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Abstract To obtain maximum likelihood (ML) estimation
in factor analysis (FA), we propose in this paper a novel
and fast conditional maximization (CM) algorithm, which
has quadratic and monotone convergence, consisting of a
sequence of CM log-likelihood (CML) steps. The main con-
tribution of this algorithm is that the closed form expres-
sion for the parameter to be updated in each step can be
obtained explicitly, without resorting to any numerical opti-
mization methods. In addition, a new ECME algorithm sim-
ilar to Liu’s (Biometrika 81, 633–648, 1994) one is obtained
as a by-product, which turns out to be very close to the sim-
ple iteration algorithm proposed by Lawley (Proc. R. Soc.
Edinb. 60, 64–82, 1940) but our algorithm is guaranteed to
increase log-likelihood at every iteration and hence to con-
verge. Both algorithms inherit the simplicity and stability of
EM but their convergence behaviors are much different as
revealed in our extensive simulations: (1) In most situations,
ECME and EM perform similarly; (2) CM outperforms EM
and ECME substantially in all situations, no matter assessed
by the CPU time or the number of iterations. Especially for
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the case close to the well known Heywood case, it accel-
erates EM by factors of around 100 or more. Also, CM is
much more insensitive to the choice of starting values than
EM and ECME.

Keywords CM · ECME · EM · Factor analysis ·
Maximum likelihood estimation

1 Introduction

Factor analysis (FA) is a powerful multivariate analysis tech-
nique that identifies the common characteristics among a set
of variables and has been widely used in many disciplines
such as botany, biology, social sciences, economics, and en-
gineering.

The ML method for fitting FA has been very popular
for many decades. This method was originally discussed in
Lawley (1940), in which a simple iteration algorithm with
the advantage of tempting simplicity was suggested. How-
ever, this method has several practical problems. First, con-
vergence of this algorithm can not be guaranteed (Lawley
and Maxwell 1971, p. 30) though in practice this algorithm
usually converges (Jöreskog 1967). Second, in some cases
the estimation of factor loadings fails because the compu-
tation generates imaginary numbers (Jöreskog 1967). Third,
convergence of this algorithm is at best linear (Jennrich and
Bobinson 1969).

In order to tackle the first two problems, the expectation-
maximization (EM) algorithm (Dempster et al. 1977) with
the advantage of simplicity and stability has been suggested
(Rubin and Thayer 1982) for fitting FA. Although the at-
tractive property of EM algorithm, its convergence may be
impractically slow. To accelerate the above EM algorithm,
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Liu and Rubin (1998) proposed an ECME (Liu 1994) algo-
rithm (denoted as ECME1 hereafter) which can benefit from
a conditional likelihood maximization step via Newton-
Raphson algorithm. However, a well known disadvantage of
Newton-Raphson is that its convergence can not be guaran-
teed and thus it requires an additional check to see whether
the log-likelihood in each iteration is increased.

In attempting to tackle all three problems, another
group of researchers suggested using numerical optimiza-
tion methods to maximize the likelihood function. For
instance, Jöreskog (1967) considered a quasi Newton-
Raphson algorithm (Fletcher and Powell 1963), which has
been found empirically to converge faster than EM and be-
come the standard algorithm for fitting FA so far. To achieve
further acceleration, Jennrich and Bobinson (1969) recom-
mended a Newton-Raphson algorithm. However, like the
above ECME, this method suffers from the problem of
Newton-Raphson mentioned above.

In this paper, we shall propose two new algorithms. The
first algorithm is an ECME (denoted as ECME2 hereafter)
and is very similar to the simple iteration algorithm but it can
obviate the first two problems mentioned above. It consists
of two steps: step 1 conditionally maximizes log-likelihood
(CML) over factor loadings given uniqueness; step 2 con-
ditionally maximizes expected complete log-likelihood, i.e.,
so-called Q function, (CMQ) over uniqueness given factor
loadings. The second algorithm is a CM algorithm (Meng
and Rubin 1993), in which, the first step is the same as the
first one in ECME2. Then, instead of using numerical op-
timization method such as a (quasi) Newton-Raphson algo-
rithm to update uniqueness given factor loadings, a sequence
of CML steps are performed and in each step only an ele-
ment of uniqueness is updated with the other elements and
factor loadings fixed. The advantage of doing so is that a
close-form expression for each element of uniqueness can
be obtained explicitly.

The remainder of the paper is organized as follows. Sec-
tion 2 gives a review of FA model and three algorithms:
(Lawley 1940)’s simple iteration algorithm, an EM algo-
rithm and an ECME1 algorithm. Sections 3 and 4 propose
our ECME2 and CM algorithm, respectively. Section 5 con-
ducts a simulation study to compare EM, ECME2 and CM.
We end the paper with a conclusion in Sect. 6.

2 FA model and three estimation algorithms

2.1 FA model

Suppose that a d-dimensional data vector xj in an i.i.d sam-
ple Xn = {xj }nj=1 follows a q-factor model:

{
xj = Ayj + μ + εj ,

yj ∼ N (0, I), εj ∼ N (0,�),
(1)

where μ is a d-dimensional mean vector, A is a d × q factor
loadings matrix, yj is a q-dimensional latent vectors, repre-
senting those factors common to all components of xj , and
� = diag{ψ1,ψ2, . . . ,ψd} is a positive diagonal matrix. We
use I to denote an unit matrix whose dimension should be
apparent from the context.

Under the model (1), xj ∼ N (μ,�), where � �
� + AA′. Let

x̄ = 1

n

∑n

j=1
xj , S = 1

n

∑n

j=1
(xj − x̄)(xj − x̄)′ (2)

be the sample mean vector and sample covariance matrix
of x. Then the log-likelihood is

l(μ,A,� |Xn)

= −n

2

{
ln |�| + tr(�−1S) + (x̄ − μ)′�−1(x̄ − μ)

}
.

Thus the global maximal likelihood (ML) estimator of μ is
trivially the sample mean x̄, and hence θ = (A,�) can be
estimated by maximizing

l(θ) = −n

2

{
ln |�| + tr(�−1S)

}
. (3)

This amounts to solving the following simultaneous equa-
tions (Jöreskog 1967):

∂l(θ)/∂A = −n

2

[
�−1A − �−1S�−1A

] = 0, (4)

∂l(θ)/∂� = −n

2
diag(�−1 − �−1S�−1) = 0. (5)

Both equations can be further simplified into the following
equivalent form:

A = S�−1A, (6)

� = diag
{
S − AA′}. (7)

Equation (6) is obviously equivalent to (4). The equivalence
between (5) and (7) is a result of (6) and the definition of the
matrix �. This fact will be proved in Appendix 7.1.

Since it is difficult to solve (6) and (7) explicitly, it is nec-
essary to use iterative procedures to maximize l(θ). In the
remainder of this section, we review three previously known
algorithms. Technical details are included here for later use.

