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Abstract—Artificial intelligence and data-driven networks will
be integral part of 6G systems. In this article, we comprehensively
discuss implementation challenges and need for architectural
changes in 5G radio access networks for integrating machine
learning (ML) solutions. As an example use case, we investigate
user equipment (UE) positioning assisted by deep learning (DL)
in 5G and beyond networks. As compared to state of the art
positioning algorithms used in today’s networks, radio signal
fingerprinting and machine learning (ML) assisted positioning
requires smaller additional feedback overhead; and the position-
ing estimates are made directly inside the radio access network
(RAN), thereby assisting in radio resource management. In this
regard, we study ML-assisted positioning methods and evaluate
their performance using system level simulations for an outdoor
scenario. The study is based on the use of raytracing tool, a 3GPP
5G NR compliant system level simulator and DL framework
to estimate positioning accuracy of the UE. We evaluate and
compare performance of various DL models and show mean
positioning error in the range of 1-1.5m for a 2-hidden layer
DL architecture with appropriate feature-modeling. Building on
our performance analysis, we discuss pros and cons of various
architectures to implement ML solutions for future networks and
draw conclusions on the most suitable architecture.

Index Terms—5G, Deep learning, Radio Access, Localization.

I. INTRODUCTION

A. Intelligence in Beyond 5G Networks

A lot of attention has been drawn in the last few years

around the 5th generation (5G) New Radio (NR) cellular

systems, which has been under standardization by the 3rd Gen-

eration Partnership Project (3GPP). 5G promises ubiquitous

connectivity of a massive number of heterogeneous services.

Users in a 5G network may have very different performance

requirements in terms of data rates, reliability and latency. To

support those, 5G networks are designed to be very flexible

and sophisticated, but also highly complex. This renders

optimization of different network functions difficult. Artificial

intelligence (AI) and Machine Learning (ML) in particular

have been recently investigated as promising techniques that

can be used to optimize network functions by introducing an

additional data-driven intelligence to the network [2].

Network virtualization and network softwarization solutions

in 4G networks can support data-driven intelligent and au-

tomated networks to some extent. In 5G and beyond sys-

tems, network intelligence is envisioned to be end-to-end.
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The user equipment (UE) devices need to be smarter, en-

vironment and context aware, and capable of running ML

algorithms. The radio access network algorithms and radio

resource management (RRM) functions can exploit network

intelligence to fine tune network parameters to reach close-

to-optimal performance. More dynamic network topology and

more flexible self-organization need to be integrated in the

network to support highly versatile network traffic. The era

of network virtualization and network softwarization in 4G

and 5G leads to the era of smart, intelligent and automated

networks of the future in 6G.

B. UE Positioning: Motivation and State of the Art

5G technologies introduce a new paradigm to connectivity

and mobility by using accurate location information. Position-

ing and localization studies have been conducted for various

applications and devices for many decades such as global

positioning systems, industrial internet of things, autonomous

driving, indoor maps and so on [3], [4]. Positioning applica-

tions are found from small indoor area to wide landscapes of

satellite coverage. As mobile handsets are widespread, users

start utilizing localization services through cellular networks.

In the 5G era, even higher number of device types appear such

as sensor devices, robots and vehicles; all operating based on

highly accurate location information.

Positioning accuracy is one of the most important factors

to evaluate localization system performances. Federal Com-

munications Commission (FCC) in the United States has set

the E911 regulatory performance requirements [5] as well as

further accuracy requirements defined tightly by commercial

systems [3]. FCC E911 requires horizontal error less than

50m and vertical error less than 5m for 80% of UEs [5]. In

commercial systems like 3GPP, requirements are tighter than

E911 ones. To reach these levels, novel enhanced positioning

methods need to be investigated.

In order to achieve such goals of high accuracy and mea-

surement efficiency, various positioning methods have been

deeply studied. In localization systems, usually a positioning

method is defined based on a particular type of measurement

metric. As illustrated in Fig. 1(a), timing-based techniques take

advantage of knowledge of time-differences due to the speed

of RF signals for distance calculation between a transmitter

and a receiver. The measurement matrix is estimation of the

time of arrival (TOA) of signals. Angle-based techniques take

advantage of transmit beamforming of signals and differences

of phase across receive antenna elements to determine the

angle between a transmitter and a receiver. There is a lot
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Fig. 1. In conventional positioning solutions, beam RSRP values as well as angle of arrival is reported back by a UE to gNB. Our proposed ML solution
exploits just RSRP values reported by the UE.

of literature available on UE positioning in 5G based on UE

signal time and angle measurements or a combination of them,

e.g., [6]–[9]. A detailed overview of positioning technology

and road map to 5G positioning architecture is provided in

[8] while Wymeersch et al discuss positioning for vehicular

networks in 5G era [9].

