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Abstract
Device mobility in dense Wi-Fi networks offers several challenges. Two well-known 
problems related to device mobility are handover prediction and access point selec-
tion. Due to the complex nature of the radio environment, analytical models may 
not characterize the wireless channel, which makes the solution of these problems 
very difficult. Recently, cognitive network architectures using sophisticated learn-
ing techniques are increasingly being applied to such problems. In this paper, we 
propose data-driven machine learning (ML) schemes to efficiently solve these prob-
lems in wireless LAN (WLAN) networks. The proposed schemes are evaluated and 
results are compared with traditional approaches to the aforementioned problems. 
The results report significant improvement in network performance by applying the 
proposed schemes. The proposed scheme for handover prediction outperforms tradi-
tional methods i.e. received signal strength method and traveling distance method by 
reducing the number of unnecessary handovers by 60% and 50% respectively. Simi-
larly, in AP selection, the proposed scheme outperforms the strongest signal first and 
least loaded first algorithms by achieving higher throughput gains up to 9.2% and 
8% respectively.

Keywords Wi-Fi · Cognitive networks · Machine learning · Handover · Access point 
selection · Throughput

1 Introduction

Wi-Fi Networks are experiencing two paradigm shifts in terms of size and applica-
tions. The size of Wi-Fi networks has increased from small home and office net-
works to large-scale ultra-dense networks, also referred to as Overlapping Basic 
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Service Set (OBSS). At the same time, there has been an increasing number of novel 
applications and services such as content distribution [1], Internet of Things (IoT) 
[2], Intelligent Transportation Systems (ITS) [3, 4], Device-to-Device (D2D) based 
cooperative networking [5, 6] and Unmanned Aerial Vehicles (UAVs) [7] that are 
using Wi-Fi as a communication technology. These two paradigm shifts pose several 
challenges in legacy Wi-Fi networks. Two fundamental challenges in ultra-dense 
Wi-Fi networks are (i) handover prediction and (ii) access point (AP) selection.

1.1  Handover Prediction Problem

Handover prediction refers to the problem of anticipating about the connection state 
of a mobile device associated with an AP. Handover prediction can play a key role 
in providing seamless connectivity in next generation networks. It brings several 
potential benefits; firstly the accurate prediction of the handover event allows to 
timely initiate the transfer of connection to a new AP to reduce the handover delay. 
Secondly, it prevents unnecessary handovers (i.e. ping-pongs) to avoid connection 
disruptions in highly dynamic networks.

Handover prediction can be challenging in some cases. Fig. 1 illustrates different 
scenarios of inter-BSS handovers in Wi-Fi networks. A Wi-Fi user travels from point 
A to point E (follows the trajectory shown as red, dashed line). Assume that the user 
passes through the region where the radio coverage of AP-1 and AP-2 overlaps, the 
received signal strength (RSS) drops below the threshold value and it starts scanning 

Fig. 1  Inter-BSS handover scenario
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for alternate connection. Meanwhile, when the user moves a bit farther to point D, 
it discovers AP-2 with a stronger signal. It disassociates from AP-1 and associates 
to AP-2 (1st handover). The user continues to move and follows the trajectory from 
point E to G (dashed blue line) and again passes through an overlapping region of 
AP-2 and AP-3. At point F, the user changes association to AP-3 (2nd handover) and 
back to AP-2 when it moves a little farther (3rd handover). The user moves ahead 
and follows the third trajectory from point G to H, and changes association to AP-1 
when it approaches to point H (4th handover). At Point H, the user can’t move far-
ther towards AP-1 due to hindrance and the signal form AP-2 becomes stronger even 
with a slight movement in any direction (5th handover).

From the above discussion, it becomes obvious that there are some cases where 
the handover shall not take place despite the signal strength drops slightly below the 
threshold level to avoid the ping-pong effect.

1.2  Access Point Selection Problem

Assuming a Wi-Fi device is located in the transmission range of more than one AP, 
it can associate with either one as shown in Fig. 2. By default, a station associates to 
the AP from which it first receives a beacon or a probe response frame. However, in 
practice such kind of automatic association of stations can cause performance degra-
dation when the connection to the selected AP is weak. The optimal selection of an 
access point in dense WLANs is crucial for network performance.