2.2 Lawley (1940)’s simple iteration algorithm

By definition of �, we have the following identity (see also
Lawley and Maxwell 1971, p. 27):

�−1A = �−1A
(
I + A′�−1A

)−1
. (8)

Using this identity, (6) can be written as

A
(
I + A′�−1A

) = S�−1A. (9)
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Let Ã � �−1/2A, S̃ � �−1/2S�−1/2. Then (9) can be writ-
ten in the following equivalent form

Ã
(
I + Ã′Ã

) = S̃Ã. (10)

Let (λi,ui ) be the eigenvalue-eigenvector pairs of S̃ with
λ1 ≥ λ2 ≥ · · · ≥ λd and �q = diag(λ1, λ2, . . . , λq),
Uq = (u1,u2, . . . ,uq). If �q > I, then

Ã = Uq(�q − I)1/2 (11)

will be a solution of (10), see also Jöreskog (1967 (16)).
Now Lawley (1940)’s algorithm recursively computes

{A(t),�(t)}∞t=0 by using the following two steps:

• Step 1. Given �(t), set A(t+1) = [�(t)]1/2 · U(t)
q (�

(t)
q −

I)1/2, where, as in last paragraph, �
(t)
q = diag(λ

(t)
1 ,

λ
(t)
2 , . . . , λ

(t)
q ), U(t)

q = (u(t)
1 , u(t)

2 , . . . ,u(t)
q ), and (λ

(t)
i ,u(t)

i ),
i = 1, . . . , d , are eigenvalue-eigenvector pairs of the ma-
trix [�(t)]−1/2S[�(t)]−1/2 with λ

(t)
1 ≥ λ

(t)
2 ≥ · · · ≥ λ

(t)
d .

• Step 2. Given A(t+1), update � using (7), i.e., set
�(t+1) = diag(S − A(t+1)[A(t+1)]′).

It is commented in Lawley and Maxwell (1971, p. 30) that
there is no guarantee that the iteration of the above two steps
can converge (i.e., the first problem). In addition, the in-
equality �q > I may not hold in practice, especially when q

is large (Jöreskog 1967) and thus the second problem may
occur.

2.3 EM type algorithms

If the parameters are known to be (A0,�0,μ0), then we can
compute

yj |xj ∼ N
(
A′

0�
−1
0 (xj − μ0), (I + A′

0�
−1
0 A0)

−1),
where �0 = �0 + A0A′

0. Using this distribution, we can
compute the expectation of any function f (yj ), which is de-
noted as E(f (yj )|A0,�0,μ0). In particular, we have

E(yj |A0,�0,μ0) = A′�−1(xj − μ0), (12)

E(yj y′
j |A0,�0,μ0)

= (I + A′
0�

−1
0 A0)

−1

+ A′
0�

−1
0 (xj − μ0)(xj − μ0)

′�−1
0 A0. (13)

As is well known (Dempster et al. 1977; Meng and
van Dyk 1997), any EM type algorithm is implemented by
choosing a particular data augmentation, and then the com-
plete data likelihood is imputed (the so-called E-step) and
maximized (i.e., M- or CM step). For our model, it is nat-
ural to consider the augmented data (Xn,Yn) = {xj ,yj }nj=1.

The complete data log-likelihood is

lc(A,�,μ;Yn) = −n

2
ln |�|

− 1

2

n∑
j=1

{
y′
j yj + (xj − Ayj − μ)′�−1(xj − Ayj − μ)

}
.

Taking expectation, we obtain

E{lc(A,�,μ;Yn)|A0,�0,μ0} = Q(A,�|A0,�0) + R,

where

Q(A,�|A0,�0)

= −n

2
ln |�| − n

2
tr
{
�−1S − 2�−1AA′

0�
−1
0 S

+ (I + A′�−1A)
[
(I + A′

0�
−1
0 A0)

−1

+ A′
0�

−1
0 S�−1

0 A0
]}

,

−2R/n = (x̄ − μ0)
′�−1

0 A0(I + A′�−1A)A′
0�

−1
0 (x̄ − μ0)

+ (x̄ − μ)′�−1(x̄ − μ)

− 2(x̄ − μ)′�−1AA′
0�

−1
0 (x̄ − μ0).

Notice that if μ0 = x̄, then the remainder R is maximized at
μ = x̄. Since x̄ is the global maximal likelihood estimator of
μ, we should set μ(t) to the fixed value x̄ in the following
implementation of EM type algorithms.

Since the function Q(A,�|A0,�0) is maximized at

A = S�−1
0 A0

(
I + A′

0�
−1
0 S�−1

0 A0
)−1

, (14)

� = diag
(
S − S�−1

0 A0A′), (15)

we obtain Rubin and Thayer (1982)’s EM algorithm for FA:

EM: For given A(t),�(t), compute

A(t+1)

= S[�(t)]−1A(t)
(
I + [A(t)]′[�(t)]−1S[�(t)]−1A(t)

)−1
,

�(t+1)

= diag
(
S − S[�(t)]−1A(t)[A(t+1)]′),

where �(t) = �(t) + A(t)[A(t)]′.
Using (8), the computation of [�(t)]−1 in both formulas can
be reduced. In Appendix 8.1, we describe an efficient im-
plementation to be used in our simulation study in Sect. 5.
Notice also that the function Q satisfies the continuous con-
dition in Wu (1983, Theorem 2) and therefore all limiting
points of the above EM algorithm are guaranteed to be sta-
tionary points of l.

As a modification on the above EM, Liu and Rubin
(1998) proposed the following ECME type algorithm:



Stat Comput

ECME1: For given A(t),�(t),

• CM-step 1: set A(t+1) = S[�(t)]−1A(t)(I + [A(t)]′ ×
[�(t)]−1S[�(t)]−1A(t))−1 which maximizes the func-
tion Q(A,�(t)|A(t),�(t)).

• CM-step 2: compute �(t+1) = Arg max� l(A(t+1),�)

using Newton-Raphson algorithm. See (3) for the def-
inition of the function l(·).

Here, we use Arg maxxf (x) to denote a point at which the
function f (x) is maximized. For CM-step 2, it is useful to
introduce an exponential transformation for uniqueness to
avoid constraint optimization. The corresponding gradient
and Hessian expressions are available from Liu and Rubin
(1998) and hence omitted here.

3 The ECME2 algorithm

Unlike ECME1, which performs CMQ over A followed by
CML over � , ECME2 algorithm proposed in this section
performs CML over A followed by CMQ over � . In de-
tail, given an initial �(0), our ECME2 recursively computes
the sequence {A(t),�(t)}∞t=1 according to the following two
steps:

• CM-step 1: Given �(t), compute A(t+1) =
Arg maxAl(A,�(t)).

