imputation) to yield overall

regression estimates. Thus, the full model is estimated in

three separate steps:

1. A stage 1 MELS model is estimated (“Stage 1:

Mixed-effects location scale model”), and subject-

specific random effect estimates and variances are

produced.

2. Datasets of imputed subject-specific random effects are

created.

3. The stage 2 linear or binary/ordinal regression model is

estimated (“Stage 2: linear or logistic regression using

stage 1 estimates”) for each of the imputed datasets, and

averaged estimates are obtained.

Currently, there is only limited statistical software avail-

able for conducting two-stage modeling of the aggregated

effects of intensively time-varying outcomes (stage 1) on

higher-level outcomes (stage 2); therefore, MixWILD will

enhance the toolkit for data analysts faced with under-

standing ILD data. One can estimate such models using

SAS PROC NLMIXED and/or Bayesian software programs

(e.g., WinBUGS, JAGS, or Stan). However, SAS PROC

NLMIXED requires familiarity with syntax and yet cannot

test random intercepts and slopes as predictors, mediators,

and moderators of outcome variables. On the other hand,

Bayesian programs require advanced programming skills

and are not specifically designed for applied researchers.

Also, our two-stage modeling approach differs in important

ways from other approaches of modeling intra-individual

variability. For example, others have proposed calculat-

ing summary statistics of variability for each person, such

as subject-level standard deviations (SD), mean square of

successive differences (MSSD), and probability of acute

change (PAC; (Solhan et al., 2009)). By computing such

summary statistics separately for each subject, these strate-

gies ignore the fact that subjects can vary quite dramatically

in terms of the number of observations that they contribute

to the analyses. In other words, these approaches treat each

summary statistic as if it was equally precise in its estima-

tion across subjects, which is not the case. Our approach

recognizes that subjects can vary in terms of their numbers
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of observations. Furthermore, previous approaches often

then use these summary statistics (SD, MSSD, PAC) in sub-

sequent analyses as fixed quantities, which ignore the fact

that they are only estimates with varying degrees of preci-

sion. As a result, by treating these as fixed and ignoring this

source of variation, the standard errors are too small, lead-

ing to more false positive results. Instead, in our stage 2

modeling, we use the plausible values re-sampling approach

(Mislevy, 1991) to take into account the variability that is

inherent in these estimates. Finally, in our stage 1 model, we

can characterize a person’s data in terms of means, slopes,

and variances, but additionally control for other covariates

in the model. Thus, our subject-level variance estimates can

adjust for mean levels and trends across time, for example,

which is not possible in previously used summary statistic

calculations.

The organization of the manuscript is as follows: “Stage

1: Mixed-effects location scale model” describes the stage 1

MELS model, Section “Stage 2: linear or logistic regression

using stage 1 estimates” describes the stage 2 regression

models, Section “MixWILD Software Overview” provides

screenshots and detailed instructions on using MixWILD,

as well as explanation of the output. A simulated intensive

longitudinal dataset incorporating EMA, in which subjects

were measured up to eight times each day during a 7-

day measurement period, is used to demonstrate applied

examples in “Applied examples”. Section “Conclusion and

future work” discusses and summarizes the program.

Stage 1: Mixed-effects location scale model

MixWILD allows a wide variety of models in stage 1

depending on the options chosen. Beginning with a random

intercept model (2.0.1), we consider that model as well as

two possible extensions of that model.

For measurement y of subject i (i = 1, 2, . . . , N

subjects) on occasion j (j = 1, 2, . . . , ni occasions):

yij = x⊤
ijβ + υi + ǫij , ǫij ∼ N(0, σ 2

ǫ ), υi ∼ N(0, σ 2
υ ),

(2.0.1)

In Eq. 2.0.1 and subsequent equations, xij is the vector

of regressors for the mean (typically including a “1” for the

intercept as the first element) and β is the corresponding

vector of regression coefficients. The regressors can either

be at the subject level, vary across occasions, or be

interactions of subject-level and occasion-level variables.

A traditional multilevel model may be used if covariates

are not expected to predict WS variance. For instance, a

researcher may be interested in the effects of an individual’s

perception of safety on his or her positive affect. Thus, the

random intercept represents the between-subject variability

of affect (i.e., deviation from the overall mean), and

the researcher may be interested in whether perceived

safety is associated with subject-specific means (i.e., does

perceived safety predict positive affect?) and the between-

subject variance (i.e., does perceived safety predict how an

individual’s mean positive affect differs from the overall

mean?).

Since the modeling of individual-level variation is of

particular interest, we can further extend the models to

allow covariates to influence the magnitude of the error

variance, and even further allow each subject to have their

own amount of WS variance, above and beyond the effects

of covariates.

In the following sections, we give more explanation

about those two extended models: a mixed-effects location

scale (MELS) model with the option to model BS variance

in terms of covariates, and a mixed-effects multiple location

scale (MEMLS) model.

When choosing a model, if subjects are only expected

to vary in their intercept and a researcher is interested is

in modeling the effect of various covariates on the WS and

BS variance, then the MELS model should be used (see

Fig. 1 for a visual example). Extending the prior example

examining positive affect and perceived safety, the random

scale (i.e., WS variance) in the model would be the extent

to which a subject’s positive affect deviates from their

own mean positive affect. Thus, a researcher would be

additionally interested in whether perceived safety predicts

the amount an individual deviates from his or her typical

level of positive affect.

An extension of this model in Eq. 2.0.1 is to allow

modeling of the variance of the random intercept with

covariates, rather than requiring it to be constant across

Fig. 1 A visual representation of the mixed-effects location scale

model
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all subjects (2.0.2). As examples, we would expect more

subject heterogeneity in a disease population than in a

healthy one, or we might expect to see more subject

heterogeneity as subjects grew older. This model will

be extended to allow modeling of the WS variance and

expanded on in “MELS model”.

yij = x⊤
ijβ + υi + ǫij , ǫij ∼ N(0, σ 2

ǫ ),

υi ∼ N(0, σ 2
υi

), σ 2
υi

= exp(u⊤
i α), (2.0.2)

In Eq. 2.0.2, uij is a vector of regressors (typically

including a “1” for the intercept as the first element) and α

is the corresponding vector of coefficients. The regressors

can either be at the subject level, vary across occasions, or

be interactions of subject-level and occasion-level variables.

If instead subjects are expected to vary not just in

their intercept, but also in their responses to a time-

varying covariate, having a slope random effect will be

advantageous and the MEMLS model should be used (see

Fig. 2 for a visual example). Further extending the prior

example, the relationship between perceived safety and

positive affect could be identified as the random slope.

Hence, a researcher would also be interested in whether

differences in positive affect occur as a result of change in

perceived safety.

A different extension of Eq. 2.0.1 is to allow a random

slope or other random effect in the mean modeling (2.0.3).

