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ABSTRACT Internet of Things (IoT) has caused significant digital disruption to the future of the digital
world. With the emergence of the 5G technology, IoT would shift rapidly from aspirational vision to real-
world applications. However, one of the most pressing issues in IoT is security. Routing protocols of the
IoT, such as the Routing Protocol for Low-power and lossy network protocol (RPL), are vulnerable to both
insider and outsider attacks with the insider ones being more challenging because they are more difficult to
detect and mitigate. Among the most concerning insider attacks to RPL in IoT applications is the Version
Number Attacks (VNAs) that target the global repair mechanisms by consuming resources of IoT devices,
such as power, memory, and processing power, to eventually cause the IoT ecosystem to collapse. In this
paper, a lightweight VNA detection model named ML-LGBM is proposed. The work on the ML-LGBM
model includes the development of a large VNA dataset, a feature extraction method, an LGBM algorithm
and maximum parameter optimization. Results of extensive experiments demonstrate the advantages of the
proposed ML-LGBM model based on several metrics, such as accuracy, precision, F-score, true negative
rate and false-positive rate of 99.6%, 99%, 99.6%, 99.3% and 0.0093, respectively. Moreover, the proposed
ML-LGBM model has slower execution time and less memory resource requirement of 140.217 seconds
and 347,530 bytes, making it suitable for resource-constrained IoT devices.

INDEX TERMS IoT, RPL Protocol, 6LowPAN, Machine Learning, RPL Attacks.

I. INTRODUCTION

W
ITH the rapid advancement of our modern society, the
Internet of things (IoT) technology is poised to be the

future major digital revolution, particularly with the recent
5G revolution, which makes this technology move quickly
from aspirational dreams to practical applications. Internet of
Things (IoT) allows the modern world to be more effective,
saving time and resources for businesses and individual-
s. Nowadays, such cutting-edge technologies significantly
impact our lives, such as smart homes, smart cities, smart
healthcare, and even wearable devices. Furthermore, it has a
significant impact on saving time and resources in industry
fields [1], [2], [3].
By allowing people and intelligent devices to communicate
at anytime, anywhere, the billions of physical devices around
the world that are now and in the future can communicate

via the Internet without human intervention and controlled
through actuators [4], [5], [6]. The sensors capture critical
data from homes (smart home devices), industrial units
and smart cities, etc., and can be shared [7]. This precious
treasure trove of big data transmitted over the Internet
generates rapacity and hacking to seize it. Therefore, the
main challenge in IoT is cybersecurity. Many IoT devices
don’t think of security fundamentals like encrypting data
in transit and at rest due to their resource limitations. IoT
software flaws are also discovered regularly. Consequently,
researchers seek to devise alternative defiance mechanisms
that are suitable for IoT to try to protect the network protocol
vulnerable to attacks.
The primary routing protocol used by IoT devices to provide
communication between sensors and actuators is the distance
vector (DV) routing protocol, aka. IPv6 Routing Protocol
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for Low Power and Lossy network (RPL) [6], [8]. The
RPL protocol organizes the low power and lossy network
nodes as a Destination Oriented Directed Acyclic Graph
(DODAG) with a unique DODAGID. Two or more DODAGs
form together an instance of RPL, which possesses a unique
RPLinstanceID. An RPL network node can be a member of
multiple instances but must only belong to one DODAG at
any instance [6], [9].
The RPL protocol has distinct features like auto-
configuration, self-healing, loop-avoidance, and detection
in addition to the control messages used to construct the
DODAG, such as ICMPv6 control messages. There are four
types of control messages including (i) DODAG Information
Object (DIO) responsible for building the upward route from
the leaves to the sink node, (ii) Destination Advertisement
Object (DAO), which constructs the reverse path from the
sink node to the leaves, (iii) DODAG Information Solicitation
(DIS) that is used to solicit the DIO when it has not been
received for a while, and (iv) Destination Advertisement
Object Acknowledgment (DAO-ACK) which is sent as a
result of receiving a DAO message. The DIO messages
contain many fields, including RPLinstanceID, the version
number of the DODAG, the node’s rank, and the unique
DODAGID [6], [10].
Version Number Attacks (VNA) are among the most threat-
ening attacks targeting the RPL network availability by ma-
liciously increasing the version number. In such attacks, the
malicious node increases the version number when it receives
a DIO message in the version number field maliciously,
leading to an inconsistency in the DODAG. As the result, the
global repair mechanism is triggered by the root to rebuild the
DODAG properties from scratch [11], [12]. Thus, the attack
drains the network resources, affecting network availability,
quality-of-service (QoS), and the life of network.
One of the most significant challenges in the real world of
IoT is a secure connection that is challenging due to the
heterogeneity of IoT devices. To the best of our knowledge,
only a few studies have targeted at the security of VNA
attacks in the literature. However, most of such studies have
not yet been evaluated, while some are resource-consuming
with respect to power, memory, and processing capability
with a high false-positive rate [13], [14].
Machine-learning (ML) techniques have demonstrated their
efficiency in the cybersecurity domain, which can be applied
to detecting anomalies with a high positive rate. Moreover,
ML can handle a tremendous amount of data, making it a
potentially suitable method for massive data provided by the
network of sensors. Therefore, this study proposes an ML
method for IoT networks with the aim of performing the
function of an Intrusion Detection System (IDS) to detect
VNA in the RPL-based network using the ensemble learning
technique. The proposed IDS (ML- LGBM) adopts the Light
Gradient Boosting Machine with extreme parameter opti-
mization. An extensive and unique VNA dataset constructed
depends on RPL properties and a proposed feature extraction
technique.