• CM-step 2: Given (A(t+1),�(t)), compute �(t+1) =
Arg max�Q(A(t+1),�|A(t+1),�(t)).

Instead of using traditional search procedures, the optimiza-
tion problem in CM-step 1 is solved explicitly in Sect. 3.1.
The maximization in CM-step 2 can be easily solved by set-
ting A0 = A(t+1), �0 = �(t) in (15). We show in Sect. 3.2
the resulting formula can be further simplified.

3.1 The maximization in the first CM-step

Let Ã � [�(t)]−1/2A, S̃ � [�(t)]−1/2S[�(t)]−1/2. As we
have shown in Sect. 2.2, any matrix A that maximizes the
function l(A,�(t)) should satisfy

Ã
(
I + Ã′Ã

) = S̃Ã, (16)

which is identically (10). Thus, to maximize l(A,�(t)), we
first find all solutions to (16), and then choose the best one.

Let Ã = Uq ′DV be the singular-value decomposition of
Ã, where the d × q ′ matrix Uq ′ satisfies U′

q ′Uq ′ = I, V is a
q ′ × q matrix satisfying VV′ = I, D = diag(d1, d2, . . . , dq ′)
is diagonal with d1 ≥ d2 ≥ · · · ≥ dq ′ > 0, the integer q ′ ≤ q

is of course the rank of Ã. With this decomposition, (16) is
equivalent to

Uq ′(I + D2) = S̃Uq ′ . (17)

This shows that the i-th column ui of Uq ′ is an eigen-
vector of the matrix S̃ with λi = 1 + d2

i being the cor-
responding eigenvalue. Conversely, if (ui ,1 + d2

i ), i =
1, . . . , q ′, are eigenvector-eigenvalue pairs of the matrix S̃,
then Ã = Uq ′DV solves (16), provided that the q ′ × q ma-
trix V satisfies VV′ = I. Thus, to maximize l(A,�(t)),
we need to consider the decomposition S̃ = U�U′, where
U = (u1,u2, . . . ,ud) is a d × d orthogonal matrix, � =
diag(λ1, λ2, . . . , λd) is diagonal. Since

I + ÃÃ′

= I + Uq ′D2U′
q ′ = U · diag(λ1, . . . , λq ′ ,1, . . . ,1) · U′,

we have

−2

n
· l(A,�(t))

= ln |�| + tr(�−1S)

= ln |�(t)| + ln |I + ÃÃ′| + tr
{
(I + ÃÃ′)−1S̃

}

= ln |�(t)| +
q ′∑

i=1

(lnλi − λi + 1) +
d∑

k=1

λk.

The sum ln |�(t)| + ∑d
k=1 λk is obviously a constant in our

problem. So it suffices to minimize the term
∑q ′

i=1(lnλi −
λi + 1) by sorting the eigenvalues of S̃ in a suitable order
and then determining the best q ′. Since the function f (λ) =
lnλ−λ+1 is negative and strictly decreasing in the interval
(1,∞), we may assume λ1 ≥ λ2 ≥ · · · ≥ λd . The optimal
q ′ is defined as follows: If λq > 1, then we set q ′ = q; if
λq ≤ 1, q ′ is the unique integer satisfying λq ′ > 1 ≥ λq ′+1.
Now the function l(A,�(t)) is maximized at

A(t+1) = [�(t)]1/2Uq ′
(
�q ′ − I

)1/2V, (18)

where �q ′ = diag(λ1, λ2, . . . , λq ′). The matrix V can be ar-
bitrarily chosen except for the requirement VV′ = I, and
it has no effect on the value of l(A(t+1),�(t)). Clearly, as
�q ′ > I, it is impossible for A(t+1) in (18) to contain any
imaginary number and the second problem mentioned in
Sect. 1 disappears.

3.2 The maximization in the second CM-step

Since l(A,�(t)) is maximized at A(t+1), A(t+1) in (18) must
satisfy (6), i.e.,

A(t+1) = S(�(t) + A(t+1)[A(t+1)]′)−1A(t+1). (19)

By direct computation, or using the identities (19) and (8),
one can easily show that (14) is satisfied for �0 = �(t),
A = A0 = A(t+1). According to Sect. 2.3, the same setting
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in (15) will give us

�(t+1)

= Arg max
�

Q(A(t+1),�|A(t+1),�(t))

= diag
(
S − S(�(t) + A(t+1)[A(t+1)]′)−1A(t+1)[A(t+1)]′).

Using the identity (19), we obtain

�(t+1) = diag
(
S − A(t+1)[A(t+1)]′). (20)

Observing the similarity between (7) and (20), one may de-
duce from the equivalence between (5) and (7) that �(t+1)

is also a solution of (5). But this is not correct, because dif-
ferent � matrices are used in (19) and (20).

3.3 Practical consideration

Instead of computing A(t+1) by (18) explicitly, we can sim-
ply compute

Ã(t+1) = Uq ′(�q ′ − I)1/2V, (21)

since we can use the notation of S̃ and Ã(t+1) to write (20)
as

�(t+1) = diag
(

S̃ − Ã(t+1)[Ã(t+1)]′)�(t). (22)

In practice, for numerical stability (as computation of S̃
involves [�(t)]−1), we follow Jöreskog (1967) to restrict
� ≥ η > 0, which can be easily incorporated into ECME2.
At iteration t + 1, we enforce ψi

(t+1) = η if ψi
(t+1) < η and

update ψi otherwise, under which l is guaranteed to increase
or at least not to decrease (one can easily verify that Q(ψi)

is unimodal in the interval ψi > 0).
It can be verified that ECME2 satisfies the space filling

condition of ECME (Liu 1994) and therefore the limiting
point of ECME2 is guaranteed to be a stationary point of
l. As a result, the first problem mentioned in Sect. 1 also
disappears.

3.4 ECME2 vs. simple iteration algorithm

By inspection of (11) and (7) in simple iteration algorithm
and (18) and (20) in ECME2, ECME2 looks very similar to
Lawley (1940)’s simple iteration algorithm:

(1) Equation (7) is the same as (20)
(2) Equation (11) can be viewed as a special case of (18)

when q ′ = q and V is the first q ′ rows of I.

However, ECME2 frees from an ad-hoc assumption: �q > I
(detailed in Sect. 2.2) and more importantly, we actually find
a way to prove monotone convergence of the simple iteration
algorithm, which, to our knowledge, has not been proved so
far.