The legacy methods for users association in WLANs are: (i) Strongest Signal 
First (SSF) and (ii) Least Loaded First (LLF). Both the SSF and LLF association 
methods have shortcomings. For instance, in SSF scheme, a station associates to 
the AP from which it receives a stronger radio signal, however, if the AP is over-
utilized, the association of more stations can cause congestion in the BSS which 
leads to increase in the packet loss and the packet end-to-end delay [8–10]. On the 
other hand, in LLF scheme, the selection of the least loaded AP provides load bal-
ancing at multiple APs, however it may force a station to associate with a distant 

Fig. 2  User association in overlapping BSS’s
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AP. Consequently, the station suffers from poor connection quality. To address these 
shortcomings of SSF and LLF schemes, the authors in [11] propose a new metric 
for AP selection named as potential bandwidth which is defined as, “the MAC layer 
bandwidth that an end-host is likely to receive if it were to affiliate with a given 
access point”. The new metric takes into account the signal strength as well as the 
AP load and additionally the contention on the wireless medium. However, the 
technique in [11] may not achieve the desired performance if the APs uses different 
beacon frequencies. It is therefore necessary to devise an AP selection strategy that 
improves the overall network performance while meeting the demands of new users.

Recently, new architectures based on Software Defined Network (SDN) and Cog-
nitive Networking (CN) paradigms are being proposed in the literature [12–14]. 
SDN [15–17] refers to the type of networks in which the control and data forwarding 
functions are separated. In these architectures, the network devices such as switches, 
routers and access points act as non-intelligent data forwarding devices while the 
intelligent functions such as data routing are implemented in a central controller also 
called as the SDN Controller. On the other hand, cognitive networking [14] refers 
to the network paradigm in which the networks automatically learn and respond to 
changes by actively taking decisions and planning network resources to achieve the 
end to end performance goals. SDN offers the software adaptation to implement 
cognitive networks [18]. Cognitive networks can be realized using both distributed 
and centralized architectures. A novel approach to realize cognitive networks is to 
adapt data-driven machine learning (ML) algorithms to address challenges in future 
ultra-dense and dynamic networks [19–21]. ML algorithms can be used for both net-
work design [22–25] and network performance evaluation [26–29].

This paper proposes a centralized network architecture using an SDN control-
ler that uses machine learning algorithms to solve the two aforementioned net-
work problems. Firstly, it anticipates the handover event that is likely to occur and 
to decide whether the handover is actually required? The proposed scheme reduces 
the likelihood of unnecessary handover events in the presence of Overlapping BSS 
(OBSS) in ultra-dense deployment. Secondly, it solves the AP selection problem by 
predicting the post-selection network throughput to choose the best AP. Network 
throughput is a significant metric to measure the user experience. The prior knowl-
edge of future throughput can help to avoid network congestion which can play a 
vital role in AP selection decision. The proposed scheme can be used to develop 
large frameworks and testbeds for real-time monitoring and network diagnostic to 
boost the Quality of Service (QoS) in Wi-Fi networks.

1.3  Contribution

The paper presents efficient schemes to address two fundamental issues (i.e., 
handover prediction and AP selection) in cognitive Wi-Fi networks. The proposed 
schemes uses data-driven machine learning algorithms to solve the two problems. 
The results are compared with traditional methods to validate the benefits of the pro-
posed scheme. The paper also proposes useful datasets to train the machine learn-
ing algorithms for robust performance. The datasets used in this study are acquired 
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using simulations performed in network simulator (ns-3) [30] and Mininet [31] 
emulator. An interesting contribution is the use of ns-3 building class in the simula-
tion which is not used in previous related works to the best of our knowledge. The 
use of ns-3 building class allows simulating both indoor and outdoor scenarios by 
configuring buildings, floors, rooms and other real-world structures in simulation to 
acquire more realistic datasets.

The rest of the paper is organized as follow: Sect. 2 presents the state-of-the-art 
approaches to solve the handover prediction and AP selection problems. Section 3 
describes the proposed scheme. Section 4 explains the methodology used to evalu-
ate the performance of the proposed scheme. The evaluation results are reported in 
Sect. 5. Lastly, conclusions are drawn in Sect. 6.