In addition, an extensive performance evaluation and com-
parison of the proposed IDS (ML-LGBM) to different well-
known machine learning algorithms were performed. The ex-
perimental results demonstrate that the presented IDS results
are impressive and outperform previous results with lower
false-positive rate, shorter training and testing time, smaller
model size, and higher accuracy, precision, and F1-score.
The main contributions of this paper can be summarized as
follows:

• A novel model is proposed using a light gradient boost-
ing machine trained on a unique dataset with extreme
parameter optimization characterized by high accuracy,
high detection rate, and low computational complexity.

• An extensive VNA dataset that consists of 1,050,861
records have been constructed. The dataset is uniquely
built depending on RPL properties, such as the version
number and rank fields.

• A feature extraction technique is proposed to extract and
provide training and testing datasets to feed the ML-
LGBM model dynamically.

• Feature engineering analysis using a step forward fea-
ture selection approach is applied to deriving the op-
timal subset of features, resulting in reducing the di-
mensionality of the dataset and the size of the model
simultaneously and making the proposed model very
efficient and suitable for IoT.

• An in-depth evaluation of ML-LGBM has been per-
formed based on various performance evaluation met-
rics, including training time, testing time, model size,
etc.

The rest of the paper is organized as follows. Section 2
reviews some related work. Section 3 describes the proposed
method in details. Section 4 presents the experimental results
and analysis. Section 5 concludes this paper.

II. RELATED WORK

Research on securing IoT devices from internal attacks is
still in its infancy despite the number of studies on detect-
ing and mitigating these kinds of attacks. However, RPL-
based networks are still suffering from VNA attacks, which
consumes the RPL-based network resources and threatens its
availability.
As a preliminary work, Mayzaud et al. [15] studied the effect
of VNA in an RPL-based network using a simulation with 20
nodes and discovered that control overhead could increase up
to 18 times while the delivery ratio of packets would decrease
by 30%. Furthermore, the location of the attacker affects
the consistency of the network. Another study by Aris et al.
[12] provided a lightweight technique to mitigate the impact
of VNA in an RPL-based network. The proposed method
used two types of procedures to reduce the effects of version
number attacks. The first is named elimination in which a
node would eliminate any updates coming from a leaf node.
The second is called shield in which a node changes the
version number depending on its neighbors with a better
rank. The authors claimed that the proposed model could
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reduce the delay, control message overhead and data packet
delivery ratio up to 87%, 63%, 71% and 86%, respectively.
Yavuz et al. [16] generated a dataset using Cooja emulation
based on the Contiki operating system. The dataset contains
three types of RPL attacks, i.e., hello flood, decreased rank,
and VNA. The authors also applied a deep neural network
model to detect the attacks mentioned above that can achieve
accuracy of 94.9% for the decreased rank attack, 99.5% for
the hello flood attack, and 95.2% for the VNA. The main
drawback of the proposed model is in the long training time,
however. In a further study by Kfoury et al. [17], the authors
use the Self-Organizing Map (SOM) technique to detect
VNA and other attacks. There was no clear indications on
the placement of the IDS as well as its power consumption in
this study. Dvir et al. [18] presented an IDS for combating the
VNA and Rank Attack (RA) named VeRA (Version number
and Rank Attack) using a hash function. The main idea is
that the DODAG root is responsible for generating a hash
chain based on random numbers. The main drawback of the
proposed IDS is that it consumes network resources. Sahay
et al. [19] investigated the VNA and its impact on the RPL-
based network and then presented a centralized machine
learning technique to analyze the data captured from the
network. The performance of the proposed model, as the
authors claimed, was 98%. Table 1 presents a summary of
some related work along with the limitations.