ECME2 replaces the CMQ step for A in EM by a CML
step, where closed form expression is available. Intuitively,
ECME2 should be faster than EM, at least assessed by the
number of iterations. Further, it is natural to ask whether it
is possible to replace the CMQ step for � in EM by a CML
step, which also has closed form expression. Such result-
ing algorithm would be a CM algorithm (Meng and Rubin
1993), convergence of which is quadratic (Liu 1994). Un-
fortunately, it seems impossible to solve � from (5) with
A fixed. As a compromise, numerical optimization methods
such as Newton-Raphson can be considered to perform this
CML step. In fact, such a step is the same as the CM-step 2
in ECME1. In Sect. 4 we develop a more tempting CM algo-
rithm since it has (1) quadratic convergence; (2) monotone
convergence. Rather than following tradition to solve � nu-
merically, we focus on analytically solving ψi , the i-th ele-
ment of � , keeping A and the other elements of � fixed and
we can obtain the closed form expression of ψi . Combining
the CML step to update A, we hence obtain a CM algorithm.

4 The CM algorithm

Let �(t) = diag(ψ
(t)
1 ,ψ

(t)
2 , . . . ,ψ

(t)
d ), �

(t)
i � diag(ψ

(t+1)
1 ,

. . . ,ψ
(t+1)
i−1 ,ψi,ψ

(t)
i+1, . . . ,ψ

(t)
d ). Given an initial �(0), our

CM algorithm recursively does the following two steps for
t ≥ 0:

• CM-step 1: Given �(t), compute A(t+1) =
Arg maxAl(A,�(t)), t ≥ 0;

• CM-step 2: Compute ψ
(t+1)
i = Arg maxψi

l(A(t+1),�
(t)
i )

for i = 1,2, . . . , d .

The first CM-step has been solved in Sect. 3.1. So only the
second CM-step is considered below. Since l(A(t+1),�

(t)
i )

is a function of ψi , it is denoted as l̄(ψi) for simplicity.

4.1 The maximization in the second CM-step

Let �i = �
(t)
i + A(t+1)[A(t+1)]′. To maximize l̄(ψi), we

need to solve the equation

−2

n
· dl̄(ψi)

dψi

= (
�−1

i − �−1
i S�−1

i

)
ii

= 0, (23)

where (·)ii denotes the (i, i)-th element of the matrix in the
parenthesis. Using the notation

S̃ � [�(t)]−1/2S[�(t)]−1/2,

�̃i � [�(t)]−1/2�i[�(t)]−1/2,

we write (23) in the following equivalent form

(
�̃

−1
i − �̃

−1
i S̃�̃

−1
i

)
ii

= 0. (24)
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To solve this equation, the most difficult part is the term

�̃
−1
i , which contains the unique indeterminate ψi . To ma-

nipulate this matrix, it is helpful to introduce the following
notations:

Ã � [�(t)]−1/2A(t+1),

�̃i � �
(t)
i [�(t)]−1 (25)

= I + diag(ω
(t+1)
1 , . . . ,ω

(t+1)
i−1 ,ωi,0, . . . ,0),

where

ωi � −1 + ψi/ψ
(t)
i ;

ω
(t+1)
k � −1 + ψ

(t+1)
k /ψ

(t)
k , k = 1, . . . , i − 1.

Let ei be the i-th column of the d × d identity matrix. Then

�̃i = �̃i + ÃÃ′ = ωi eie′
i + Bi , (26)

where, by (25),

Bi =
∑i−1

k=1
ω

(t+1)
k eke′

k + I + ÃÃ′. (27)

Now the following Proposition 1 provides a way to invert
the matrix �̃i . Here and in the sequel we write C > 0 for the
fact that the matrix C is symmetric and positive definite.

Proposition 1 Suppose C > 0, ω is a real number such that
1 + ωe′

iC
−1ei �= 0. Then

(
ωeie′

i + C
)−1 = C−1 − ωC−1eie′

iC
−1

1 + ωe′
iC

−1ei

. (28)

Suppose Bi and ωi satisfies Condition I: (a) Bi > 0;
(b) 1 + ωie′

iB
−1
i ei > 0. Then, by setting ω = ωi, C = Bi

in (28), we obtain

�̃
−1
i = B−1

i − ωiB
−1
i eie′

iB
−1
i /(1 + ωie′

iB
−1
i ei ). (29)

Using this equation, (�̃
−1
i − �̃

−1
i S̃�̃

−1
i )ii can be expressed

explicitly as a function of ωi , i.e.,

(�̃
−1
i − �̃

−1
i S̃�̃

−1
i )ii

= e′
i (�̃

−1
i − �̃

−1
i S̃�̃

−1
i )ei

= (e′
iB

−1
i ei )

2ωi + e′
iB

−1
i ei − e′

iB
−1
i S̃B−1

i ei

(1 + ωie′
iB

−1
i ei )2

.

It can be shown in Sect. 4.2 that (24) has the following
unique solution

ω
(t+1)
i = (e′

iB
−1
i ei )

−2(e′
iB

−1
i S̃B−1

i ei − e′
iB

−1
i ei ) (30)

in the interval (−[e′
iB

−1
i ei]−1,∞). Correspondingly,

ψ
(t+1)
i = (ω

(t+1)
i + 1)ψ

(t)
i (31)

is a solution of (23).

4.2 When will Condition I be satisfied

Pick a very small η > 0. Consider the following modified
version of the second CM-step:

• CM-step 2′: For i = 1,2, . . . , d , compute ω
(t+1)
i accord-

ing to (30), then set ψ
(t+1)
i = η if ω

(t+1)
i ≤ −1, and

ψ
(t+1)
i = (ω

(t+1)
i + 1)ψ

(t)
i otherwise.

In this way, the � matrix is always positive definite. Conse-
quently, ω

(t+1)
k > −1 for k = 1, . . . , i − 1. Thus

Bi = diag(ω
(t+1)
1 + 1, . . . ,ω

(t+1)
i−1 + 1,1, . . . ,1) + ÃÃ′ > 0,

i.e., condition (a) always holds and ω
(t+1)
i in (30) can always

be computed.
Since condition (a) holds, ψ

(t+1)
i is a solution of (23)

if condition (b) is also satisfied. This is the case if either
ω

(t+1)
i > −1, or S is positive definite. The case ω

(t+1)
i > −1

is treated in Proposition 2. For the case S > 0, we first note
that e′

iB
−1
i ei > 0, e′

iB
−1
i S̃B−1

i ei > 0. This implies that

ω
(t+1)
i = e′

iB
−1
i S̃B−1

i ei

(e′
iB

−1
i ei )2

− 1

e′
iB

−1
i ei

> − 1

e′
iB

−1
i ei

,

so that 1 + ω
(t+1)
i e′

iB
−1
i ei > 0. The assumption S > 0 is

very weak and satisfied normally. As a corollary, (23) has a
unique solution ψ

(t+1)
i in the interval ψi > ψ

(t)
i (e′

iB
−1
i ei −

1)/(e′
iB

−1
i ei ) if S > 0 or ω

(t+1)
i > −1 (S may be semi-

positive definite).

Proposition 2 Suppose Bi > 0. Then 1+ωie′
iB

−1
i ei > 0 for

ωi > −1.