An example would be if we wanted to allow subjects to not

only have their own mean, but also differing trends over

Fig. 2 A visual representation of the mixed-effects location scale

model

time. This model will be extended to allow modeling of the

WS variance and expanded on in “Mixed-effects multiple

location scale (MEMLS) model”.

yij = x⊤
ijβ+z⊤

ijυi+ǫij , ǫij ∼ N(0, σ 2), υi ∼ N(0, �υ),

(2.0.3)

In Eq. 2.0.3, zij is a vector of occasion-level regressors

(typically including a “1” for the intercept as the first

element) and υi is the vector of random location effects

for subject i. These random location subject effects allow

subject-specific differentiation in the response to occasion-

level regressors.

For all three models, samples of the each subject’s

random effect values can then be used as predictors in a

stage 2 model, if desired.

MELSmodel

The mixed-effects location scale model and the correspond-

ing program have been well-explained in Hedeker et al.

(2008). Visually, Fig. 1 shows a simple example of the

model. The average across all subjects is depicted by the

solid line, and the lines of two subjects are shown as dotted

and dashed lines. Here, the average solid line has the same

slope as each subject. In general, there will be a line for each

subject in the dataset, but only two are shown here for sim-

plicity. In this random intercept model, each subject’s line is

parallel to the averaged line based on their covariate values.

The subject shown with a dashed line has a greater random

intercept (location), while the dotted line has a lower ran-

dom intercept (location). A subject’s random location effect

(i.e., the amount that a subject deviates from the mean) is

designated by υi . In the figure, this is represented by the

distance between lines–positive for the dashed line and neg-

ative for the dotted line. The amount of spread across the

lines indicates the BS variance–if the lines are close together

then subjects are more similar (smaller variance) and vice

versa. How much variation the individual points have rel-

ative to each subject’s line indicates the WS variance. In

the figure, the subject with open circles has a low WS vari-

ance, while the subject with filled circles has a larger WS

variance. The WS variance is modeled in terms of covari-

ates as well as a random subject (scale) effect ωi . Thus,

the consistency/erraticism of a subject may be explained by

covariates, as well as a unique individual contribution.

In terms of the statistical model, the measurement y of

subject i (i = 1, 2, . . . , N subjects) on occasion j (j =

1, 2, . . . , ni occasions) is modeled as follows:

yij = x⊤
ijβ + υij + ǫij , ǫij ∼ N(0, σ 2

ǫij
), υij ∼ N(0, σ 2

υij
),

(2.1.1)
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where

σ 2
υij

= exp(u⊤
ijα), (2.1.2)

and

σ 2
ǫij

= exp(w⊤
ijτ + τlυi + τqυ2

i + ωi), ωi ∼ N(0, σ 2
ω).

(2.1.3)

In Eq. 2.1.3, wij is a vector of regressors for the WS

variance (typically including a “1” for the intercept as

the first element) and τ is the corresponding vector of

regression coefficients. These could be the same or different

variables as in xij , and can be at the subject level, vary

across occasions, or be interactions of subject-level and

occasion-level variables.

Also in Eq. 2.1.3, the random scale effect (ωi) allows the

WS variance to vary across subjects beyond the contribution

of covariates. Similar to the random location effect in

Eq. 2.0.1, the covariates entered in a model may not account

for all of the reasons that subjects differ from each other.

The variances are subscripted by i and j to indicate

that their values change depending on the values of the

covariates uij and wij (and their coefficients). The number

of parameters associated with these variances does not vary

with i or j . The exponential function is used to ensure

that the resulting variances are strictly positive. Note that

although we have used different letters to represent the

covariates in the different models, there is no restriction and

the same covariates could be used.

The model also allows the random intercept (the random

location effect υi) to influence the WS variance. A quadratic

relationship could be useful for rating scale data with ceiling

and/or floor effects, where subjects that have mean levels

(i.e., random intercept) at either the maximum or minimum

value of the rating scale also have near-zero variance (i.e.,

scale). For example, if the rating scale goes from 1 to

10, then any subject with a mean level near either 1 or

10 would almost certainly have a small variance, giving

rise to the potential for a quadratic relationship between

the mean and variance. In this regard, MixWILD allows

for three possibilities to describe the relationship between

random intercept and random scale: (1) no association (τl =

τq = 0); (2) linear association only (τl �= 0, τq = 0);

and (3) linear and quadratic association (τl �= 0, τq �=

0). For a given program run, the user can select one of

these three possibilities using the NCOV option, described in

“MixWILD Software Overview”.

As described in Hedeker and Nordgren (2013), the

parameters of this model (β, α, τ , τl , τq , and σ 2
ω) are

estimated using maximum likelihood and the Newton–

Raphson algorithm. Once the model has converged to

a solution, empirical Bayes methods (Bock, 1989) are

used to obtain subject-specific estimates for υi (random

location intercept) and ωi (random scale), along with the

variance-covariance matrix associated with these estimates,

which are saved for use in stage 2. These correspond

to estimates of the mean and variance-covariance of the

posterior distribution of the random effects.

Mixed-effects multiple location scale (MEMLS)
model

Extending the model presented in the previous section,

a researcher may be interested in understanding how

the slopes of the lines vary by subject for time-varying

covariates. Such random slopes can be used to generalize

the above model, allowing for a vector of random location

effects instead of only a random intercept.

Visually, Fig. 2 shows a simple example. Unlike Fig. 1,

the rate of change can vary by subject. The average across

all subjects is depicted with the solid gray line, and the

location averages (mean plus slope) of two subjects are

presented as dashed lines. Hypothetical data points for these

two subjects are also included in the plot. In a given dataset,

there will be as many dashed lines as there are subjects, but

for simplicity only two subjects are plotted.

Relative to the overall (solid) line, the position of each

dashed or dotted line when the covariate is equal to zero

is indicative of a person’s random intercept location effect

υ1i , which indicates how a subject deviates from the mean

response. Relative to the solid line, the difference in slope of

each dashed or dotted line shows the effect of that subject’s

random slope effect υ2i .

In this example, the subject shown with a dotted line has a

lower value (negative υ1i) when the covariate value is small,

but increases at a faster rate (larger υ2i). How close together

the lines are, and how similar the slopes are is indicative

of how much subject heterogeneity is observed. Finally, the

amount of variation of a subject’s data points (i.e., relative

to the dashed or dotted lines) is indicative of that subject’s

WS variance. In the example, the subject with open circles

is much more tightly clustered (smaller ωi) than the subject

with closed circles.

The measurement y of subject i (i = 1, 2, . . . , N

subjects) on occasion j (j = 1, 2, . . . , ni occasions) can be

modeled as follows:

yij = x⊤
ijβ+z⊤

ijυi+ǫij , ǫij ∼ N(0, σ 2
ǫij

), υi ∼ N (0, �υ) ,

(2.2.1)

where

σ 2
ǫij

= exp(w⊤
ijτ + τυυi + ωi), ωi ∼ N(0, σ 2

ω). (2.2.2)
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As shown above, the random effects and errors are

assumed to follow normal distributions, and errors are

assumed to be independent of the random effects.