III. THE PROPOSED METHODOLOGY

This paper proposes a machine learning model called ML-
LGBM to detect VNA in an RPL-based network. The model
consists of four modules that work together to achieve high
accuracy and detection rate. These four modules are data
collection, data preprocessing, feature selection, and machine
learning, which is depicted in Figure 1.

A. MODEL SETUP

To carry out the experiment, we used the Cooja simulator
bundled with the Contiki operating system. Cooja simulator
is a Java-based simulator that permits the emulation of real
hardware platforms with its core written using the C language
[25]. We used Contiki instance 3.0 on a virtual machine with
4 GB of RAM and 40 GB of hard disk to collect the raw
data. Each node is created as a Zolertia mote consisting of
8KB RAM and 92KB flash memory in the experiment. The
attacker node starts after 30 seconds of running the emulator.
Table 2 shows the dataset generated from the simulation and
Figure 2 shows one scenario of the simulation. Furthermore,
to collect the raw data, we used the 6Lowpan Package Ana-
lyzer already built into the simulator. This tool is used to sniff
the radio traffic and save it as a PCAP file.

B. NETWORK SCENARIO

1) Network parameters

In the experiment, the RPL-UDP example was used for all
the scenarios which contained two nodes, one udp-server
and udp-client, and in each design, the udp-server is the

FIGURE 2. One Cooja simulation scenario.

sink node. One sink node was used in the network in our
experiment along with (10, 20) client nodes and (1, 2, 3)
malicious nodes. The memory of Zolertia (Z1) node was very
small, so we selected 10 minutes as our standard time to
eliminate the simulation hanging. Table 3 shows the Cooja
parameters used in the simulation phase.

TABLE 3. Cooja simulation parameters.

Parameters Values
Operating system Contiki 3.0
Emulator/simulator Cooja
Node type Zolertia (Z1)
Routing protocol RPL
Radio environment Unit Disk Graph Medium (UDGM)
Simulation duration 10 minutes
Node transmission rate 50m

2) Simulation of VN attacks

As mentioned above, the Cooja core is written in the C
language. In a VNA, when the malicious node receives a DIO
message in the VN attack, it increments the version number
field or attribute and sends it to its neighbors. As the result,
loops may occur, causing the network to become inconsistent
and resulting in the root node or the sink node to trigger the
global repair mechanism to restore the network properties. To
originate the VNA, we edited the Cooja file system to make
the malicious node increment the version number in our case
by one each time it receives a DIO message. Algorithm 1
declares the VNA.
Algorithm 1: The VNA Scenario

Input: DIO message
Output: DIO message (with increased VN)

1: for each DIO broadcasting message do

2: if (node-id = attacker-node-id) then

3: received the DIO message

4: extract the DAG information

5: V ersion Number = V ersion Number + 1
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TABLE 1. Summary of some related work and limitations.

Ref Dataset Methodology Results Limitations
[16] Self-generated

dataset
A deep learning method
for detecting RPL rout-
ing attacks

Precision is 0.94%, re-
call is 0.94% and F1 S-
core is 0.95%

Deep learning methods
are not suitable for IoT

[20] Self-generated
dataset

Statistical and machine
learning techniques

Decision trees are
94.07% and Artificial
neural network accuracy
is 93.99%

The authors just evaluat-
ed the IDS performance

[21] Self-generated
dataset

Random forest for de-
tecting RPL attacks

Classification accuracy
is 99.33%

Random forest is re-
source extensive

[22] Self-generated
dataset

An ensemble learning
technique for detecting
seven RPL attacks

Classification accuracy
is 94.5%

Ensemble learning tech-
niques are resource ex-
tensive

[23] - Gated recurrent unit net-
work model-based deep
learning is proposed

Accuracy is 99.96% Scalability problem
when the number of
nodes increases

[12] - A lightweight technique
to mitigate the impact of
VNA

It reduced delay by 87%,
control message over-
head by 63%, and im-
proved data packet deliv-
ery ratio up to 71%