2  Related Work

A cognitive network is a modern network architecture that is fully aware of the net-
work state and can adapt to the varying network conditions. Such a network learns 
from these adaptations to make future decisions to achieve the end-to-end perfor-
mance goals. Several prototypes for realizing cognitive networks are proposed in 
the last few years [12, 13, 41]. To realize efficient and scalable cognitive networks, 
machine learning techniques are being used in [42, 43]. ML algorithms can be used 
for sophisticated learning and decisions-making in large and complex wireless net-
works where analytical methods do not meet the required performance requirements. 
Machine learning techniques are applied to several problems in wireless networks, 
e.g. throughput estimation [34, 44], interference classification [27], delay analysis 
[35] and channel migration strategy [45].

In [46], authors address the problem of throughput estimation for TCP flows in 
Wide Area Networks (WAN). The authors used Support Vector Regression (SVR) 
on dataset obtained using a laboratory testbed. The prediction accuracy is evaluated 
using “relative prediction error” metric. In [33], authors address the TCP through-
put prediction in cellular (3G/HSPA) networks using seven prediction algorithms 
and compared the prediction accuracy of each using the root-mean-squared error 
(RMSE) metric. In [32], authors propose a throughput estimation strategy in Long 
Term Evolution (LTE) cellular network using several network parameters such as 
RSSI, Signal-to-Noise Ratio (SNR), Reference Signal Received Quality (RSRQ) 
and Reference Signal Received Power (RSRP). The authors used three machine-
learning algorithms namely Generalized Linear Model (GLM), Artificial Neural 
Networks (ANN) and Random Forests (RF), to evaluate the predictor performance 
(Table 1).

Previous works on handover prediction in Wireless LANs [10, 36, 37] use timeseries 
forecasting methods. Classical timeseries forecasting methods include autoregression 
(AR), moving average (MA), Autoregressive Moving Average (ARMA), Autoregres-
sive Integrated Moving Average (ARIMA), Simple Exponential Smoothing (SES) and 
other variants of these methods. For instance, authors in [36] proposed a method to 
trigger handover using RSS based prediction in Wireless LANs. The authors argue 
that the RSS value remains constant during a short time interval (0.5 s in the proposed 
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model), and predict the future RSS values using the autoregressive process of order 1 
i.e. AR(1). The proposed scheme is evaluated using dataset collected from ns-3 simula-
tion. Handover event is predicted using the position information of the mobile device in 
[37]. In [10], authors proposed a handoff scheme based on the continuous monitoring 
of wireless links using the short-term and long-term trends in signal strength of beacon 
frames. The proposed scheme claims 50% reduction in the handover delay as well as 
improvement in the overall performance. In [38] authors used two RSS-based methods 
for handover prediction i.e. ARMA for stationary signals and ARIMA for non-station-
ary signals.

In [39], authors proposed traveling distance prediction based model for handover 
decision. Authors used the RSS values to calculate the distance between the AP and the 
mobile terminal (MT) using the following formula.

where E
t
 , � , � represent the transmit power (in mW) of the AP, the path loss expo-

nent and a zero mean Gaussian distributed random variable, respectively. The algo-
rithm assumes that the MT travels at a constant speed. Results are compared with 
Mohanty’s [47] and Varma’s methods [48]. The classical methods used in the afore-
mentioned works, perform poorly on noisy data and in multi-step forecasting [49]. 
Hence, there is an opportunity to use novel and efficient methods to solve the hando-
ver prediction problem. For instance, authors in [50] proposed handover prediction 
using recurrent neural networks (RNN) in vehicular networks. Although RNN is rel-
atively a more sophisticated method for time series predictions, we did not use RNN 
in our proposed scheme due to their complexity. Instead, we designed our dataset in 
a way to capture the time-dependency. Furthermore, the work [50] does not consid-
ers AP load while selecting the new AP after handover.