As the NR physical layer design inherently supports beam-

based Reference Signal Received Power (RSRP) measurement

reports from the UE for multiple beams, we study how well

ML-based approaches work to determine the UE position

directly from these measurements as illustrated in Fig. 1(b).

During the ML inference, the only inputs needed are mea-

surements the UE is providing to its serving cell, hence the

positioning estimation can be done using an ML inference

engine in the baseband of the UE’s serving cell, avoiding the

need for the location server framework which resides outside

the radio access network and therefore, efficiently supporting

a single-cell based positioning method.

ML techniques have been used to solve various problems

in communication systems. References [10]–[12] survey some

exciting works on use of ML algorithms in the field of wireless

communication and networking. Some recent works apply

ML techniques for localization problems. In [13] autoencoder-

based indoor localization method is studied that provides

high-performance 3-D positioning in large indoor places for

bluetooth low energy networks. The authors in [14] propose

a machine learning approach based on Gaussian process

regression to position users in a distributed massive multiple-

input multiple-output (MIMO) system with the uplink received

signal strength (RSS) data. The simulation results show that

the proposed method improves performance in massive MIMO

scenarios. In [15], neural networks are used on input of

fingerprint data obtained from channel characteristics and

geographical locations and median error of 6 and 75 meters is

reported for indoor and outdoor scenarios, respectively. Similar

approaches for UE positioning using neural networks (NNs)

are investigated in [16]–[20] as well.

Most of these works discuss ML-based positioning in differ-

ent settings than ours. For instance, work in [13] is limited to

bluetooth networks, [16], [17] focus mainly on data from Wifi

networks, while results in [18] are limited to the case where

data is available reliably from three base stations, none of

them is a limitation of our work. The authors in [15] use more

practical settings for their evaluation but their feature selection

is different and evaluation is limited to indoor scenarios unlike

this work, where evaluation is carried our for more challenging

out door scenarios by making use of raytracing. The works in

[19] and [20] evaluate UE positioning in the context of 5G

networks but evaluations are very limited in terms of details

on feature selection and no insight is provided on challenges

associated with deployment of ML based positioning in 5G

networks. The authors in [14] provide fundamental results on

error bounds using ML and no evaluation results are provided

for the practical cellular networks. Furthermore, we dedicate

second part of the paper to network architecture aspects,

including measurement collection, ML module hosting and

associated challenges in practical deployment of the solution

in 5G networks. This study is integral part of 5G networks

going forward and missing in literature.

C. Contributions

Recent literature on the usage of ML in wireless networks

emphasizes on fundamental communication problems [21],

potential use cases [22] and associated challenges; but there

is a lack of studies on the larger scale performance analysis at

system level and the challenges associated with ML algorithms

implementation in 5G networks. Standardization bodies, such

as International Telecommunication Union [23], and 3GPP

(Rel 17 and Rel 18) have started working on identifying

requirements for the future networks.

This article complements the standardization efforts and

aims at filling this gap by studying performance of UE

positioning as an example use case, and discussing architecture

level aspects for implementing ML-assisted solutions in 5G

and beyond networks.

Our contributions are summarized as follows:
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• We provide a comprehensive system level study starting

from generating raytracing data, using system level sim-

ulator to generate RSRP fingerprinting for geographical

(X,Y ) coordinates; and finally applying ML techniques

to train and validate UE positioning accuracy.

• We study various input features that contribute to improve

positioning accuracy and conclude that a combination

of RSRP values from the serving and neighboring cell

beams provides the best results. Then, we evaluate the

performance of network level and cell-specific training

topologies and quantitatively show that cell-specific train-

ing outperforms network level training. For the sake of

comparison, we evaluate decision tree regression ML

technique to evaluate the performance.

• We identify main requirements to implement ML solution

for UE positioning use case. In particular, we identify

the data source for the ML model host and analyze how

data could be gathered in 5G-RAN architecture to train

the ML model and subsequently use it for inference.

Then, we identify ML model hosts in relation to 5G-RAN

architecture and describe pros and cons for the proposed

solutions with respect to data availability and overhead

cost.

The rest of this paper is organized as follows: after describ-

ing 3GPP system activities in relation to UE positioning in

Section II, we proceed with details of set up for our case study

in Section III. Performance of the ML approach is evaluated

and discussed in Section IV. Section V and VI discuss 5G

architecture level support to run ML solution for this use case

and associated design challenges. Section VII concludes with

the main contributions of the paper.

II. 3GPP STANDARDIZATION ON POSITIONING

3GPP positioning feature has been supported in Rel-9 LTE

networks; several RF based positioning methods have been

introduced, and advanced techniques are under investigation

for NR in Rel-16 and Rel-17. Recent 3GPP NR positioning

study conclusions have been stated in [24]. There has been

discussion of many different possible positioning solutions in

the study item, conclusions have been made that the 3GPP NR

systems should support solutions of observed time difference

of arrival (OTDOA), uplink time difference of arrival (UT-

DOA), angle information, Multi-Cell Round Trip Time (Multi-

RTT), and enhanced cell-ID (E-CID) in NR Rel-16 [25]. For

the proposed solutions, 3GPP is under discussion to define

network measurements through DL or UL radio link.