In Eq. 2.2.2, wij is a vector of regressors for the WS

variance (typically including a “1” for the intercept as

the first element) and τ is the corresponding vector of

regression coefficients. These could be the same or different

variables as in xij , and can be at the subject level, vary

across occasions, or be interactions of subject-level and

occasion-level variables.

Also in Eq. 2.2.2, the random scale effect (ωi) allows the

WS variance to vary across subjects beyond the contribution

of covariates. Similar to the random location effect in

Eq. 2.0.1, the covariates entered in a model may not account

for all of the reasons that subjects differ from each other.

As in Hedeker and Nordgren (2013), an association

between the location and scale random effects can be

induced by including the location random effects as

predictors in the within-subjects variance model, using

τυ , which are terms from the Cholesky decomposition of

the variance/covariance matrix. In this regard, MixWILD

allows for two possibilities to describe the relationship

between random location and random scale: (1) no

association (τυ = 0) or (2) association (τυ �= 0). For

a given program run, the user can select one of these

two possibilities using the NCOV option, described in

“MixWILD Software Overview”.

As in the MELS model, empirical Bayes methods (Bock,

1989) are used to obtain estimates of the multiple random

location effects υi and random scale effect ωi , along

with the variance-covariance matrix associated with these

estimates. These correspond to estimates of the mean and

variance-covariance of the posterior distribution of the

random effects. These are saved for use in stage 2.

Stage 2: linear or logistic regression using
stage 1 estimates

Once the subject-specific location (intercept and/or slope)

and scale estimates for the random effects have been

obtained, they may be used in subsequent stage 2

analyses. However, since these are estimates, the degree of

certainty/uncertainty in these estimates needs to be included

in the stage 2 analyses. For this, similar to the concept of

multiple imputation for missing data, a number of datasets

are created (i.e., re-sampled) using the mean and variance

estimates augmented by random number generation. Since

the random effects are assumed to have come from a

normal distribution, multiple imputed values are obtained

from a multivariate normal distribution with means and

variance/covariance as estimated. This results in multiple

datasets, each with a single set of imputations of the random

effects. The number of datasets created is set by the reader;

generally it is wise to use a large number, say 500, to ensure

more precise results.

These stage 1 random effects can then be used to model

a stage 2 subject-level outcome that is either continuous

(linear regression) or binary/ordinal (logistic regression).

Additionally, other subject-level covariates can be included

as main effects and interactions with the random effects in

the stage 2 model. The stage 2 analyses are repeated for

each set of imputed random effect estimates, and after all the

analyses have been performed, overall means and standard

errors are obtained (similar to what is done in multiple

imputation) to produce the stage 2 output.

MixWILD Software Overview

The MixWILD software is used to assist users in adding

model parameters and displaying output of the analysis

without relying on a command-line interface. It allows users

to select the data file to process, assign missing value codes,

add or remove regressors from different levels, and adjust

other miscellaneous parameters specific to model execution.

Figure 3 illustrates the flow of parameter selection in

MixWild and how the selection of random location effects

and stage 2 outcome impacts the execution of the various

modeling stages. MixWILD software implements a model-

view-controller (MVC) framework (Burbeck, 1992), with

the MixWILD graphical user interface (GUI) acting as the

view and its interactive components as the controller. The

variable definition library, acting as the model, specifies

parameters and exposes getter and setter functions to the

view and controller. The defined parameters are then saved

to disk to be accessed by MixWILD binaries for execution

of statistical procedures. The MixWILD GUI has been

developed using JAVA and is compatible with both the

Windows and macOS operating systems. Figure 3 illustrates

a model flowchart of different MixWILD components.

As shown in the figure, users first specify how random

location effects will be modeled, either as intercept only

or as intercept and slope(s). This specification informs

how the software proceeds to the stage 1 configuration,

providing the model-specific user interface for MELS or

MEMLS as needed. In the same configuration menu,

users specify the type of outcome at stage 2, which

leads to a customized user interface at stage 2 for

dichotomous/ordered logistic regression or linear regression

if a user specifies dichotomous/ordinal or continuous,

respectively. If the user indicates no stage 2 outcome, the

stage 2 configuration menu is bypassed and no stage 2

model is executed. A total of four permutations of models

exist in the version v1.0-beta.7, with output from models

separated by stage 1 and stage 2.
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Fig. 3 A model flowchart of MixWILD components

Creating a newmodel

To create new models, users can access the New Model

option under the File menu. Prior to specifying model

parameters, users are asked to identify the location of their

data. In order to ensure that the file is compatible with

MixWILD, users can click on the instructions on the top of

the window as shown in Fig. 4. For a dataset to be valid for

MixWILD, it must:

1. be saved as a valid comma-separated (.csv) file,

2. not contain blank missing values,

3. contain only real, non-zero numeric missing value

codes (if missing values are present),

4. be sorted by the unique level 2 identifier (e.g., ID

variable), and

5. contain variable names in the header.

Once a valid data file is imported, model specification

options are enabled. Users can assign a short custom title

to identify their model for future reference. A subtitle is

automatically generated to distinguish models written by

users and those automatically generated by MixWILD. The

title and subtitle are displayed as headers in the definition

file (explained in a subsequent section).

Users first specify whether they would like to include

random slopes in addition to an intercept for the random

location effects in the stage 1 model. Selecting Intercept

Only assumes the mean of the response does not differ

between subjects as a result of some covariate and engages

the MELS model, allowing users to specify covariates for WS

and BS variances. On the other hand, selecting Intercept and

Slope(s) engages the MEMLS model, allowing users to test for

differences in the association between the response and time-

varying covariates (i.e., random slope). Note that this option

does not permit the BS variances to be modeled in terms

of covariates. As an additional option, users may choose

to disable random scale (i.e., WS variance which varies by

subject) when running more traditional multilevel models at

1409Behav Res (2020) 52:1403–1427



Fig. 4 Create a new model by importing the data file and setting model parameters

stage 1 or when there is insufficient within-subject variation

to allow for it to vary at the subject level.

Next, users are asked to specify whether the stage

2 outcome will be continuous or dichotomous/ordinal;

alternately, users may forgo a stage 2 model entirely. If the

model includes a stage 2 outcome, then MixWILD allows

users to set a seed that varies between 1 and 65,000. Users

can edit the default seed randomly chosen by MixWILD.

Finally, users may specify a non-zero numeric code that

matches the missing value codes in the dataset, if any exist.

MixWILD defaults to no missing values to emphasize that

it does not recognize the presence of missing values on its

own, and therefore, users must be aware of the missing value

codes used in their datasets. After specifying the new model

parameters, users are asked to configure the stage 1 and

stage 2 models.

Stage 1 configuration

Prior to proceeding with stage 1 configuration, users

may choose to validate their data using the View Data

tab. Figure 5 provides a screenshot of the stage 1

model configuration. For reference, the selected model

configuration, as specified in the New Model window, is

displayed on this screen. First, users can define their ID

variable (i.e., the unique identifying value for each subject

in the study) and the stage 1 outcome variable from the

drop-down boxes. By default, the interface uses the first

and second column to automatically choose ID and stage

1 outcome, respectively. Next, users are able to select

regressors from their data using the Configure Stage 1

Regressors button.