Now let us check whether l̄(ψi) is maximized at ψ
(t+1)
i .

As we have computed in Sect. 4.1,

−2

n

dl̄(ψi)

dψi

= (�̃
−1
i − �̃

−1
i S̃�̃

−1
i )ii · ψ(t)

i

= (e′
iB

−1
i ei )

2ωi + e′
iB

−1
i ei − e′

iB
−1
i S̃B−1

i ei

(1 + ωie′
iB

−1
i ei )2

· ψ(t)
i

for any ωi > −1/(e′
iB

−1
i ei ) or, equivalently, ψi > ψ

(t)
i

(e′
iB

−1
i ei − 1)/(e′

iB
−1
i ei ). Since ψ

(t)
i , e′

iB
−1
i ei and e′

iB
−1
i ×

S̃B−1
i ei are all positive, we conclude that l̄′(ψi) > 0 if

ψi < ψ
(t+1)
i , and l̄′(ψi) < 0 if ψi > ψ

(t+1)
i . Thus, the func-

tion l̄(ψi) is unimodal in the interval ψi > ψ
(t)
i
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(e′
iB

−1
i ei − 1)/(e′

iB
−1
i ei ) and reaches its global maximum

at the point ψ
(t+1)
i . In particular, if ω

(t+1)
i > −1, then

ψ
(t+1)
i = Arg maxψi∈(0,∞)l̄(ψi).

On the other hand, if ω
(t+1)
i ≤ −1, setting ψ

(t+1)
i = η in

CM-step 2′ is guaranteed to reach the maximum of l̄(ψi) in
the interval ψ ≥ η since l̄(ψi) is unimodal. In practice, even
if ω

(t+1)
i > −1 but 0 ≤ ψ

(t+1)
i < η, the unimodal property

of l̄(ψi) allows us to a further modification of the second
CM-step with the advantage of numerical stability (as com-
putation of S̃ involves [�(t)]−1):

• CM-step 2∗: For i = 1,2, . . . , d , compute ω
(t+1)
i accord-

ing to (30), then set ψ
(t+1)
i = max[η, (ω

(t+1)
i + 1)ψ

(t)
i ].

Since ψ
(t)
i ≥ η is automatically true, we have l̄(ψ

(t)
i ) ≤ l̄(η)

for the case (ω
(t+1)
i + 1)ψ

(t)
i ≤ η. Thus this modified CM

satisfies the usual monotonic convergence property, i.e.,
l̄(ψ

(t+1)
i ) ≥ l̄(ψ

(t)
i ). By the general convergence properties

of (E)CM in Meng and Rubin (1993), it is guaranteed to
converge to a stationary point of l.

4.3 Recursive computation of the matrix B−1
i

Let B1 = I + Ã(t+1)[Ã(t+1)]′. Then we have the following
recursive relation:

Bi+1 = ω
(t+1)
i eie′

i + Bi , i = 1,2, . . . , d − 1. (32)

If ψ
(t+1)
i is restricted to be η, then ω

(t+1)
i = η/ψ

(t)
i − 1.

Using Proposition 1, we obtain

B−1
i+1 = B−1

i − ω
(t+1)
i B−1

i eie′
iB

−1
i /(1 + ω

(t+1)
i e′

iB
−1
i ei ).

(33)

Thus B−1
i can be recursively computed. The first one is com-

puted by using (18):

B−1
1 = Uq ′(�−1

q ′ − I)U′
q ′ + I. (34)

Note that (21) and (34) simply require at most the first q

eigenvalues and eigenvectors of S̃.

4.4 On the nature of stationary points

We are interested in the nature of stationary points: θ∗ =
(A∗, �∗) obtained by EM, ECME2 and CM for fitting FA.
Although it is unclear whether θ∗ by CM or ECME2 ensure
local maxima or not, we argue that CM and ECME2 ensure
conditional global maxima and EM does not, i.e., given �∗,
A∗ by CM and ECME2 is a global maximal point of l while
A∗ by EM is not the case. Since CM and ECME2 share (18),
which ensure conditional global maxima of l given �(t) at

each iteration t + 1 and therefore it is also true for A∗ and
�∗. For EM, let t go to infinity in (14) and (15) and we have

A∗ = �∗�∗−1S�∗−1A∗, (35)

which can be written as

Ã∗(I + [Ã∗]′Ã∗) = S̃∗Ã∗. (36)

Equation (36) is similar to (16). This implies that A∗ by EM
only guarantees to be a solution of (16) but might not be a
global maxima of l given �∗. Similar to the proof in Tipping
and Bishop (1999, Appendix A) it can be shown that A∗ by
EM could be a saddle point of l given �∗.

In Appendix 8.1, we analyze the computational complex-
ity of EM, ECME2 and CM. In Appendix 8.2, we show that
the log likelihood of ECME2 and CM can be efficiently eval-
uated if we use log likelihood as a convergence criterion.

5 Simulations

5.1 Simulation data

As verified in Petersen et al. (2005), EM algorithms tend
to be inefficient in low-noise linear models (including FA).
Motivated by this, artificial data with three kinds of noise
types: low, high and ordinary (not high and not low) are
generated to show how EM and the proposed ECME2 and
CM performs in these different data settings. On the other
hand, it is well known that the rate of convergence of EM is
determined by the ratio of missing information to complete
information (Dempster et al. 1977). For FA, the missing in-
formation is closely related to subspace dimension q . There-
fore, we examine the performance of EM, ECME2 and CM
for fitting FA with different q on the same data set, which
consists of N = 1000 data points in R

10.
All computations are carried out by MATLAB 7.1 in

win32 environment of desktop PC with CPU: AMD
2.21 GHz and RAM: 2 GB. In all simulations, we use the
following:

• Initialization: Perform PCA for parameter initialization
θ (0) = (A(0),�(0)) required by EM or �(0) by ECME2
and CM, which is often used as a start for fitting FA. Al-
though only �(0) is required by ECME2 and CM, (18)
in the first iteration will make A(1) = A(0) (by setting V
equal to the first q ′ rows of I). Therefore, all algorithms
actually start by PCA.

• Convergence criterion: Stop algorithms if l(t+1) − l(t) <

tol or t > Kmax with tol = 10−6 and the maximal number
of iterations: Kmax = 5000.

• Constraint: η = 10−6.
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5.1.1 Simulation 1: ordinary noise

The data sets in this simulation are generated from the model
(1) with:

� = diag(1 2 3 4 5 6 7 8 9 10);
μ = (3 3 3 3 7 7 7 7 7 7);

A′ =

⎛
⎜⎜⎝

1.3 1 1.5 2.3 1.8 1.2 1.5 0 0 0

0 0 0 0 1.8 2.2 1 1.8 1.2 1.5

3.5 2 2.5 1.5 2 3 2.5 1.8 1.4 1.3

4 2.2 1.3 2.4 0 0 0 2 3.1 2.7

⎞
⎟⎟⎠.