One of the major changes in NR compared with legacy

cellular networks is the addition of the millimeter wave

(mmWave) frequency band. NR also provides support for

beam-based operations. During the beam search operation, the

angle can be obtained easily in terms of downlink angle of

departure (DL-AoD) and uplink angle of arrival (UL-AoA).

While UEs and gNBs search for the best beam for radio link,

DL and UL RSRP is measured to evaluate signal quality of a

beam. Received power measurement has been considered for

positioning fingerprint in wireless systems [26].

5G technologies introduce a new paradigm to connectiv-

ity, location awareness and RRM by providing accurate UE

location information to network functions. In future 3GPP

releases, positioning enhancements are envisioned to achieve

different levels of positioning accuracy for different applica-

tions. Positioning requirements in 3GPP are under discussion

with horizontal positioning accuracy for general commercial

use cases (80% of users) with less than 1m accuracy and the

positioning latency below 100ms [27]. For industrial IoT use

cases, the position accuracy of less than 20cm is required with

a desired latency in the order of 10ms [28].

3GPP Release-17 and beyond is further evolving to im-

prove accuracy and latency with advanced technologies in

specific scenarios. 3GPP has interests in centi-meter accuracy

positioning measurements through carrier phase measurement

or wideband positioning measurements [3], [29]. Positioning

using machine learning is one of key topics as well. Position-

ing service latency is another important factor to evaluation

positioning system especially for vehicle and industrial use

cases. As enabling technologies, V2X and sidelink supports

ad-hoc positioning measurements, and on-demand positioning

reference signal (PRS) supports rapid scheduling of PRS and

measurements effectively.

Achieving better accuracy requires more radio resources

and signal bandwidth, computational power, more overhead in

collecting more measurements and more delay in processing

this information. Thus, positioning can be treated as a service

with different quality of service (QoS) attributes. A request

for UE location may be conveyed with a required QoS,

which includes the desired location accuracy (vertical and/or

horizontal) as well as the response time. In fact, the location

service (LCS) can allow the LCS client to specify its required

quality of service parameter. In 3GPP standard, two different

LCS QoS class options are defined [30]. In assured class,

the requirements for estimated UE position are strict in terms

of accuracy and response time. If the obtained result does

not fulfill the indicated requirements, then the response will

be discarded by the LCS service. In the best effort class,

the requested location QoS is not strict and the LCS service

should receive the information, even if it does not fulfill

the indicated requirement. The selection of the most suitable

positioning method, e.g., AoA, ToA based methods; and its

related parameters should account for this QoS information

when available.

III. POSITIONING IN 5G SYSTEMS: A CASE STUDY

A. System Setup

We first describe the system set up for our study. As shown

in Fig. 2, the system set up is divided into the following main

components:

1) Raytracing: A raytracing software is used to generate

raytracing data as a function of (X,Y ) coordinates, and

full 3-D multipath ray data is generated for each point. In

this case, an outdoor urban database and the Intelligent

Ray Tracing algorithm were configured.

2) System Level Simulation: As the NR system is required

to construct measurement per beam, we investigate NR

received signal power based positioning method. Based

on the raytracing data generated for channel modelling,
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Fig. 2. Schematic diagram for our proposed ML-assisted UE positioning framework. Offline data pre-processing and ML training is performed while online
part performs inference.

system level simulation of the 3GPP 5G NR air interface

including beamforming is run to produce beam RSRP

values for each UE. The details of the parameters used

in system level simulations are provided in Table I and

Table II. The serving as well neighboring beam RSRP

values serve as fingerprinting for the under-study area

based on raytracing data.

3) Offline ML Training: Based on the data received for the

system level simulator, offline ML training is performed.

We select beam RSRP values as input features and train

ML model with feed-forward neural network as well as

decision tree algorithms.

4) Online ML Inference: Finally, trained ML model is nu-

merically evaluated to determine UE location. Euclidean

distance between the estimated and actual UE position,

which is assumed to be known, serves as the accuracy

measure for the estimated UE position.

The last block in Fig. 2 points toward possible use cases for

application of accurately estimated positioning data.

Raytracing is performed for a section of Lincoln Park,

Chicago. Eight sites are placed at each street corner as shown

in Fig. 3. In this study, we have confined ourselves to study

of positioning accuracy for the UEs that have a Line of

sight (LoS) connection to their serving cell. We observed that

positioning accuracy using this ML-assisted method in the

mmWave propagation environment is severely affected when

LoS is not available to the UE. However, this may not be

a big issue in future networks where very dense mmWave

deployments are planned and LoS non-availability chances

will not be that high. In our study, 62% of the UEs have LoS

available and we consider only those users for ML training

and testing. For ML training purpose, we only consider RSRP

feature for the beams in current time slot, i.e. a snapshot based

approach is employed without any UE mobility consideration.