Add stage 1 regressors

From the stage 1 configuration window, users are able to

add or remove regressors used in the model as shown in

Fig. 6. Level 1 variables are time-varying variables and level

2 includes time-invariant variables. It is important to note

that the software does not validate whether a variable is

time-varying or time-invariant. Once a variable is added to

either the level 1 or level 2 list, it is hidden from the main

variable list to ensure that there are no duplicate variables in

both the level 1 and level 2 variable lists. Users can revert

a variable to the variable list by removing them from the

added list. Once the variables are selected, users can submit
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Fig. 5 Stage 1 configuration that allows adding variables to level 1 and level 2 of stage 1. Level 1 and level 2 regressors are added from stage 1

regressor window (explained in the next section)

Fig. 6 Add regressors from the data file to level 1 and level 2 of stage 1
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their choices to go back to stage 1 configuration. The reset

button allows users to restore all variables on the regressor

configuration window.

Configuremodel-specific attributes

MixWILD allows additional model run time parameters

that users can specify using the Options button under stage 1

Configuration. Table 1 (Appendix) summarizes the options

offered by MixWILD, including default values and valid

ranges, where applicable.

Users are then able to submit changes or reset to default.

If the software detects that a user is running a Windows

operating system, an option appears allowing the user to

execute MixWILD statistical binaries in an experimental

mode for 32-bit operating systems. Figure 7 shows how

users can enable different advanced attributes to be included

in their models.

Stage 2 configuration

MixWILD validates stage 1 configuration once either the

stage 2 configuration tab, the Configure stage 2 button,

or the Run Stage 1 button (when no stage 2 outcome

is specified) are pressed. Users then proceed to stage 2

configuration, where they are asked to select the time-

invariant stage 2 outcome and regressors. Users should

note that if a time-varying variable is selected, the subject-

level mean will be used throughout the stage 2 model, but

the program will not output warning messages to indicate

this transformation. If a dichotomous or ordinal stage 2

outcome is specified, an option to check categories will

be presented as a convenience feature for users to verify

that their variable is valid. Once stage 2 regressors are

added, users can specify main effect and two-way and three-

way with random location and random scale (if applicable)

from stage 1 (as seen in Fig. 8). The regressor by random

location interaction may be either a single regressor by

random intercept interaction or two interactions: regressor

by random intercept and regressor by random slope.

However, in both cases, the three-way interaction will only

use the random intercept component of the random location

(i.e., regressor by random intercept by random scale). An

interaction of location by scale is automatically specified in

every stage 2 model, but may be disabled by checking the

box Suppress All Interactions, which limits the model to

the main effects of stage 2 regressors, random location, and

random scale (if applicable).

Specify model parameters

As seen in Fig. 6, the stage 1 regressor configuration

window allows users to specify the contribution of

previously selected variables in level 1 (time-varying) and

level 2 (time-invariant) tables. For each variable in level

1 and level 2, users can select their contribution to the

stage 1 outcome using appropriate checkboxes. Under level

1, users are able to disaggregate the pooled effects of

time-varying covariates into between- and within-subject

components by generating a level 2 subject mean centered

variable and a level 1 deviation from the subject mean

variable, respectively (see Appendix). The stage 1 user

interface changes dynamically to conform to specifications

in the MELS and MEMLS models. If a user indicates a

MELS model, they are asked to specify whether a linear

or quadratic relationship between the mean and within-

subject variance will be included in the model. Further,

MixWILD will request specification of mean-level model

Fig. 7 Advanced options to add to the model
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Fig. 8 Configure regressors for stage 2 analysis

(i.e., betas), BS variance, and WS variance regressors.

If a multiple location effects model is selected, the user

has the option to allow for an association between the

random location (intercept and slope(s)) and within-subject

variance. MixWILD will then present the user with the

option to specify mean, random slope, and scale regressors.

Note, random slope specification is excluded from level

2 regressors because level 2 observations have no within-

subject variance. A reset button allows users to reset all the

changes and restart model configuration.

Variable definition library

The MixWILD variable definition library performs a final

validation on stage 1 and stage 2 configuration prior to

generating an intermediate definition file (.def) that is saved

to the working directory. The intermediate file is generated

by translating each parameter from the MixWILD model

to a plain-text format readable by statistical binaries. The

external definition file is subsequently accessed by the

MixWILD interface to present users with a preview of the

definition file prior to proceeding with model execution (as

shown in Fig. 9).

Executable models

The GUI relies on packaged executables, which correspond

to the four permutations of statistical procedures available

in MixWILD: Stage 1 MELS models with linear or logistic

stage 2 regressions (MixregLS Mixreg and MixregLS

Mixor, respectively) and stage 1 MEMLS models with

linear or logistic stage 2 regressions (MixregMLS Mixreg

and MixregMLS Mixor, respectively). On model execution,

MixWILD selects the appropriate executables to read the

intermediate definition file and run the selected models. The

progress, executed in a background command-line shell, is

presented during execution in plain-text for troubleshooting

logging purposes. If the model fails, the log is not

deleted to allow the user to identify the source of the

error.

MixWILD copies these executables in a local folder

of the user’s system, where folder name is generated in

real-time using a system time stamp as a float value in

milliseconds since January 1st, 1970 (i.e., Unix epoch time).

This process allows for logging of all analyses performed

using MixWILD based on the time stamp of when the

program was accessed. More importantly, it reduces errors

and allows for troubleshooting in the event that a model

fails. By generating output and definition files in isolated

folders, MixWILD prevents conflicts across different

sessions as a result of identically-named files. Limiting the

redundancy in the MixWILD work folder as a result of

multiple filenames allows users to troubleshoot models in-

depth when errors are encountered. In addition to viewing

progress after a model is complete, users can see model

execution progress in a pop-up window as shown in the

image below. As soon as the analysis is complete and

successful, the copied executables are deleted from the local

folder. As a result, if the model fails, the user can implement

command-line tools to quickly rerun binaries in order to

identify the cause of errors. The user may also choose to

archive the folder and send the persistent session to others

for additional support.

To create optimized MixWILD executables, preproces-

sor directives are read at compile-time to indicate whether

the OS is a 32-bit or 64-bit Windows machine. If neither is
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Fig. 9 Variable definition preview. Users can save the .def file for later reference

detected, macOS is assumed and 64-bit Unix binaries are

generated instead. This method allow for streamlined devel-

opment using a single source code, with differences only

in file-system-specific lines where the command-line shell

(i.e., command prompt vs. bash) is called. There are descrip-

tive statistics and three sets of sub-model results in the stage

1: the first sub-model does not include scale parameters (i.e.,

standard multilevel model), the second sub-model includes

scale parameters but not random scale parameters, and the

third sub-model includes both the scale and the random

scale parameters. The simulated subject-specific random

effects are saved to a data file with the suffix ebvar.dat. The

stage 2 output includes descriptive statistics and final model

summary from either the linear or logistic regression.