To solve the AP selection problem in dense networks, authors in [40] propose a 
decentralized algorithm. The proposed Optimal AP Selection Algorithm (OPASA) 
uses the estimated downlink SINR which captures inter-BSS interference from overlap-
ping APs. The authors show that OPASA outperforms the SSF algorithm by achieving 
up to 99% aggregate throughput gain. In [11], authors propose potential bandwidth as 
a metric for AP selection. Potential bandwidth is calculated from the beacon timing of 
APs. Authors in [9] solve the AP selection problem using approximation of Max-min 
fair bandwidth allocation algorithm. The authors compare the results and show that the 
proposed approximation algorithm outperforms both SSF and LLF algorithms. Authors 
in [51] proposed to use supervised ML methods (i.e., naive bayes, decision trees, and 
random forest) to solve the AP selection, with higher throughput improvement reported 
for random forest method.

(1)RSS
P

= E
t
× l

−�

OP
× 10

�∕10
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3  Proposed Scheme

3.1  Architecture

The proposed scheme consists of four components: SDN controller, feature 
extraction module, datasets, and machine learning module. Fig. 3 illustrates the 
functional architecture of the proposed scheme.

The SDN controller constantly collects network data consisting of several 
parameters of interest such as device’s capability, supporting rates, battery status, 
user’s position and speed information, Wi-Fi channel being used, packet arrival 
rates, average throughput and frames retransmission ratios. The network attrib-
utes constitute raw data which is then processed to extract useful features. In the 
feature extraction module, some attributes are directly used as features, whereas 
some new features are created from the raw data. For instance, the number of 
associated clients to an AP is directly used as a feature, whereas the inter-arrival 
time of the packets is a feature that is computed from the packet-arrival times of 
two consecutive packets.

The features are then combined to form ML-ready datasets which are used 
by ML algorithms to implement end-to-end learning. Two types of datasets are 
created namely design datasets and evaluation datasets. The design datasets are 
used to predict a design parameter e.g. the AP for association. Other examples 
include the maximum number of nodes served by the AP, transmit power of the 
AP and the optimum channel to be used etc. The evaluation datasets are used for 
evaluating the network performance in the current conditions e.g. transmission 
throughput. Other examples include average packet end to end delay, packet inter-
arrival rates, network congestion and channel access delay.

Fig. 3  Framework for cognitive network
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3.2  Functional Overview

The SDN controller continuously monitors the network changes (called as triggers). 
Three types of triggers are used by the controller i.e. (i) topology change, (ii) per-
formance degradation, and (iii) periodic triggers. A new user sending association 
request to an AP corresponds to the first type of trigger. The lower network through-
put or increase in the packet end-to-end delay than a pre-defined threshold level 
corresponds to the second type of trigger. Periodic triggers are activated at regu-
lar intervals regardless of any change in the network state. The activation of any of 
these triggers automatically runs the appropriate ML model. The ML model at fixed 
intervals imports the required ML-ready dataset form the database to retrain. When 
triggered, the ML model can thus generate accurate output. The output of the ML 
model is used by the SDN controller to implement a control action. The proposed 
scheme for handover prediction and AP selection is explained as follow:

3.3  Handover Prediction Scheme

Handover prediction is solved as a binary classification problem using supervised 
learning techniques. The raw data for handover prediction consists of timeseries of 
RSS values of beacon frames received from APs. To be used in supervised learn-
ing, the timeseries is transformed into dataset as illustrated in Fig.  4 and further 
explained in this section.

Fig.  5 illustrates the proposed handover prediction scheme. Each device con-
stantly monitors the RSS and records the RSS values in beacon frames in a RSS_
REGISTER. The RSS_REGISTER is then shared with the controller every second 
(beacon frequency). The controller copies the values from the RSS_REGISTER into 
a database of raw data. Each time a RSS_REGISTER is received, it is appended to 
the previous data. The raw data is then accessed by the feature extraction module, 
which transforms the raw data into ML-ready dataset. The ML-ready dataset con-
sists of several features as depicted in Table 2. Each sample in the dataset consists of 
13 features. Columns 1 to 10 contains per-second average RSS values for 10 s. Col-
umn 11–13 contain the statistics calculated based on the first 10 columns i.e. mean, 
minimum and maximum. Each row in the dataset is calculated by applying a unit (1 
s) shift to the previous column.