It doesn’t incorporate
mobility

[18] - Trust-based IDS VeRA prevents attack
from occurring

It consumes network re-
sources

[15] - In-depth study of VNA Control overhead is in-
creased while delivery
ratio of packets is de-
creased

[24] - Self-Organizing Map It clusters the attacks and
normal traffic

Deployment overhead is
not considered

FIGURE 1. The proposed model for detecting VNA.

TABLE 2. The datasets from different scenarios.

Scenarios No of Benign nodes No of malicious node(s) Benign Malicious The total
One malicious 10 1 223243 89296 312539
Two malicious 10 2 286965 27422 314387
Three malicious 20 3 374653 374653 374653

6: send the updated DIO to the neighbors node 7: else if node-id 6= attacker-node-id then
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8: regular DAG version

9: end if

10: end for

3) Raw data collection

After implementing our scenario, the radio message tool
was used to sniff and collect the radio messages transmitted
between the nodes that would be analyzed with a 6Lowpan
analyzer with a PCAP feature incorporated into the tool. Fig-
ure 3 presents a sample of the collected data. Subsequently,
the collected data was processed by the Wireshark software
and saved as JavaScript Object Notation (JSON).

4) Dataset creation

We developed a Python feature extraction model to extract
the JSON file features, which was introduced to get the
proper feature vectors. The main goal of this model is to dy-
namically extract the essential characteristics of both benign
and malicious values from raw data to be saved in a CSV file.
Algorithm 2 declares the parsing procedure. As the result,
the total number of extracted features are 113. We then per-
formed the data cleaning process to delete duplicate features,
resulting in the total number of features to be reduced to 59.
Subsequently, the fixed features (with values not changing
like WPAN security) were removed from the dataset. We
also cleaned up the other features with hexadecimal values,
e.g., frame checksum. As the result, the remaining features
after this process were only 17. Then, categorical features
were encoded, e.g., source IP address and destination IP
address. Moreover, we encoded the target label to [0, 1]
for regular and malicious traffic, respectively. The dataset
contained 1,050,861 instances of which 884.861 were benign
and 166.000 were malicious. Figure 4 shows an example of
the candidate features.

Algorithm 2: Parsing JSON codes

Input: JSON file
Output: CSV file

Initialisation :
processed_data← [ ]
header ← [ ]
reduced_item← { }
data_to_be_processed← [ ]
//Reading arguments
raw_data← json.loads(json_value)
//LOOP Process

1: for item in data_to_be_ processed do

header+ = reduced_item.keys()
reduce_item(node, item)
processed_data.append(reduced_item)

2: end for

//Writing arguments
Open csv file
header← list(set(header))
write← csv.DictWriter(header)
LOOP Process

3: for row in processed_data: do

writer.writerow(row)
4: end for

5: return CSV File

5) Feature normalization

Feature normalization or feature scaling is the process of
normalizing the distribution of the independent variables.
The collected data have different mean and variance, which
decreases the performance of the machine learning model.
We thus performed min-max scaling or normalization to
normalize the collected data, which scales the feature in a
new dimension between [0, 1] or [1, -1]. The min-max scaler
is defined using Equation 1.

X
′

=
X −min(x)

max(x)−min(x)
. (1)

C. FORWARD FEATURE SELECTION

Also known as Sequential Forward Selection (SFS), forward
feature selection selects a subset of features based on an
iterative method from a complete set of features to minimize
the classification error. Starting from an empty feature set S,
it iteratively evaluates the features and selects the one with
the best performance depending on some estimation function
to minimize the mean square error (MSE) [26]. At each
iteration, it tests all potential combinations of the selected
feature with the residual features and holds over the pair
that produces the best performance among them. A major
advantage of SFS is that it assesses the utility of a subset
of features by training a model on it. It also uses cross-
validation for the evaluation of a subset of features. It can
always provide the best subset of features [27], [28]. The SFS
is defined through Equation 2. Table 4 and Figure 5. offer the
selected features through using the SFS algorithm.