The methodology used in this study provides an efficient

option to evaluate feasibility of this approach compared to

drive testing.

We use two parameters, mean and standard deviation de-

noted by Ē and σ respectively, of the Euclidean distance

Fig. 3. 8 sites are placed at 8 corners of Lincoln Park, Chicago for the purpose
of raytracing data generation.

between the estimated training/test UE position and the actual

UE position and define them as,

Ē =

∑

N

n=1
xn

N
(1)

σ =

√

√

√

√

1

N

N
∑

n=1

(xn − Ē)2 (2)

where xn is the value for Euclidean distance between UE

predicted and actual position for the nth sample.

B. Summary of Deep Learning Architecture

Deep learning is one of the powerful ML techniques to solve

classification/regression problems. Deep feedforward networks

are advanced neural networks (NNs) with one or more hidden

layers of neurons between input and output layer.

A feedforward deep NN (DNN) has an input layer, which is

connected with output layer through hidden layers. The hidden

layers represent depth of the network, and ’deep learning’ term

arises from this. The number of neurons in each layer represent

width of an NN where neuron is a computational unit that

represents a vector-to-scalar mapping. An activation function,

such as ’tanh’ and ’Rectified Linear Units (ReLU)’, is used to

compute element (neuron) wise non-linear transformation of
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TABLE I
RAYTRACING PARAMETERS

Parameter Value

Number of sites 8
Access Point height 10m
Inter-site distance 110m vertical, 200m horizontal
Carrier frequency 28 GHz
Resolution of data points 1m (123,768 locations sampled)

learned parameters ’weights’ and ’bias’, which is transferred

to next layer. Goal of a DNN is to learn the function that maps

input x to output y. Input vector x is termed as feature vector

in DL literature. Architecture of a neural network defines

how many layers a NN has, how many neurons per layer are

required and how layers are connected. This is a stochastic

process and termed as ’hyperparameter’ optimization.1

For supervised learning, the term ’Loss’ is defined as the

difference between the computed output and actual output

parameterized by some function, such as minimum squared

error (MSE), entropy function, etc. Based on the training data,

DNN tries to learn mapping function that minimizes ’loss’ as

training progresses. During inference, test error is computed

by an appropriate metric to compute accuracy of the trained

DNN.

In ML, ’overfitting’ and ’underfitting’ are two important

concepts. ’Overfitting’ represents the situation when DNN is

over-trained and it becomes hard for the computed model to be

generalized for the unknown testing examples. To overcome

this problem, ’early stopping’ and ’regularization’ is used. On

the other side, ’underfitting’ represents the situation when both

training and testing error are large [31]. Analysis of training

and testing error provides good indication of accuracy of DNN

model and helps designer take right actions to improve the

model. Collecting more data and/or hyperparameter optimiza-

tion are the well-known solutions.

Unlike conventional positioning methods based on ToA and

AoA information, ML assisted positioning does not necessarily

require measurements from the neighbouring gNBs for trian-

gulation. ML-assisted algorithms can be used to compute UE

position based on RF-fingerprinting of UE location and the

RSRP of the beams serving the UE. In the next section, we

present results based on a case study conducted in a millimeter

wave (mmWave) outdoor scenario.

IV. PERFORMANCE EVALUATION

Parameters used for raytracing in raytracing software and

system level simulations are summarized in Table I and II,

respectively. In particular, Table I shows the parameters used

for raytracing module with 8 sites, each with heigh 10m, as

shown in Fig. 3. Resolution of raytraced data points is 1m,

i.e., raytracing area is sampled at interspacing of 1m.

In Table II, parameters used in system-level simulations

are shown. The coverage is beam-based in 5G, not cell

based. There is no cell-level reference channel to measure the

1Hyperparameter optimization is one of the main tasks in ML and include
optimization of several parameters by experimentation.

TABLE II
SYSTEM LEVEL SIMULATION PARAMETERS

Parameter Value

Number of SSB beams 32
Number of gNBs 8 having 3 sectors each
DL Tx Power per sector 30 dBm
Element Azimuth Beamwidth 65 degrees
Element Elevation Beamwidth 65 degrees
Element gain 8dBi
Front2Back 30dB
Mechanical downtilt 5 degrees

coverage of the cell. Instead, each cell has one or multiple

Synchronization Signal Block Beam (SSB) beams and the UE

can select candidate beams after beam sweeping. The antenna

panel used for system level simulations was a 16×16 cross-pol

array, formed of 16 azimuthal beams and 3 elevation beams

and grid-of-beam comprises 16 non-uniform beams to cover

the full cell. Further details, on physical antenna parameters

are provided in Table II.