Model output

When models are executed successfully, the output of stage

1 and stage 2 analyses are displayed in their respective

tabs in MixWILD (as shown in Fig. 10 top and bottom).

Users can choose to save the output files outside of

the working directory, as well as specify alternate file

extensions. As a convenience, MixWILD also allows

users to copy the output text directly from the output

window to the system clipboard. A GitHub-hosted website

(github.com/reach-lab/MixWildGUI) is available for users

to sign up for prompt updates to the application.

Applied examples

To better understand the types of questions that can be

addressed using the two-stage mixed effects approach,

two examples will be illustrated, covering both the MELS

model and the MEMLS model. In the first example,

the software first estimates a mixed-effects location scale

model in stage 1, including a random subject intercept

and a random subject scale effect. As stated prior, a

random subject intercept effect reflects a subject’s mean (or

location), whereas a random scale effect reflects a subject’s

variability. For this example, the stage 2 component is a

single-level linear regression model predicting a continuous

subject-level outcome using the random subject effects

from the stage 1 model as regressors, with the option of
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Fig. 10 Stage 1 (top) and stage 2 (bottom) analysis output

including random effects as main effects and interactions

with other subject-level regressors. This second example

first estimates a MEMLS model in stage 1, including a

random subject intercept and slope, as well as a random

subject scale effect. Hence, the random subject intercept and

slope are considered location effects because they reflect

a subject’s mean response, while the random subject scale

effect reflects a subject’s variability. In this example, the

stage 2 component is a single-level logistic regression model

that predicts a binary or ordinal subject-level outcome using
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the random subject effects from the stage 1 model as main

effects or interactions with other subject-level regressors.

Neither of the examples presented here were formally

preregistered. They are presented here for the purpose of

demonstrating MixWILD software’s use for the analysis of

EMA data for behavioral research. However, the data and

code for the software can be made available to researchers

on request.

Does subject-level change in positive affect (PA)
and variation in PA predict daily sedentary time?

The first applied example is in the context of a multi-method

longitudinal study utilizing momentary self-reports of pos-

itive affect collected from smartphones and physical activ-

ity data collected from waist-worn accelerometers (Maher

et al., 2019). The primary aim of the study is to determine

whether within-subject mean (i.e., random intercept) and

within-subject variance (i.e., random scale) of momentary

positive affect (a within-subject, continuous, time-varying

variable) predicts between-subject average sedentary hours

per day (a between-subject, continuous, time-invariant vari-

able), after controlling for sex (a between-subject, categor-

ical, time-invariant variable) and day of the week at stage

1 and age (a between-subject, continuous, time-invariant

variable) at stage 2. Day of the week is coded as a con-

tinuous, within-subject, time-varying variable coded such

that Monday = 0 and Sunday = 6, hence a linear asso-

ciation can be interpreted as each day approaching the

end of the week. Further, the study seeks to understand

whether subjects’ age (a continuous, between-subject, time-

invariant variable) moderates the effect of subjects’ mean

(i.e., random intercept) and variance (i.e., random scale) in

momentary positive affect in predicting subject-level aver-

age hours per day of sedentary behavior, after controlling for

sex and day of week. The study will employ a MELS model

using MixWILD, followed by a stage 2 linear regression

using estimates of random components from stage 1.

For stage 1, subjects i = 1, 2, . . . , N , occasions j =

1, 2, . . . , ni :

paij = β0 + β1dowij + β2sexi + υi

+ǫij , ǫij ∼ N(0, σ 2
ǫij

), υi ∼ N(0, σ 2
υij

), (5.1.1)

where

σ 2
υij

= exp(α0 + α1sexi), (5.1.2)

and

σ 2
ǫij

= exp(τ0 + τ1sexi + τlυi + ωi), ωi ∼ N(0, σ 2
ω).

(5.1.3)

For stage 2, subjects i = 1, 2, . . . , N :

adshi = β∗
0 + β∗

1agei + β∗
2 υ̂i + β∗

3 (υ̂i × agei) + β∗
4 ω̂i

+β∗
5 (ω̂i × age)i + β∗

6 (υ̂i × ω̂i) + ǫ∗
i ,

ǫ∗
i ∼ N(0, σ 2

ǫ∗). (5.1.4)

β∗ is used to designate the fixed effects in stage two

(Eq. 5.1.4) as different from those in stage one (Eq. 5.1.1)

and ǫ∗ is used to distinguish the error terms.

Model specification

The model is configured in MixWILD using the following

parameters after specifying a data file location and title (see

Fig. 11):

1. Random Location Effects: Here, Intercept is speci-

fied, thus telling the software to assume only a random

subject intercept, but allowing modeling of covariates

on between-subject variance.

2. Random Scale: Random scale is left enabled by default

as the study question examines how the outcome varies

within subjects.

3. Stage 2 Outcome: The stage 2 outcome in this model

is a continuous variable, hence Continuous is specified.

4. Contains Missing Values and Missing Value Code:

The data contains missing values, specified as -999 in

the supplementary dataset.

Next, the ID variable is selected at stage 1, and positive

affect is specified as the stage 1 time-varying outcome

variable as indicated in Fig. 13 (Appendix). Day of the week

(shortened to DOW) is added as a time-varying covariate

and is allowed to affect the mean-level model without

disaggregation of its effects. Sex (male = 1, female = 0)

is added as a time-invariant covariate and is allowed to

affect the mean model, the BS variance model, and the

WS variance model. Further, the model allows for a linear

relationship between the random intercept of the outcome

(i.e., WS mean) and random scale (i.e., WS variance).

Subjects may report relatively high positive affect based on

prior literature, and there is expected to be less variation

in these subjects (i.e., ceiling effects (Eid & Diener,

1999)). However, some scales may exhibit floor and ceiling

effects, in which case a quadratic relationship may be more

appropriate to account for low variance in low valence

responses. The model options are left at defaults, therefore
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assuming intercepts in the mean model, BS variance, and

WS variance equations. Once stage 1 is configured, average

sedentary hours per day is set as the subject-level stage 2

outcome and regressors are selected as indicated in Fig. 14

(Appendix). For this specific research question, age is

entered in the model and selected to interact with random

intercept and random scale, without specifying a three-way

interaction. Once the model configuration is accepted and

executed, the resulting output is displayed, shortened for

readability in subsequent blocks of text.

Stage 1 results

Excerpted results from stage 1 are shown below, with

only the final sub-model shown. A series of three models

(with the subsequent model using the previous model’s

coefficients as starting values) is run to increase stability

and allow comparisons with and without random scale. The

final model shows that as day of the week increases by

1 unit, mean positive affect increases by 0.39 units (z =

8.58, p < .001), while sex does not have a significant effect

on mean positive affect (z = −1.21, p = .23). There

is also no significant effect of sex on either the between-

subject variability (z = −1.32, p = .19) or the within-

subject variability (z = −1.08, p = .28), after adding the

random scale effect. There is significant variability in scale

across subjects, as indicated by the random scale standard

deviation; a significant random scale standard deviation

indicates that subjects differ from each other in their degree

of WS variance (i.e., scale) (z = 19.58, p < 0.001).