The controller constantly monitors the current association of the device. The 
method defines two RSS thresholds denoted as T

1
 and T

2
 . T

1
 refers to the RSS level 

which is significantly low, but still supports an ongoing connection despite if RSS 
drops below it. Whereas, T

2
 refers to the RSS level which is the minimum level to 

Fig. 4  Handover prediction framework
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support a connection. If RSS drops slightly below the threshold, the connection will 
be terminated. The controller sends first trigger when the RSS of the device drops 
the first threshold T

1
 . The first trigger indicates the possibility of a handover in the 

next couple of seconds and hence a proactive measure is necessary. The trigger acti-
vates the machine learning module to run the algorithm at each time step to predict 
the probability of handover in the next time step. It is worthy to note that the first 
trigger is significant to reduce unnecessary processing by continuously running the 
ML algorithms when the device lies in good coverage. Once the trigger is gener-
ated, the ML module runs the trained model to predict whether handover should be 

Fig. 5  Handover prediction scheme

Table 2  Dataset for handover 
prediction

*indicates the variable as a target variable

Features Target variable*

1, 2, ... 10 11 12 13 Binary variable

RSS0 ... RSS9 Min Max Mean HO prediction*
(0,1)
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initiated or not? The ML module periodically imports the most recent feature vector 
from the dataset for inference and runs the model to predict the handover. The data-
set is updated by appending the prediction decision for the given feature vector to 
improve the future learning process and prediction accuracy.

When the handover is detected for a given feature vector, the handover process 
is initiated. After completing the handover, when the RSS from the new AP is 
increased and becomes higher than T

1
 , the controller sends another trigger to the 

machine learning module to stop running the prediction process. If at anytime, the 
RSS drops to the second threshold T

2
 , a handover is initiated without running the 

ML model (the manual handover decision is not illustrated in Fig. 5) and the dataset 
is updated by appending the handover decision to the given feature vector.

3.4  Access Point Selection Scheme

The AP selection problem is addressed by the proposed scheme using a multi-crite-
ria online learning technique as illustrated in Fig. 6

When an AP receives an association request from a Wi-Fi station (STA), it for-
wards this request to the SDN controller. The SDN controller checks if the dataset 
(Table 4) is available to use machine learning algorithm to choose the best AP to 
offer connection to the new user. Initially when the network is first deployed, the 
dataset is not available. Hence, the controller uses the default algorithm (i.e. SSF 
or LLF) to select the AP. The controller computes the per BSS throughput for 

Fig. 6  AP selection flow diagram
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the given network parameters. Once, the dataset is populated with sufficient data-
points, any new association request is handled by the machine learning model. 
The proposed scheme predicts the throughput for each AP in the overlapping BSS 
and returns the estimated throughput for each AP (if the new STA would be asso-
ciated to this AP) to the controller. The controller then selects the AP which pro-
vides higher estimated throughput for connecting the requesting client.

To create the dataset for throughput estimation, the controller constantly 
records the information such as the number of associated clients and packet 
information (e.g. timestamps, arrival time, packet size and signal to noise ratio 
etc.). New feature, Inter-Arrival Time (IAT) is calculated from the timestamp and 
arrival time of each packet. The two features, IAT and the number of clients con-
nected to the access point are primarily selected to be used for throughput esti-
mation. Furthermore, new features are derived from the IAT values, using the 
statistics such as minimum, maximum, mean, variance, skew and kurtosis. The 
features are collected over a time window of fixed duration for the whole network. 
The structure of ML-ready dataset for throughput estimation is given in Table 3.

For AP selection, the controller simultaneously collects other parameters to 
compute features to create dataset. The structure of dataset used for AP selection 
is listed in Table 4.