X+ = argmaxx+∈Yk
[J(Yk +X+)]. (2)

Where Yk = ∅,k = 0 is an empty set, and X+ represents the
selected features.

TABLE 4. The selected features (SFS).

NO Selected
features

Feature name

1 6lowpan.src Source IP
2 6lowpan.Dst Destination IP
3 iphc.m IP Header Compression
4 frame.len Frame length
5 dio.dtsn DSTN number
6 dio.rank DIO rank
7 dio.version DIO version
8 dao.sequence DAO sequence
9 ipv6.hlim IPv6 hope limit
10 ipv6.plen IPv6 packet length
11 wpan.seqno 6Lowpan sequence number

D. THE LIGHT GRADIENT BOOSTING MACHINE MODEL

Developed by Microsoft in 2016, LightGBM is a fast, dis-
tributed, open-source and high-performance gradient boost-
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FIGURE 3. A sample of the collected data.

FIGURE 4. A candidate feature as a result of feature extraction.

FIGURE 5. Selected features and their performance.

ing machine learning algorithm. It uses histogram-based
algorithms to speed up training and to reduce memory usage.
LightGBM is highly efficient and accurate, supports parallel
learning, and is convenient with large datasets, making it suit-
able for Low power Lossy Network (LLN) [28] . Addition-
ally, LightGBM contains two techniques that work together:
Gradient-based One Side Sampling ( GOSS) and Exclusive

Feature Bundling (EFB), which overcome the shortcomings
of the histogram-based algorithm used in all GBDT (Gra-
dient Boosting Decision Tree) frameworks [27]. In GOSS,
different data instances play different roles in calculating
information gain in which an instance with greater gradients
can add more to the information gain. GOSS keeps those
instances with high gradients and drops those with limited
gradients at random to maintain the precision of information
gain estimation [29]. The mathematical analysis in GOSS is
shown in Equation 3.

V̂j(d) =
1

n

(

(
∑

xi∈Al
gi +

1−a
b

∑

xi∈Bl
gi)

2

n
j
l (d)

+
(
∑

xi∈Ar
gi +

1−a
b

∑

xi∈Br
gi)

2

n
j
r(d)

)

(3)

Where V̂j(d) estimated variance gain over the subset
A ∪ B, Al= {xi ∈ A : xij≤ d }, Ar= {xi ∈ A : xij> d },
Bl= {xi ∈ B : xij≤ d }, Br= {xi ∈ B : xij> d }, and the
coefficient 1−a

b
is used to normalize the sum of the gradients

over B back to the size of Ac. Thus, the estimated V̂j(d) is
used over a smaller instance subset, instead of the accurate
Vj(d) over all the instances to determine the split point. At
the same time, The EFB technique is used by LightGBM
to minimize the model complexity by bundle the exclusive
features into a single feature.
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The loss function in our model is the logistic regression
calculated as Equation 4. This function is considered to be an
optimal calibration statistic function for training our detector
as it penalizes the discrepancy between true and expected
odds. Besides, it estimates the relative uncertainty between
the class that our system forecasts and the real classes.

Logloss = −
1

N

N
∑

i=i

yilog(ŷ) + (1− yi)log(1− ŷ). (4)

Where i denote the given observation/record, yi denotes
the actual/true value, and ŷ indicates the probability of pre-
diction.

IV. EXPERIMENT AND ANALYSIS

A. PERFORMANCE EVALUATION METRICS

In this study, we use different evaluation metrics to evaluate
the performance of ML-LGBM to detect VNA in an RPL-
based network. These metrics are based on the confusion
metrics results. The evaluation metrics include accuracy,
precision, false negative, false positive, F-score, misclassifi-
cation rate (error rate), and detection rate (DR) [30], [31], as
shown in Equations 5-10.