Figure 1(a), (b), (c) shows the typical evolvement of log-
likelihood l of FA model with q = 1, q = 2 and q = 3,
respectively. It can be observed that CM stops earliest and
ECME2 stops earlier than EM, particularly, when q = 1.

5.1.2 Simulation 2: high noise

This simulation is motivated by an exercise in Hastie et al.
(2001, p. 507), which examines whether FA can look for
maximal correlation among three variables x1, x2, x3 in the
case that x1 and x2 are correlated and independent with x3

and have much lower variance than x3. Here, for simplicity,
we simply use the same value of parameters: � , μ and A
as in Simulation 1 in this simulation except that ψ7 = 100
and ψ9 = 200 to simulate high noise. Figure 1(d), (e) and
(f) shows the typical evolvement of log-likelihood l of FA
model with q = 1, q = 2 and q = 3, respectively. It can be
observed that (1) the winner is still CM, which has over-
whelming speediness over ECME2 and EM, and ECME2
beats EM only when q = 1; (2) For EM and ECME2 in
Fig. 1(e) and (f), there is significant increase in the final log

Fig. 1 A zoomed-in plot of the typical evolvement of log-likelihood l

for EM (dotted line), ECME2 (dashed line) and CM (solid line) fitted to
data sets with different noise types: Ordinary noise (row 1), high noise

(row 2) and low noise (row 3) and for different q: q = 1 (column 1),
q = 2 (column 2) and q = 3 (column 3). Only at most the former 500
iterations are shown for the case in low noise



Stat Comput

Fig. 2 The box plot of required time for convergence by EM, ECME2, and CM under different situations

likelihood after a large number of almost ‘converging’ itera-
tions (a zoomed-in version of Fig. 1(e) is shown in Fig. 4(a)).
Early stop, e.g. at 1000 or 2000 iterations in Fig. 1(f), may
result in poorer estimations.

5.1.3 Simulation 3: Low noise

The same parameters: � , μ and A as used in Simulation
1 are used in this simulation except that ψ7 = 10−4 and
ψ9 = 10−4 to simulate low noise. Figure 1(g), (h) and (i)
shows the typical evolvement of log-likelihood l of FA
model with q = 1, q = 2 and q = 3, respectively. For clarity,
only at most the former 500 iterations are shown since CM
stops much earlier than EM and ECME2, usually using 10–
30 iterations while both EM and ECME2 usually require the
maximal number of iterations: Kmax = 5000. For EM and
ECME2 in this case, it seems plausible to early stop since
significant increase in the final log-likelihood does not ap-
pear. However, the problem is that we do not know in ad-
vance whether the final likelihood will change significantly
or not. This case is closely related to the well known Hey-
wood Cases (Bartholomew 1987, p. 69), which is often ob-
served during the fitting of FA model for real data.

5.2 Performance analysis

We investigate the performance of EM and our proposed al-
gorithms: ECME2 and CM, by repeating Simulation 1, Sim-
ulation 2 and Simulation 3 500 times, respectively. Let T

and K denote the required CPU time and number of itera-
tions when the convergence criterion is satisfied. To com-
pare any two algorithms A and B, we define speedup of A
over B by calculating the ratio: the median of 500 T ’s or
500 K’s by B over that by A. Figure 2 and Fig. 3 show box
plots of 500 T ’s and 500 K’s by all algorithms in different
cases. The performance of all algorithms is summarized as
follows:

(1) Final likelihoods: In all 4500 simulations, when the con-
vergence criterion is satisfied, the final log-likelihoods
by CM are strictly larger than those by EM and ECME2,
although there are usually no major difference.

(2) CM vs. EM and ECME2
(a) Speedup: It is clear from Fig. 2 and Fig. 3 that CM

outperforms EM and ECME2 no matter assessed by
T or K in all situations. Importantly, from Fig. 2(h),
(i) and Fig. 3(h), (i), CM is free of the inefficiency
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Fig. 3 The box plot of required number of iterations for convergence by EM, ECME2, and CM under different situations

Table 1 Speedup by CM over EM in CPU time (T ) and number of
iterations (K)

Noise�q 1 2 3

T K T K T K

Ordinary 2.7 9.0 5.1 15.2 3.2 8.7

High 3.1 11.0 9.5 25.7 18.7 47.8

Low 2.7 9.2 131.4 384.6 99.1 277.8

in low-noise limit suffered by EM and ECME2. Ta-
ble 1 lists the speedup by CM over EM in T and K .

(b) Variation in number of iterations: It is easily ob-
served from Fig. 3 that the box length of CM is far
smaller than that of EM and ECME2 almost in all
situations except the cases: Low noise, q = 2 and
q = 3 represented in Fig. 3(h) and (i), in which EM
and ECME2 are forced to stop early since they have
arrived the maximal number of iterations Kmax =
5000. This observation implies that the variation of
500 K’s by CM is far less than that by EM and
ECME2 or in other words, it is more stable for CM

than EM and ECME2 in terms of the number of it-
erations.

(3) ECME2 vs. EM: It can be observed from Fig. 2(a), (d)
and (g) that ECME2 requires slightly less T for conver-
gence than EM when q = 1 since it requires far fewer
K (Fig. 3(a), (d) and (g)). However, such advantage dis-
appears when q = 2 and q = 3 since it requires more
computation than EM at each iteration (detailed in Ap-
pendix 8.1) and usually requires only slightly fewer K

for convergence.
(4) ‘Outliers’ in CM: It can be observed from Fig. 2 that

CM in Fig. 2(f) has relatively more ‘outliers’ (which
requires much larger K than that is usually required)
than CM in other figures. With respect to this, there are
two cases: (1) CM can locate the global optimal solu-
tion in the sense that the estimate of uniqueness ob-
tained by CM: �̂CM is close to true one but the log-
likelihood convergence curve is very ‘flat’ and thus CM
tends to require more iterations; (2) It appears that CM
is trapped into another local maxima in the sense that
at least one element of �̂CM is far from the true one,
typically, [σ̂ 2

9 ]CM = η, even if we use a stricter con-
vergence criterion. We have randomly selected several
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Table 2 Speedup by CM over QN in CPU time (T ) and number of
iterations (K)

Noise�q 1 2 3

T K T K T K

Ordinary 23.3 5.2 15.4 3.4 17.9 3.8

High 41.9 10.3 12.5 2.7 7.8 1.5

Low 23.4 5.3 22.2 3.8 16.5 2.4

replications of this case and found that it is possible that
CM can obtain higher likelihood and require far fewer
K if we choose another start point rather than PCA.