Table 3  Dataset for throughput 
estimation

*indicatess the variable as a target variable

Parameters Derived States Data type

Features n_clients
IAT

–
[Mean, min, max, 

skew, kurtosis]

Integer
Float Clients

 Timestamp
 Arrival time

Target variable Throughput* – Float
 Arrival time
 Packet size

Table 4  Dataset for AP 
selection

Parameters Derived States Data type

Features n_clients – Integer
 Clients
 RSSI SNR [Mean, min, max, 

skew, kurtosis]
Float

 Noise level
 MAC queue MAC delay [Mean, min, max, 

skew,kurtosis]
Float

 Time stamp
Target variable Throughput – Float
 Arrival time
 Packet size
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4  Evaluation

The proposed scheme is implemented using ns-3 simulator [30] and Linux-based 
Mininet network emulator [31]. Mininet provides a sufficient level of flexibility and 
control over the network to dynamically implement new configurations. Addition-
ally, it allows interactive simulation and user can add traffic and applications on 
devices as well as apply some topological changes during the simulation runtime, 
thus enabling users to create more dynamic scenarios. On the other hand, ns-3 is a 
de-facto standard for simulating wireless networks. It provides accurate models of 
the wireless channel. The recent version of ns-3 also supports indoor models where 
users can model buildings, floors, rooms and other parameters of the real world.

To implement the proposed scheme for handover prediction, we performed exten-
sive simulations in ns-3 to acquire raw network data. Both indoor and outdoors 
devices are deployed in the simulation. The simulation uses the design parameters 
defined in Table 5.

The raw data acquired is transformed into dataset as given in Table 2. The data-
sets are then used in Mininet-based simulation to predict handovers using Random 
Forest (RF) algorithm. Random Forest (RF) [52] is a supervised learning algorithm 
employed in classification problems. It randomly selects features to build several 
decision trees and then averages the results. It is relatively a simpler algorithm and 
requires less time to train a ML model.

To implement the proposed scheme for AP selection, the controller is config-
ured to simulate the two user association algorithms i.e. SSF and LLF in Mininet. 
The simulations include 3 APs and 50 STAs, randomly moving in the network and 
changing association controlled by these algorithm. The network traces are collected 
and dataset is created according to Table 4. Lastly, the controller uses an ML model 
to perform AP selection. The previously collected datasets are used to train the ML 
model to estimate network throughput. The STA-AP association which will give 
higher estimated aggregate throughput, is then selected.

The AP selection dataset involves the use of estimated throughput and hence it is 
necessary to evaluate the accuracy of the algorithms which estimates the through-
put. To evaluate the accuracy of estimated throughput, we used two algorithms i.e. 

Table 5  Simulation parameters 
for building topology

Parameter Value

Building area ( m2) 300 × 100
No. of floors 1
No. of rooms along x-axis 30
No. of rooms along y-axis 10
Type of building Commercial
Wall type Concrete with windows
Mobility Model MobilityBuildingInfo
Propagation Loss Model OhBuildingsPropagationLossModel
External Wall Loss (EWL) 7 dB
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Multi-layer Perceptron (MLP) and SVR due to their capability to better predict such 
metrics [43]. The raw traces form the simulated network are collected and trans-
formed into useful features as listed in Table 3 to create the ML-ready dataset. The 
dataset is divided into training-validation (70–30 %) splits. The two algorithms are 
trained with the training data and are then tested by applying to the unseen valida-
tion data. To further validate the statistical significance of the model, 10-fold cross 
validation is used to avoid over-fitting.

5  Results and Discussion

The performance of the proposed handover prediction scheme primarily depends on 
the accuracy of the machine learning model. Firstly, the prediction accuracy of the 
RF algorithm used for handover prediction is evaluated using confusion matrix. A 
confusion matrix is used to evaluate the percentage of correct and wrong predictions 
on data points of all classes in the dataset. The confusion matrix shown in Table 6 
shows the accuracy of the RF algorithm.

It can be seen that the RF algorithm provides high accuracy to correctly predict 
the handover events. In the next step, the performance of the proposed handover 
prediction scheme is compared to other methods stated earlier to assess the over-
all performance. Figure  7 shows the performance of the proposed scheme versus 
two other handover prediction methods based on RSS forecasting method [36] and 
traveling distance method [39]. The figure shows the number of unnecessary hando-
vers (cumulative) over time, computed for the three methods. It can be seen that 
the proposed scheme outperforms the two methods by reducing the overall numbers 
of unnecessary handover. The analysis of results show that the proposed scheme 
reduces the number of unnecessary handovers by approximately 60% and 50% as 
compared to RSS method and traveling distance method, respectively.