For evaluation of DL module, the parametric settings are

explained as follows. 90% of the labeled data is used for

training and 10% is set aside for validation. Other parameters

include, Batch size = 32, ’tanh’ activation function for input

and hidden layers, linear activation function for output layer,

’adam’ optimizer, loss metric = ’MSE’. We used Keras API

with TensorFlow backend. ’Early Stopping’ based on the ’loss’

in the training data is set to prevent overfitting while maximum

number of epochs is set to 500. Data is normalized using mean

and standard deviation normalization.

A. Decision-Tree Regression

For the baseline ML solution, we use Decision Tree Re-

gressor algorithm to evaluate performance. Decision Tree

is a supervised learning method used for classification and

regression for the problems where feature vectors have ’tree

like’ structure. The goal is to train a model that predicts the

value of a target variable by learning decision rules inferred

from the data features. Decision trees are simple to implement

and results can be easily visualized and analyzed. Our feature

vector (explained later in this section) has a ’tree like’ structure

as illustrated in Fig. 5 and suits well to regression problem at

hand. The UEs are first subdivided based on cell IDs. Further

divisions are done based on beam IDs, and finally RSRP values

help to differentiate between UEs with the same beam and

cell ID. Later, in this section, we compare the Decision-Tree

Regressor algorithm based performance evaluation with the

DL based results.

B. Network-Level DL Training

We first study the case where ML training is performed

over all the data available from 24 sites at one positioning

server. Current 3GPP standards support UE reporting for up to

4 strongest beams from the serving cell. In Table III, we show

training and testing accuracy for the case when RSRP values

for 4 strongest beams from the serving cell, corresponding
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Fig. 4. Pattern for RSRP values for the 32 beams received at the UEs in close proximity.

Fig. 5. Block diagram for the tree like feature structure considered in this
work.

beam IDs and cell ID is the input for the input layer of the

DNN. This will serve as a baseline. For the 9 input features

(4× beam ID, 4× RSRPs, Cell ID), we train our DNN. We

use only one hidden layer to get some idea on suitability of

features and vary the number of neurons for each experiment2.

Estimation accuracy improves with increasing number of neu-

rons and we get mean test accuracy of approximately 5m for

very large number of neurons.

In Fig. 4, we investigate the main hurdle in improving

positioning accuracy based on RSRP values of the beams from

the serving cell alone. The figures are plotted by choosing a

UE randomly and then finding the UEs in its close proximity.

We observe high correlation in serving cell beam IDs and

their respective RSRP values for the UEs, which makes it

harder to improve positioning accuracy of the UEs in close

proximity. Fig. 4(a) and Fig. 4(b) show 2 such examples where

RSRPs for the strongest beam IDs are almost overlapping.

2Multilayer NNs improve accuracy as we show later, however we confine
ourselves to single hidden layer in the beginning to get more insight on the
other parameters influencing our model.

TABLE III
POSITIONING ACCURACY FOR 4 STRONGEST BEAMS FROM THE SERVING

CELL

No. Training Ē Training σ Test Ē Test σ
Neurons (m) (m) (m) (m)

576 5.4 4.3 5.7 5.1
1152 4.3 3.4 4.9© 4.4
2304 4.1 3.1 5.1 4.7

TABLE IV
POSITIONING ACCURACY FOR WITH FIXED 3 BEAM RSRPS FROM THE

SERVING CELL AND VARYING BEAM RSRPS FROM THE NEIGHBORING

CELLS

No. beams from Training Ē Training σ Test Ē Test σ
neighbor cells (m) (m) (m) (m)

0 4.3 3.6 4.8 4.7
1 2.8 2.6 3.6 4.8
2 2.2 1.5 3.0© 3.4
3 2.1 1.5 3.1 4.9

After some further experimentation with various number of

strongest beams from the serving cell with DNN (not reported

in this paper), we observe a negligible difference in positioning

accuracy by using 3 instead of 4 beams from the serving cell.

As UE reporting is costly operation, we use RSRP values for

at most 3 beams from the serving cell for further investigation

in this sequel.

Next, we propose to make use of RSRP values of the beams

not only from the serving cell but from the neighboring cells

as well. In Table IV, we show position accuracy results by

fixing the number of strongest beams from the serving cell to

3 and varying the number of beams from the neighbor cells.