We also examine the performance of a quasi-Newton (QN)
algorithm applied to fitting FA. Our implementation is based
on Matlab function ‘fmincon’ with the same convergence
criterion, constraint and PCA start as described above. We in
general follow the SAS procedure provided in Chen (2003)
to perform Jöreskog’s method but there is a difference:
Chen’s procedure is based on Davidon, Fletcher and Pow-
ell (DFP) method while our use of ‘fmincon’ is based on
Broyden, Fletcher, Goldfarb, and Shanno (BFGS) method.
Therefore, although it has been shown by extensive numer-
ical experiments in the literature that BFGS method is su-
perior than DFP method, our implementation is not exactly
the same as Jöreskog’s method and we simply give a rough
comparison.

Table 2 lists the obtained speedup by CM over QN.
Almost 88 percent of all 4500 simulations, CM obtains
strictly higher final log-likelihood than QN and all final log-
likelihoods by CM and QN satisfy: lCM > lQN − 10−4,
which implies that lCM is close to lQN even if lQN > lCM .
However, it is not the case for lCM > lQN since there are
still about 7.7 percent of all 4500 simulations which sat-
isfy lCM −100 > lQN . The obvious lower log-likelihood are
mainly in the case: High noise, q = 2 and q = 3. It can be
observed from Table 2 that CM outperforms QN in all sit-
uations, especially, in CPU time. Although there are some
cases that the number of iterations is close to CM (e.g. High
noise, q = 3), computation of QN in each iteration is much
heavier than CM and thus QN requires much more CPU
time. By comparing Table 1 with Table 2, in simple case
like Ordinary noise, EM is superior than QN, while in hard
case like Low noise with q = 2 and q = 3, QN is superior
than EM.

Finally, we investigate how ECME1 performs in these
different situations. Since the CM-step 2 in ECME1, using
Newton-Raphson to update � , can not guarantee monotone
convergence, a mixture of EM and ECME1 is considered
here. Note that EM differs from ECME1 only in the step to
update � . The mixture here means that (1) Perform 20 iter-
ations of EM followed by ECME1; (2) If at iteration t + 1,
the step to update � in ECME1 does not increase likeli-
hood, we use the corresponding step in EM to replace it.

Table 3 Speedup by CM over ECME1 in CPU time (T ) and number
of iterations (K)

Noise�q 1 2 3

T K T K T K

Ordinary 6.5 8.9 8.6 9.9 7.6 8.2

High 7.9 10.9 5.2 5.3 5.2 4.8

Low 6.9 9.1 8.1 8.5 18.2 17.8

The reason of doing so is that (1) is expected to provide a
good starting value for Newton-Raphson and (2) can guar-
antee the desired monotone convergence. In each iteration
of ECME1, we simply do one iteration of Newton-Raphson.
More iterations could be used but from our experience this
usually increases the CPU time. On the other hand, we have
found that the algorithm has numerical problem, especially,
in the Low noise case if the constraint is not used. There-
fore, we follow the treatment in Jöreskog (1967) to impose
the constraint into the mixture: if at some iteration t , some
elements of �(t) are less then η, we restrict those elements
to be η and only the other elements of �(t) are updated in
all remaining iterations. On the other hand, we stop the algo-
rithm if the convergence criterion is satisfied or the maximal
absolute element in the gradient vector of l(�) is less than
5 × 10−5.

Table 3 lists the obtained speedup by CM over ECME1.
All final likelihoods by CM are strictly higher than those
by ECME1. From Table 3, CM outperforms ECME1 in all
situations. By comparing Table 1 with Table 3, in some cases
(e.g. High and Low noise with q = 2,3), the mixture can
accelerate the EM alone but it is not always the case.

5.3 On different starting values

In previous experiments, all algorithms start by PCA. We
are interesting in studying the sensitivity of EM, ECME2
and CM towards the choice of staring values. To investigate
this, we use two types of starting values: (1) ad hoc �(0)

and (2) ad hoc �(0) and A(0), since CM and ECME2 only
require �(0) and EM requires �(0) and A(0).

5.3.1 Type 1: ad hoc �(0)

We take �(0) = 0.1 I (for EM, A(0) is still decided by PCA).
The data in Fig. 1(e) (High noise) is used. Figure 4(b)
shows a close-up of the obtained convergence curve of l.
For comparison, here we also provide a copy of Fig. 1(e),
i.e., Fig. 4(a). The required number of iterations K for con-
vergence by EM, ECME2 and CM are 975, 1076 and 28 in
Fig. 4(a), and 11444, 12071 and 28 in Fig. 4(b).
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Fig. 4 A zoomed-in plot of the evolution of log-likelihood l. Row 1: High noise, q = 2; row 2: ordinary noise, q = 3; column 1: using PCA start;
column 2: using an ad hoc starting value

5.3.2 Type 2: ad hoc �(0) and A(0)

We use �(0) = 0.1 I. For EM, A(0) = Iq , where Iq is the first
q columns of I. The data in Fig. 1(c) is used. Figure 4(c) and
(d) show the convergence of l using PCA start and the ad hoc
starting value, respectively. The required K by EM, ECME2
and CM are 154, 143 and 14 in Fig. 4(c) and 495, 139 and
17 in Fig. 4(d).

Although the result reported here is simply from sin-
gle run, we have verified empirically the same story exists
for the other replications in corresponding noise case. To
sum up, (1) Usually, EM is sensitive to initialization in the
sense that different initializations may require different K ,
ECME2 in high noise case does so as well, and PCA is a
good candidate for initialization; (2) CM is much more in-
sensitive to initialization than EM and ECME2.

6 Conclusion and future work

We propose a novel CM algorithm for fitting FA, which, like
EM, is easy to implement and stable to converge. CM is an
old member of EM, (or more general AECM (Meng and van
Dyk 1997)) algorithms family but it is a new member in the
fitting of ML FA area. Our empirical results in Sect. 5 show
that CM plays a satisfactory role in this area since it out-
performs EM (Rubin and Thayer 1982), ECME1 (Liu and
Rubin 1998), ECME2 and QN (Jöreskog 1967) no matter
assessed by CPU time or number of iterations. In addition,
we show how our proposed ECME2 can be related to the
simple iteration algorithm (Lawley 1940) and ECME2 frees
from several problems suffered by the simple iteration algo-
rithm.
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An extension of CM algorithm for fitting the mixture of
factor analyzers is currently being investigated. Recently, Yu
et al. (2005) propose applying Monte Carlo EM algorithm
to fit FA for ranking data. However, their method is basi-
cally based on the EM described in this paper. We are hence
working on extension of CM to see whether it can achieve
acceleration.

Matlab implementation of CM and ECME2 algorithm is
available from the first author via email.
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Appendix 1: Proofs

7.1 The equivalence between (5) and (7)

The definition of � gives us the following identities

�−1� = I − �−1AA′, ��−1 = I − AA′�−1. (37)

By (5), we obtain

diag(�−1 − �−1S�−1) = 0.