The proposed scheme for AP selection problem is then evaluated. As the accu-
racy of the AP selection scheme directly relies upon the accuracy of the throughput 
estimation, we first evaluate the accuracy of the throughput estimation using two 
ML algorithms i.e. MLP and SVR.

The predicted throughput versus actual throughput is plotted for both algorithms 
as given in Figs. 8 and 9. It can be observed that the MLP model provides better 
accuracy (i.e. predicted values are much closer to the actual values) as compared 
to the SVR model. To further quantify the performance of both models, three per-
formance metrics i.e. training time, Mean Squared Error (MSE) and R-squared are 

Table 6  Confusion matrix Actual (↓) Predicted( →)

Handover (%) No handover (%)

 Handover 90.5 9.5
 No handover 6.2 93.8
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computed and the results are listed in Table 7. The MLP based model requires long 
training time (1.59 s) than the SVR model (0.211 s), however it provides better accu-
racy (i.e. less MSE for MLP = 0.067 as compared to SVR = 0.211) and better gen-
eralization to future predictions (i.e. higher R-squared for MLP = 0.974 as compared 
to SVR = 0.916). The better learning capabilities of MLP costs longer training time 
due to its complex design (hundreds of neurons arranged in several layers).

The estimated throughput using MLP algorithm is then used for AP selec-
tion. In AP selection, two performance metrics i.e. average BSS throughput and 
per-STA throughput are used to compare the throughput gain of the proposed 
scheme versus standard AP selection schemes (i.e. SSF and LLF). The results are 
shown in Figs. 10 (average BSS throughput) and 11 (per-STA throughput). It can 

Fig. 7  Unnecessary handovers using the proposed scheme versus previous approaches

Fig. 8  Throughput estimation (using MLP)
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be observed that the proposed scheme improves the average BSS throughput as 
well as per-STA throughput. The analysis of throughput gains report an average 
improvement of 9.2% and 8% as compared to the SSF and LLF schemes respec-
tively. It is worthy to note here, that the work in [9] also propose an alternate AP 
association scheme for load balancing in Wi-Fi networks and compared against 
SSF and LLF schemes. We could not compare our work against [9] due to the 

Fig. 9  Throughput estimation (using SVR)

Table 7  Performance and 
complexity analysis of 
throughput estimation models

Parameter MLP SVM

Training time (s) 1.59 0.211
R-squared 0.974 0.916
MSE 0.067 0.211

(b)(a)

Fig. 10  Comparison of the average BSS throughput
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complexity of the scheme in ns-3 environment. Additionally, it would not be fair 
to compare our results against [9] due to the difference in network configurations, 
topology, and the assumptions typically involved in analytical models versus sim-
ulation environments.

6  Conclusions and Future Work

The paper proposes machine learning techniques to solve two well-known prob-
lems in WLAN networks i.e. the handover prediction problem and the AP selec-
tion problem. The handover prediction problem is formulated as a multi-step 
time-series prediction problem. It is solved using supervised learning algorithm 
i.e. random forest in the proposed scheme. The goal in binary prediction prob-
lem is to achieve high prediction accuracy. On the contrary, the AP selection is 
a design problem to find the optimum AP-STA associations that improves the 
network throughput performance. The proposed scheme solves this issue by esti-
mating throughput using all possible configurations and selects the one which 
provides higher throughput gain. The performance of the proposed scheme is val-
idated and results report significant improvement in the overall performance. The 
proposed scheme for handover prediction outperforms the RSS method and trave-
ling distance method by reducing the number of unnecessary handovers by 60% 
and 50% respectively. In the AP selection problem, the proposed scheme outper-
forms the SSF and LLF algorithms by achieving higher throughput gains upto 
9.2% and 8% respectively. However, it is expected that a large set of problems 
and challenges in future Wi-Fi networks can be solved using similar approaches. 
Although running ML applications over resource constrained mobile devices 
can be challenging, the new edge computing paradigm [53] can be a promising 
approach to meet the computation requirements of future networks.

Fig. 11  Comparison of per-STA throughput
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