For example, using 2 strongest beams from 2 neighbor cells

along with their beam and cell IDs give us 6 more features

in addition to 7 features from 3 beam IDs, their respective

RSRP values and cell ID of the serving cell. From Table IV,

we observe that mean accuracy of 3m is achieved by using data
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TABLE V
CELL-SPECIFIC-TRAINING, SINGLE HIDDEN LAYER: POSITIONING

ACCURACY FOR DATA FROM BOTH SERVING AND NEIGHBORING CELLS

No. beams from Training Ē Training σ Test Ē Test σ
neighbor cells (m) (m) (m) (m)

0 2.9 3.0 3.3 3.1
1 2.3 2.0 2.8 5.1
2 1.7 1.2 2.0© 2.1
3 1.4 1.1 1.9 1.7

TABLE VI
CELL-SPECIFIC-TRAINING, 2 HIDDEN LAYERS: POSITIONING ACCURACY

FOR DATA FROM BOTH SERVING AND NEIGHBORING CELLS

No. Training Ē Training σ Test Ē Test σ
Neurons (m) (m) (m) (m)

32 2.2 1.6 2.4 1.6
64 1.1 0.7 1.4© 1.2

128 1.2 0.8 1.5 1.4

from 2 strongest beams from the neighboring cells in addition

to 3 serving cell beams. This is considerable improvement over

the case using data from beams only from the serving cell.

This performance gain is achieved by adding more features

and data for the DNN model training.

C. Cell-Specific DL Training

Looking beyond feature engineering, we investigate the

effect of change in location of training. In Section IV-B,

the DNN training was performed with all the data from

several sites at one location server. In this section, we study

positioning accuracy by training individual cell-specific DNN

model for each cell. This results in removing the serving cell

ID feature from the feature vector as it is known a-priori, called

dimensionality reduction in ML literature. We preprocess data

generated by the system level simulator to differentiate data

for various cells. As a result, size of both training and test

data may vary from cell-to-cell. For example, we have data

for more than 10 × 103 positions for cell number 14, while

it is about 700 for cell number 1. However, this variance in

number od training examples does not affect results in our

case as the resolution for Ray-tracing is kept fixed for all the

cells regardless of their size.

In Table V, we study DNN with a single hidden layer

and cell specific training for cell number 14. As previously

observed, best feature vector uses data from 3 strongest beams

from the serving cell. We further investigate accuracy by

varying the number of beams from the neighboring cells for

cell-specific training. Again, positioning accuracy improves by

using data from more beams from the neighboring cells. In this

case, the largest mean positioning accuracy is achieved for

3 neighboring cells; but difference is negligible as compared

to 2 neighboring cell case. Looking at the cost of reporting

information for this extra beam from the neighboring cell,

we can safely assume that most of the performance gain is

achieved with data from 3 serving and 2 neighboring cell

beams. Remarkably, cell-specific training provides us mean

positioning accuracy of 2m for 3 serving and 2 neighboring

Fig. 6. CDF of positioning accuracy for the 2 hidden layer, cell specific DL
training for cell 14.

cell beams case which is considerably higher than the accuracy

of 3m for the same configuration for network level training.

This gain emerges from preprocessing step to get cell-specific

data from the data set and removing Cell ID feature. To further

achieve better results, we now look at further improving results

by adding one more hidden layer to DNN. Table VI shows that

mean positioning error can be reduced to 1.4m by using 64

nodes in both hidden layers of DNN, a performance gain of

0.5m over the same parameters and single hidden layer case.

To elaborate further on the results, Fig. 6 shows cumulative

distribution function (CDF) for this particular parameter set3.

The results illustrate that almost 30% UEs achieve positioning

error less than 1m and less than 10% have error greater than

3m.

To conclude, we summarize all the results in Fig. 7 and

show that DNN with cell-based training using both serving

as well as neighboring cell RSRP beam features provide the

most accurate results. We include evaluation results for the

baseline Decision-Tree Regression approach for network level

training. Network level training eliminates the need for cell-

level training servers without much loss of performance as

decision tree regressor can easily differentiate cells based on

their IDs at first level of branching as depicted in Fig. 5.

The input features for the baseline case are the same as for

DNN approach, i.e., 3 beams from the serving cell and 2 from

the neighboring cells. We get mean positioning error of 2.1m

which is less than the mean positioning error obtained by DNN

approach.

V. ARCHITECTURE SUPPORT FOR ML-ASSISTED USE

CASES

Based on our performance analysis in previous section, we

discuss architecture level aspects to implement ML solutions

in 5G networks. In relation to measurement data collection and

network support, it is important to answer a few fundamental

questions for any use case enabled with ML assistance:

3CDF is the most commonly used criterion for reporting results in industry
as it gives information about other percentile, e.g., 80%, 90% percentile.
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Fig. 7. Performance comparison of Decision Tree Regressor and various
DNN cases with different input features, number of hidden layers (HL) and
architecture for training data, i.e. network based (NB) or cell-based (CB).

• Data sources: How and from where to collect sufficient

data for ML training and inference?

• Training and inference hosts: What are the 5G system

(5GS) entities to place the ML training and inference

modules?

• Required enhancements: Does the current 5GS archi-

tecture support the required data collection? Which 5GS

architecture enhancements would be needed?