Since � is diagonal, this equation gives us

0 = diag(�−1 − �−1S�−1) · �
= diag(�−1� − �−1S�−1�)

= diag(I − �−1AA′ − �−1S + �−1S�−1AA′)

= diag(I − �−1S),

where the last two equalities follow from the first identity
in (37) and (6), respectively. Now (7) is obtained by the fol-
lowing simple calculations:

� = diag(��−1S) = diag(S − AA′�−1S) = diag(S − AA′),

where, to obtain the last two equalities, the second identity in
(37) and (6) are used respectively. Since the above derivation
can be reversed, we obtain the desired equivalence.

7.2 Proof of Proposition 1

For any d-dimensional column vectors u,v such that 1 +
u′C−1v �= 0, we have

(uv′ + C)[C−1 − C−1uv′C−1/(1 + u′C−1v)] = I.

This shows that

(uv′ + C)−1 = C−1 − C−1uv′C−1

1 + u′C−1v
. (38)

Now (28) is obtained from (38) by setting u = ωei , v = ei .
Actually, both (38) and (28) can be viewed as special cases
of a generalized Woodbury’s formula (Lange 1999, p. 90).

7.3 Proof of Proposition 2

For ωi ≥ 0, the proposition is obviously true. For
−1 < ωi < 0, one can easily verify that

−ω−1
i · Bi − eie′

i

= diag

(
1 + ω

(t+1)
1

−ωi

, · · · , 1 + ω
(t+1)
i−1

−ωi

,
1 + ωi

−ωi

,

− 1

ωi

, · · · ,− 1

ωi

)
+ ÃÃ′ > 0.

By the following lemma, we have e′
iB

−1
i ei < − 1

ωi
. Hence

1 + ωie′
iB

−1
i ei > 0.

Lemma 1 Suppose C > 0, v is a d-dimensional non-zero
column vector, α is a real number. Then

αC − vv′ > 0 ⇐⇒ v′C−1v < α. (39)

Proof If αC − vv′ is positive definite, then

v′C−1 · (αC − vv′) · C−1v = v′C−1v(α − v′C−1v)

is a positive number. This is the case if and only if
v′C−1v < α, because v′C−1v > 0 by assumption.

Let w be an arbitrary d-dimensional non-zero column
vector. Since

‖w′C1/2 + xv′C−1/2‖2 = w′Cw + 2xw′v + x2v′C−1v

is non-negative for any real number x, we must have

(w′v)2 ≤ (w′Cw)(v′C−1v).

Now suppose v′C−1v < α, then, by the above inequality, we
have

w′(αC − vv′)w

= αw′Cw − (w′v)2 ≥ w′Cw(α − v′C−1v) > 0.

Since w is arbitrary, we conclude that αC − vv′ > 0. �
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Appendix 2: Some notes

8.1 Computational complexity analysis

It is helpful to inspect the computation cost in each itera-
tion of different algorithms. Since S, computation of which
is O(Nd2), does not change during iterations of all algo-
rithms, we assume that S has been calculated before running
all algorithms. It should be pointed out that computation of
S can be avoided by EM as detailed below. The computation
cost is summarized in Table 4.

Looking at Table 4, (1) the computation burden of EM in
each iteration is lightest, especially, for the data in ‘large d ,
small q’ setting, which implies that for such data EM may
be fairly competitive. (2) Compared with EM, the burden of
CM is heavier, particularly, in the step to update � . Nev-
ertheless, methods such as Jöreskog (1967)’s method and
ECME1 which perform CML over � also have similar com-
plexity.

• EM: Using (8), (14) and (15) can be rewritten as

A(t+1) = G(t)
(
I + [H(t)]′F(t)

)−1
, (40)

�(t+1) = diag
(
S − H(t)[A(t+1)]′), (41)

where F(t) = �(t)−1
A(t),G(t) = SF(t),H(t) = G(t)(I +

[A(t)]′F(t))−1.
To make the computation more efficient, (40) and (41)

can be implemented as follows:

�(t)−1 → F(t) → G(t) → H(t) → A(t+1) → �(t+1).

By doing so, the cost of (40) is now dominated by
O(d2q). As H(t) has been calculated in (40), the main
cost of (41), diag(H(t)[A(t+1)]′), is simply O(dq) using
the fact that only the diagonal elements are required.

To avoid direct calculation of S, a trick mentioned
in Tipping and Bishop (1999) can be used. Since S is
only involved in computation of G(t) and diag(S) in (41),
we can calculate

∑N
n=1(xn − x̄)[(xn − x̄)′F(t)] instead of∑N

n=1[(xn − x̄)(xn − x̄)′]F(t), and the cost of G(t) can be
reduced to O(Ndq); Calculation of diag(S) only requires
elementwise multiplication of (xn − x̄) and itself, which is
O(Nd). In summary, the saving in computing S, which is
O(Nd2), requires trading computation O(Nd(q + 1)K),
where K is the number of iterations for convergence.

• ECME2: It is required in (21) to compute S̃ and its
singular value decomposition, which is dominated by
O(d3) (if Matlab function ‘eigs’ is used, the cost can
be significantly reduced when d is large). Since S̃ is
given in former step, cost of (22) is mainly caused by
diag{Ã(t+1)[Ã(t+1)]′}, which is simply O(dq).

Table 4 Computation cost of different algorithms in each iteration

Algorithm Update of A Update of �

EM O(d2q) O(dq)

ECME2 O(d3) O(dq)

CM O(d3) O(d3)

• CM: The first step is the same as that in ECME2. The cost
of (34) is O(d2q). In each step of the following d steps,
the main computation is in (33) and (30), which is O(d2)

and hence the total cost of d steps is O(d3).

8.2 Convergence criterion in ECME2 and CM

If we use log-likelihood l as a convergence criterion in
ECME2 and CM, then at iteration t + 1, we need to eval-
uate l(A(t),�(t)) (see (3)), which requires the computation
of the determinant and inverse of a d × d matrix � though
the computation can be reduced by using the relationship
(e.g. see Lawley and Maxwell 1971, Chap. 4):

�−1 = �−1 − �−1A
(
I + A′�−1A

)−1A′�−1,

|�| = |�||I + A′�−1A|.
In order to further reduce computation, for both algorithms,
we tend to evaluate l(A(t+1),�(t)) after the CM-step 1 (in-
stead of l(A(t),�(t)) before the CM-step 1). Then,

l(A(t+1),�(t)) = −N

2

{
d ln 2π + ln |�(t)| + tr(̃S)

+
q ′∑

i=1

[ln (̃λi) − λ̃i] + q ′
}

. (42)

Clearly, the computation of (42) is very cheap since it can
make use of the existing eigen-decomposition of covariance
matrix S̃ and the simple computation of ln |�(t)|.
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