Further, the final sub-model shows that, as anticipated,

the random scale is negatively associated with the random

intercept (z = −6.45, p < 0.001). Hence, subjects with

overall higher mean positive affect had less WS variability

in their momentary responses, likely as a result of a ceiling

effect in the affect response scale.

Log Likelihood = -47914.216

Akaike’s Information Criterion = -47923.216

Schwarz’s Bayesian Criterion = -47945.843

Variable Estimate AsymStdError z-value p-value

------------------------- ------------ ------------ ------------ ------------

BETA (regression coefficients)

Intercept 42.57868 0.55031 77.37179 0.00000

DOW 0.39158 0.04563 8.58138 0.00000

SEX -0.73865 0.60904 -1.21281 0.22520

ALPHA (BS variance parameters: log-linear model)

Intercept 4.28473 0.09386 45.65031 0.00000

SEX -0.14654 0.11109 -1.31913 0.18713

TAU (WS variance parameters: log-linear model)

Intercept 4.78679 0.03843 124.56564 0.00000

SEX -0.04782 0.04447 -1.07528 0.28225

Random scale standard deviation

Std Dev 0.40712 0.02080 19.57251 0.00000

Random location (mean) effect on WS variance

Loc Eff -0.14581 0.02253 -6.47252 0.00000

Stage 2 results

The results from stage 2 are presented below. The stage 2

results table contains the intercept, subject-level regressors

(in this case, age) predicting the outcome (average hours

per day in sedentary time), the effect of the subject-level

mean (i.e. random location denoted as Locat 1) and any

interactions (denoted as scale) on sedentary time, the effect

of within-subject variance (i.e., random scale) and any

interactions on sedentary time, and the interaction between

random intercept and random scale on sedentary time,

any specified three-way interactions (in this case, none),

and the residual variance. After controlling for all other

variables, age was positively associated with average daily

sedentary time, such that older subjects spend more time

being sedentary (z = 4.07, p < 0.001). Neither a subject’s

mean nor variance predicts their average daily sedentary

time, nor are these associations moderated by age (p >

0.05).
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Average Log Likelihood = -2106.858 (sd= 0.754)

Akaike’s Information Criterion = -2113.858

Schwarz’s Bayesian Criterion = -2131.457

Variable Estimate AsymStdError z-value p-value

------------------------- ------------ ------------ ------------ ------------

Intercept 9.37497 0.06913 135.61136 0.00000

Age 0.01809 0.00445 4.06683 0.00005

Locat_1 0.07526 0.06594 1.14148 0.25367

Locat_1*Age -0.00311 0.00362 -0.86029 0.38963

Scale 0.03044 0.08354 0.36436 0.71559

Scale*Age -0.00054 0.00475 -0.11386 0.90935

Locat_1*Scale -0.00667 0.08898 -0.07493 0.94027

Residual_Variance 2.45392 0.10338 23.73673 0.00000

Do day of week differences in positive affect predict
obesity risk?

The second applied example is in the context of a

longitudinal study utilizing momentary self-reports of

positive affect collected from smartphones and exploring

affect-related obesity risk among subjects (Maher et al.,

2019). The primary aim of the study is to examine whether

within-subject mean (i.e., random intercept) and within-

subject variance (i.e., random scale) of momentary positive

affect (a within-subject, continuous, time-varying variable)

predicts subject-level obesity risk (a between-subject,

dichotomous, time-invariant variable), after controlling for

sex (a between-subject, categorical, time-invariant variable),

whether a momentary response was provided on the

weekday or weekend (a within-subject, dichotomous, time-

varying variable) at stage 1, and age (a between-subject,

continuous, time-invariant variable) at stage 2. Additionally,

the study seeks to understand whether subjects differ from

each other in the extent to which positive affect changes

on weekends as compared to weekdays, after controlling

for subject-level mean and subject-level variance (i.e., the

random slope of weekend/weekday in terms of positive

affect) at stage 2. The last set of aims seek to understand

whether: (a) the variability between subjects in the

association (i.e., random slope) between weekday/weekend

and momentary positive affect predicts subject-level obesity

risk, (b) the age of a subject moderates the associations

between mean levels (i.e., random intercept) and variances

(i.e., random scale) in positive affect in predicting obesity

risk, and (c) the age of a subject could moderate weekend-

positive affect association (i.e., random slope) in predicting

obesity risk. The study will employ a MEMLS model using

MixWILD, followed by a stage 2 logistic regression using

estimates of random components from stage 1.

For stage 1, subjects i = 1, 2, . . . , N , occasions j =

1, 2, . . . , ni :

paij = β0 + β1w endij + β2sexi + υ1i + υ2iw endij

+ǫij , ǫij ∼ N(0, σ 2
ǫij

), υi ∼ N(0, �υ), (5.2.1)

where

σ 2
ǫij

= exp(τ0 + τυ1υ1i + τυ2υ2i + ωi), ωi ∼ N(0, σ 2
ω).

(5.2.2)

For stage 2, subjects i = 1, 2, . . . , N :

logit (P [obesei = 1]) = β∗
0 + β∗

1agei + β∗
2 υ̂1i + β∗

3 (υ̂1i × agei)

+β∗
4 υ̂2i + β∗

5 (υ̂2i × agei)

+β∗
6 ω̂i + β∗

7 (ω̂i × agei) + β∗
8 (υ̂1i × ω̂i)

+β∗
9 (υ̂1i × ω̂i × agei)

+β∗
10(υ̂2i × ω̂i) + β∗

11(υ̂2i × ω̂i × agei).

(5.2.3)

As in the previous section, β∗ is used to designate the

fixed effects in stage two (Eq. 5.2.3) as different from those

in stage one (Eq. 5.2.1).

Model specification

The model is configured in MixWILD using the following

parameters after specifying a data file location and title (see

Fig. 12):

1. Random Location Effects: Here, Intercept and

Slope(s) is specified, thus telling the software to con-

strain the modeling of effects on between-subject vari-

ance, but allow for modeling of multiple random loca-

tion effects (intercept and one or more slopes).

2. Random Scale: Random scale is left enabled by default

as the study question examines how the outcome varies

within subjects.
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Fig. 11 Configure model parameters for a two-stage MELS model

3. Stage 2 Outcome: The stage 2 outcome in this

model is a dichotomous variable, hence Dichotomous is

specified.

4. Contains Missing Values and Missing Value Code:

The data contains missing values, specified as -999 in

the supplementary dataset.