To answer the above for the UE positioning use case as

an example, we have primarily looked at the fundamental

architecture problems associated with implementation of ML

and specifically supervised learning techniques in 5G radio

access network (RAN).

5G NR architecture introduced a split RAN architecture for

a 5G NodeB (gNB), where a gNB consists of a Centralized

Unit (gNB-CU) and one or more Decentralized Units (gNB-

DU) [32]. In the split architecture adopted by 3GPP, the

lower layers of the protocol stack reside at the gNB-DU

and the higher layers, including the radio resource control

(RRC), are part of the gNB-CU [32]. An example of split

architecture with 2 gNB-CUs hosting 3 gNB-DUs each, is

illustrated in Figure 8. Given this split architecture, all the

RRC specific messages and configurations are performed at

the gNB-CU. To be able to monitor and maintain network

operation, network configures UEs with measurement reports.

Measurement reports can be configured from RRC in which

case the configured UE measurements are sent to the gNB-

CU. One type of UE reports is obtained by the network

through configuration of MDT reports. Additionally, network

can configure radio measurements, involving the physical and

MAC layers, as well as their reporting. Those measurements

are either periodic in nature or sent upon trigger and are

available at the gNB-DU hosting the lower layers in the form

of channel quality indicator (CQI) reports.

A. Measurement Collection for Running ML Solutions

Supervised ML solutions comprise two phases, the training

phase where measurements are used to train an ML model and

the inference phase where the model is executed. In order to

train an ML model, it is important to obtain ”sufficiently”

large number of high-quality measurements for training an

ML model. In Long Term Evolution cellular systems (LTE),

3GPP introduced Minimization of Drive Tests (MDT) [33] as

a methodology to support network planning and optimization

by detecting and troubleshooting erroneous network situations,

such as coverage holes and weak coverage in the uplink or

downlink directions to name a few.4 To achieve that, MDT

requests, manages and processes a (potentially) large amount

of data. Even though MDT was originally introduced in LTE,

it has currently been under NR standardization. Since MDT

requests measurements from the UEs, it has been considered

a viable solution to obtain radio measurements for ML model

training. Similarly, for the ML inference phase, (near) real time

data needs to be collected from the MDT and an appropriate

action is performed as a result of ML inference.

In MDT, the network can configure a UE with specific

measurements. There are two modes for MDT measurements:

Logged MDT and Immediate MDT. In Logged MDT, the

network configures a UE in RRC Connected State with a

measurement configuration. The UE logs measurements ac-

cording to its configuration while in RRC Idle or RRC Inactive

states. Then, UE indicates data availability to the network

when it returns to RRC Connected state so that the network

can retrieve it. In LTE, logging was only periodical but in

NR event-based logging is also introduced to address ”out of

coverage” detection.

Since MDT handles UE measurements, it has been con-

sidered as a viable methodology for training of ML models.

Also, both Immediate and Logged MDT can be useful in

providing UE measurements for UE localization since each

method targets UEs in a different state; in Immediate MDT

measurements are provided to the network by UEs in RRC

Connected state while in Logged MDT a UE logs measure-

ments while in RRC Idle or Inactive states. By using both

methods to obtain measurements a larger number of UEs can

be targeted providing a larger and more diversified set of

measurements in short time.

Despite its natural connection to data collection for ML,

MDT is an optional feature and does not bind UE manufac-

turers with implementing it. Furthermore, user consent issues

may arise where a user may not be willing to provide data

to the network exposing for instance its location or other

user-specific information. Thus, it is still challenging to obtain

the required measurements from UEs. Besides, the number of

measurements required to obtain meaningful training results

can be large and depends on the performance sought by the

ML algorithm. For example, in UE positioning the number

of measurements collected for basic best effort positioning

can be much less than those when some guarantee on the

4MDT is a feature introduced in 3GPP Rel. 10 which allows operators to
collect data from UEs, e.g., radio measurements and location information, in
order to improve network performance.
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Fig. 8. Proposed ML-Assisted RRM architecture. As illustrated on the left side of the figure (gNB1 (CU1)) ML Training can be performed in gNB-CU, and
OAM, while ML Inference can be performed in the gNB-DU or gNB-CU. The exact possibilities on ML Training and Inference for the specific use cases of
Positioning are given at the right side of the figure (gNB2 (CU2)).

TABLE VII
SUMMARY OF ML-ASSISTED UE POSITIONING USE CASE

Requirements for ML 5G Network Options

Data Source Training: UE measurements (RSRP, location); other options (AoA, ToA)
Inference: UE measurements (RSRP); other options (AoA, ToA)

Training Host option 1: gNB-CU
option 2: OAM

Inference Host gNB-DU

Required Enhancements UE: periodic Immediate MDT reports with low overhead
OAM: ML-data processing and storage from large number of cells and UEs
gNB/gNB-CU: ML-data processing and storage, transfer to/ from other gNBs
OAM and gNB/gNB-CU communication: ML-data transfer between gNB and OAM/TCE

positioning accuracy is expected. Furthermore, since obtaining

and reporting of UE measurements consumes UE resources

(e.g., in terms of battery power, memory, etc.), there should

be a balance in the number of measurements that the UE is

configured to report to the network and in the performance

gains.

To address these problems above, network can further

use measurements internally collected and accumulated. For

instance, downlink CQI feedback can be collected by the

gNB-DU and could be used in combination with RRC-based

reporting methods to help network with the data collection.

Using such methods would relieve some of the requirements

on UE reporting for data collection. On the other hand, this

will come at the cost of a higher complexity on collecting all

the measurements on a single network entity since some of the

measurements may be available at the gNB-CU and others at

a gNB-DU.

All above factors render the measurement collection process

to be complex. In this paper, we assume that UEs can

provide the requested measurements to the network, at least

via the standardised RRC measurement reports, and we discuss

various options for the ML training and inference functions.

B. ML Training and ML Inference Modules

As we discussed in the previous section, the training of

an ML model requires a potentially large number of mea-

surements. Thus, it is natural to assume that the training

of an ML model will be placed at a network entity where

the measurements are available. In the 5G architecture, MDT

measurements can be reported by the UEs to the gNB-CU.

This implies, that gNB-CU is a network entity that may receive

combined UE measurements from all UEs under this gNB-

CU. A gNB may log these measurements and forward the

logs to the Trace Collection Entity (TCE) that resides in the
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Operations and Management (OAM) of the network. Thus,

5G architecture provides two natural locations to perform the

ML training, the gNB-CU and the OAM. Performing ML

training at the gNB-CU provides centralized optimization over

the received measurements collected by the UEs connected to

it. On the other hand, ML training at the OAM could addi-

tionally provide even more global optimization by combining

measurements obtained across gNBs.

For ML based positioning use case, non-real time, or near

real-time, inference is sufficient for most of the applications,

which can be run in the gNB (DU or CU). Where to run

ML inference exactly, depends on the ML-assistance use case.

Specifically, when it comes to ML for localization, lower layer

UE measurements are used for the inference. It is therefore

natural that the inference is placed at the gNB-DU. Figure

8 depicts the possible locations where ML training and ML

inference can be placed within a split 5G-RAN architecture.

VI. SUMMARY: DESIGN CONSIDERATIONS

In Table VII, we summarise our findings, and the proposed

answers to the main questions raised in Section V.

The UE positioning relies on the UE downlink radio

measurements and their corresponding RRC reports or MDT

reports to the serving gNB (or gNB-CU). ML-assisted RRM

algorithms can accommodate multiple types of input data

sources simultaneously, which can further enhance their in-

ference capabilities. Examples for such inputs are: RSRP

measurements, UE location information, etc, while others like

cell load measurements, UE traffic type can as well be used

for other ML based use cases.

These types of ML-assisted mechanisms must rely on

a minimum ’quality’ of the input data in order to ensure

good performance. This is not a trivial task, especially when

considering inputs generated in systems not fully controlled

by the 3GPP network and its RRM algorithms.

Training of the proposed ML-assistance algorithms for the

studied UE positioning use case can be done at the gNB

and/ or at the UE. More advanced training can combine joint

training at the gNB and at the UE. Furthermore, since MDT

measurements are forwarded from the gNB to the OAM, ML

training at the OAM can further take advantage of the higher

computational power it offers. Additionally, since OAM is

a reception point of MDT reports from multiple gNBs, it

can further provide a centralized system-wide ML solution.

ML training at OAM is also a viable solution for enhanced

localization purposes. Particularly for the localization use case,

the ML inference is performed at the gNB-DU, since this is

a network entity with knowledge on lower layer information,

e.g., beam information and RSRP values.

The ML-assistance, data processing and data transfer func-

tionalities need to be available in the gNB (DU and/or CU)

or OAM, either directly implemented in these entities, or in

separate host entities with direct interfaces to the gNB and

OAM [23].

VII. CONCLUSIONS

In this article, we have comprehensively analyzed UE

positioning use case for application of machine learning for

performance enhancement in 5G networks. Performance of

UE localization use case is evaluated for various input fea-

tures, network configuration for model training and neural

network architecture; and UE positioning accuracy of 1-1.5m

is observed for LOS UE measurements. Furthermore, the

challenges in implementing machine learning solution for the

studied use case are discussed by 5G-RAN architecture point

of view. Various options for ML training and inference hosting

are considered and their trade-off in terms of complexity

is presented. We outline our vision for architectural level

support in 5G (leading to 6G) networks for integrating ML

for the promising use cases where ML solutions can achieve

significant gains in future ML-based network architectures.
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