Next, the ID variable is selected at stage 1, and positive

affect is specified as the stage 1 time-varying outcome

variable as indicated in Fig. 15 (Appendix). Whether an

observation takes place on a weekday (coded as 0) or

weekend (coded as 1) is added as a time-varying covariate

and is allowed to affect the mean and random slope without

disaggregation of effects. Sex (male = 1, female = 0) is

added as a time-invariant covariate and is allowed to affect

the mean only. The model has no regressors on the WS

variance (i.e., random scale). However, the model tests for

association between person-level mean and within-subject

variance of the outcome, as is indicated by the specified

association of the random location and random scale effects.

The model options are left at defaults, therefore assuming

intercepts in the mean, BS variance, and WS variance

equations. Once stage 1 is configured, whether or not a

subject is obese (obese = 1, not obese = 0) is set as the

person-level stage 2 outcome and regressors are selected as

indicated in Fig. 16 (Appendix). For this specific research

question, age is entered in the model and selected to interact

with random location and random scale. A three-way

interaction is specified between age, random location, and

random scale on obesity risk. Once the model configuration

is accepted and executed, the resulting output is displayed,

shown in abbreviated form in subsequent text blocks.

Stage 1 results

Excerpted results from stage 1 are shown below, with

only the final sub-model shown. A series of three models

(with the subsequent model using the previous model’s

coefficients as starting values) is run to increase stability

and allow comparisons with and without random scale. The

final model shows that there was greater positive affect

on the weekend as compared to weekdays, and no sex

differences for positive affect in the example (z = 7.06, p <

0.001 and z = −1.15, p = 0.25, respectively). There is

significant variability in scale across subjects, as indicated

by the random scale standard deviation (z = 19.26, p <

0.001). In other words, subjects differ from each other in

their degree of within-subject variability. It also shows that
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subjects differed significantly between each other based

on mean levels of positive affect (i.e., random location

intercept) and differed in their association between weekend

and positive affect (i.e., random slope as indicated by the

weekend regressor) (z = 18.33, p < 0.001 and z =

5.54, p < 0.001, respectively). The random intercept and

random slope were negatively associated with each other

(Covariance12), indicating that subjects with higher mean

levels of positive affect on weekdays (i.e., higher levels of

the intercept) did not show as much increase in positive

affect on weekends, relative to subjects with lower positive

affect on weekdays (z = −4.16, p < 0.001). Lastly, there

was no significant association between random slope and

WS variance (i.e., random location effects on WS variance);

in other words, erratic positive affect in a subject was not

associated with change in positive affect on weekend days

relative to weekdays (z = −1.05, p = 0.29).

Log Likelihood = -49747.866

Akaike’s Information Criterion = -49757.866

Schwarz’s Bayesian Criterion = -49783.190

Variable Estimate AsymStdError z-value p-value

------------------------- ------------ ------------ ------------ ------------

BETA (regression coefficients)

Intercept 42.96071 0.50136 85.68796 0.00000

WEEKEND 1.67701 0.23744 7.06279 0.00000

SEX -0.65533 0.56931 -1.15108 0.24970

Random (location) Effect Variances and Covariances

Intercept 71.74435 3.91378 18.33122 0.00000

Covariance12 -9.81601 2.35683 -4.16493 0.00003

WEEKEND 14.26340 2.57335 5.54274 0.00000

TAU (WS variance parameters: log-linear model)

Intercept 4.71828 0.01968 239.78506 0.00000

Random location effects on WS variance (log-linear model)

Intercept -0.12884 0.02304 -5.59199 0.00000

WEEKEND -0.03716 0.03530 -1.05270 0.29248

Random scale standard deviation

Std Dev 0.40514 0.02103 19.26143 0.00000

Stage 2 results

The stage 2 results table contains the intercept, subject level

regressors (in this case, age) predicting the subject-level

outcome (obesity, as a dichotomous variable), the effect of

the subject-level mean (i.e., random intercept denoted as

Locat 1) and any interactions on obesity risk, the effect of

the within-subject association (i.e., random slope denoted

as Locat 2) between weekday/weekend and positive affect

and any interactions on obesity risk, the effect of within-

subject variance and any interactions on obesity risk, and

the interaction between random intercept and random scale

on obesity risk, and any specified three-way interactions (in

this case, with age). After controlling for all other variables,

age was positively associated with increased obesity risk

(i.e., older subjects are more likely to be obese than younger

subjects)(z = 6.25, p < 0.001). The random intercept for

positive affect negatively predicts obesity risk when age

equals zero (equivalent to age of 29 years) and the random

scale and random slope are zero (z = −2.66, p < 0.01).

Since the random effects are centered around zero, a random

scale of zero represents the average scale. For subjects

with average scale of positive affect, higher levels of mean

positive affect are associated with reduced obesity risk.

In this model, random slope did not significantly predict

obesity risk (z = 0.26, p = 0.80). Finally, the interaction

between age and random scale was significant in predicting

obesity risk, suggesting that the positive association of age

and obesity risk is more pronounced for subjects that are

more erratic or less stable in their momentary positive affect

response (z = 3.17, p < 0.005). In other words, subjects

who are older and who have higher variability in positive

affect are more likely to be obese. All other interactions

were not significant.
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Average Log Likelihood = -633.437 (sd= 3.667)

Akaike’s Information Criterion = -643.437

Schwarz’s Bayesian Criterion = -668.761

Variable Estimate AsymStdError z-value p-value

------------------------- ------------ ------------ ------------ ------------

Intercept -0.24106 0.13037 -1.84905 0.06445

Age 0.05172 0.00828 6.24617 0.00000

Locat_1 -0.26560 0.09986 -2.65974 0.00782

Locat_1*Age 0.00534 0.00599 0.89198 0.37241

Locat_2 -0.02665 0.13925 -0.19139 0.84822

Locat_2*Age 0.00258 0.00913 0.28207 0.77789

Scale 0.16841 0.12401 1.35805 0.17445

Scale*Age 0.02499 0.00788 3.17250 0.00151

Locat_1*Scale 0.16108 0.15288 1.05363 0.29205

L*S*Age -0.00128 0.00977 -0.13116 0.89565

Conclusion and future work

This paper presented MixWILD, a GUI implementation

of a novel statistical software that can be used to enhance

inferences made from intensive longitudinal data, such

as those gathered using EMA. Although MixWILD may

Fig. 12 Configure model parameters for a two-stage MEMLS Model

be used as a basic hierarchical modeling tool to test

hypotheses in clustered data with many observations,

researchers interested in how variability of predictors

affects their outcome of interest will benefit most from

this approach, as illustrated in the applied examples.

Other permutations of MixWILD cover additional study

hypotheses. For instance, a researcher interested in physical
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activity may examine whether moderate-vigorous physical

activity (MVPA) has significant WS variability (i.e., random

scale) across the week at stage 1, and then examine

whether this variability of MVPA predicts obesity risk

at stage 2. Similarly, a researcher interested in mood

disorders may hypothesize that subjects vary in their

relationship between momentary anhedonia and sedentary

behavior at stage 1, and subsequently examine whether this

association (i.e., random slope) predicts change over time

in a standard depression inventory. However, the interactive

component and statistical back-end of MixWILD have

several limitations.

The interactive component of MixWILD is still in

active development, with features such as the ability to

open MixWILD archives (i.e., previously run models)

and automatically generated models with regressors (under

View Model) expected to be implemented soon. The

statistical component of MixWILD is limited by its

inability to run three-level models at stage 1, run two-level

models at stage 2, or use count outcomes at stage 2, the

latter two of which is currently under development. The

software currently provides Maximum Likelihood (ML)

estimates, a further addition would be to add Restricted

Maximum Likelihood (REML). Moreover, MixWILD and

its statistical models do not support R, SAS, and STATA

procedures and we hope to develop them as part of our

future work.

We have proposed a two-stage modeling approach in

MixWILD, however simultaneous joint modeling can also

be used in some cases for similar purposes. However,

as pointed out by Murawska et al. (2012), if only the variables

in the first stage mixed model (and not the second stage out-

come model) provide information about the random effects,

then it is more appropriate to separate the estimation. Con-

ceptually, we can imagine a case where the first stage is

estimated using the first wave of an EMA dataset, and the

second stage is based on the second wave. It could be argued

that a joint model may not be appropriate in this case,

because they are from non-overlapping periods of time.

The supplemental data file allows users to replicate

results presented in this manuscript. A website is available

at https://reach-lab.github.io/MixWildGUI/ for users to

download the latest release sign up for update notices, as

well as download additional documentation that includes an

updated user guide. All analyses presented in the manuscript

were conducted in MixWILD Soft Release v1.0-beta.7;

some user interface elements may change over time.

Change logs and source code for interactive components

of MixWILD is available at https://github.com/reach-lab/

MixWildGUI and source code for the statistical procedure

is available at https://github.com/reach-lab/MixWild. The

version control system also serves a primary point for

users to submit issues and feature requests for the

program. A separate Git repository for the statistical

component of the code is accessible by contacting the

corresponding authors or any member of the development

team. Finally, researchers, programmers, and statisticians

can also contribute new features to MixWILD by accessing

our open-source code. All software is licensed under GNU

General Public License v3.0 (GPL-3).
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Appendix A: Terminology

The following section defines terms relevant to intensive

longitudinal data analysis that will be referenced throughout

the manuscript, the user interface, and program output.

MixWILD assumes a standard two-level model with a

continuous level 1 outcome at stage 1, where i represents

each subject and j represents each timepoint.

Consider the model

Yij = β0 + υ0i + ǫij (A.0.1)

Grand mean refers to the mean of the outcome across all

time points and subjects, ignoring clustering, as indicated

by the intercept in the model (β0).

Subject-level mean is the mean of the outcome across all

time points for a given subject, and specified by including

the subject deviation from the intercept in the model

(β0 + υ0i).

Between-subject variance is defined as the variance

across subject-level mean (σ 2
υ ). In a homogeneous

sample of subjects, this value would approach 0.

Within-subject variance is defined as the error variance

for a given subject (σ 2
ǫij

). This value would be near 0 in a

subject whose outcomes are extremely well modeled.

The mean model can then be expanded to allow for the addi-

tion of covariates. Note that the interpretation of β0 is now the

1422 Behav Res (2020) 52:1403–1427

https://reach-lab.github.io/MixWildGUI/
https://github.com/reach-lab/MixWildGUI
https://github.com/reach-lab/MixWildGUI
https://github.com/reach-lab/MixWild
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


overall mean when the value of all covariates is 0. β0 + υ0i

is the subject level mean when all covariates equal 0.

Yij = β0 + υ0i + (β1 + υ1i)Xij + β2Wi + eij (A.0.2)

Definitions of terms that are relevant to covariates in

MixWILD can be defined by addition of components to the

means model:

Time-invariant covariates are level 2 variables mea-

sured once per subject, such as socio-demographic vari-

ables (Wi).

Time-varying covariates are level 1 variables measured

multiple times per subject, including temporal variables

such as time of day and day of week (Xij ). Given

that time-varying covariates produce pooled effects in

multilevel models, for those variables that are continuous

or binary, additional statistical transformation can be

used to disaggregate between- and within-subject effects.

Within-subject covariates are created when time-varying

covariates are centered at their subject-level mean (Xij −

X̄i), and those subject-level means become additional

variables (X̄i). The disaggregation procedure allows for

interpretation of within- and between-subjects effects of

covariates on the outcome.

Mean effect refers to the relationship between a covariate

and the mean of the outcome, this is the equivalent

of a fixed effect coefficient in a traditional multilevel

model (β1 or β2). For example, physical activity may

negatively associated with age or positively associated

with concurrent positive affect.

Subject-level mean effect refers to the relationship

between the covariate and the mean of the outcome for a

specific subject. (β1 + υ1i).

Between-subject variance effect is defined as the rela-

tionship between a covariate and the variance of the

subject-level means. [Only in MELS model]

Within-subject variance effect refers to the relationship

between a covariate and within-subject variance of the

outcome.

Random scale effect allows different subjects to have

different amounts of within-subject variance, beyond

that modeled by covariates. The variance of the random

scale effect may be influenced by that subject’s location

random effects. For instance, subjects with high mean

levels of physical activity may be more consistent in

their positive affect, or subjects may be less erratic (i.e.,

low WS variance) in their positive affect when they are

engaged in physical activity.

Appendix B: Tables

Table 1 Advanced options to configure the model

Advanced option Interaction mode Usage in models

Mean intercept, BS Check-boxes (checked by Include submodel intercepts

variance intercept, WS default)

variance intercept

Convergence criteria Spinner (between 0 and 1, To set the accuracy level of the model

with 0.00001 as default)

Quadrature points Spinner (between 1 to More quadrature points results in more accurate

1,000, with 25 as default) estimate of integral, but takes more time to execute

Adaptive quadrature Check-box (checked by default) To personalize quadrature to each subject

Maximum number of Spinner (between 1 to 1000, To prevent the model from running

iterations with 200 as default) indefinitely

Ridge Spinner (between 0 and 1, To improve convergence for computationally

with 0.1 as default) challenging data

Standardize all regressors Check-box (off by default) To set variables on the same scale if needed

Discard subjects with no Check-box (off by default) Subjects with identical values for all

variance observations of the outcome variable can cause

estimation problems for the model with

random scale; This option excludes such subjects

Resample stage 2 Check-box (checked by To account for the uncertainty in the EB

default), followed by the estimates

number of resamples

(between 1 and 10,000,

with 200 as default)
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Appendix C: Figures

Fig. 13 Configure stage 1 regressors for a two-stage MELS Model

Fig. 14 Configure stage 2 regressors for a two-stage MELS Model with a continuous outcome in stage 2
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Fig. 15 Configure stage 1 regressors for a two-stage MEMLS Model

Fig. 16 Configure stage 2 regressors for a two-stage MEMLS Model with a categorical outcome in stage 2
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