Accuracy overall =
(TP + TN)

(TP + TN + FP + FN)
(5)

Precision =
TP

(TP + FP )
(6)

False negative rate (FNR) =
FN

(FN + FP )
(7)

Detection Rate (DR) orRecall =
TP

(TP + FN)
(8)

FP Rate or Fall − out =
FP

(TN + FP )
(9)

F − score = 2

(

(Recall × Precision)

(Recall + Precision)

)

(10)

B. RESULTS AND ANALYSIS

For the ML-LGBM model that is proposed to detect the VNA
in an RPL-based network, we have performed a considerable
analysis using Python version 3.7. The model was trained
on the training dataset and validated using 10-fold cross-
validation. Moreover, we performed extensive parameter tun-
ing for the model to get the best results. Also, other machine
learning classifiers are compared to the proposed model.
The results obtained from the experiment showed great
promises in both performance and complexity, for the model
achieved accuracy, precision, F-score of 99.6%, 99.0% and
99.3%, respectively. In terms of complexity, the model need-
ed less training, resulting in short testing time and smaller
model size of 140.217s and 347530 bytes, respectively, indi-
cating that the proposed model has less complexity. Table 5

FIGURE 7. The ROC curve for ML-LGBM.

shows the overall results obtained from the experiment com-
pared to other machine learning algorithms, such as Gradient
Boosting (GB), Extra tree classifier (EXT), Random forest
(RF), k-nearest neighbors (K-NN) and eXtreme Gradient
Boosting (XGBoost), demonstrating that ML-LGBM has the
best performance among all these classifiers. Table 6 shows
the results obtained from different dataset scenarios (one
malicious, two malicious, and three malicious nodes).

Figure 6 shows a comparison between ML-LGBM and
XGBoost in which Figure 6 (a) and (b) show the performance
of ML-LGBM and XGBoost. The first plot is the learning
curve, which offers training vs. score. The second plot shows
the model scalability depending on the time and the third plot
shows the model performance and its score. Figure 7 shows
the Receiver Operating Characteristic curve (ROC) for ML-
LGBM. Furthermore, we calculated the training and testing
time for both classifiers ML-LGBM and XGBoost, conclud-
ing that ML-LGBM has a better fitting time of 140.217s
where XGBoost fitting time, i.e., the time required to train
the models for each training size, of 208.752s. The results
indicate that the proposed ML-LGBM has faster training
speed, higher efficiency, lower memory usage and higher
accuracy. Therefore, it is suitable for IoT applications.

Also, these figures indicate that LightGBM fit time scal-
ability is less than XGBoost and can achieve better perfor-
mance in less time. On the other hand, the proposed model is
very efficient in true negative rate 0.990 and false-positive
rate 0.009399 compared to XGBoost 0.977 for both true
negative rate 0.022582 and false-positive rate. Moreover,
from Table 7, ML-LGBM achieves a size of 347,530 bytes,
which is adequate to fit into IoT devices, a small standard
deviation of 0.00024, which indicates that the data points are
close to the mean, and a log loss of 0.1289, which implies
sufficient confidence (very low uncertainty) in the estimated
probabilities.
Table 8 compares the effect of different estimator values on
the training time, standard deviation, and accuracy acquired
from parameter of the number of estimators. From the result,
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TABLE 5. Comparison of LGBM with other classifiers.

Scenario Accuracy Precision Recall F1− score TNR FPR
LGBM 0.996 0.990 0.996 0.993 0.990 0.009399

GB 0.990 0.980 0.985 0.983 0.980 0.019237
EXT 0.993 0.988 0.989 0.988 0.988 0.011307
RF 0.993 0.986 0.991 0.988 0.986 0.013933

K-NN 0.989 0.983 0.978 0.980 0.983 0.016574
XGBoost 0.988 0.977 0.983 0.980 0.977 0.022582

TABLE 6. The results obtained from the different dataset scenarios.

Model No of malicious node(s) Accuracy Precision Recall F1_score TNR FPR
1 0.996 0.990 0.996 0.993 0.990 0.009399

ML- LGBM 2 0.995 0.995 0.974 0.984 0.974 0.025823
3 0.993 0.993 0.946 0.969 0.946 0.053489

(a) LGBM classifier performance.

(b) XGBoost classifier performance.

FIGURE 6. Results comparison of ML-LGBM with XGBoost.

TABLE 7. Comparison between ML-LGBM and other classifiers.

Model Model size/byte Fitting time/second Standard deviation Log Loss
ML- LGBM 347530 140.217 0.00024 0.1289
GB 369816 656.730 0.00060 0.3090
EXT 192835 629.326 0.00049 0.2199
RF 377721 781.503 0.00037 0.2304
K-NN 859819 1024.39 0.00151 0.3602
XGBoost 552088 208.752 0.00065 0.3919

it is clear that when the tree increases, the time also increases. The best accuracy is obtained when the number of estimators

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3087175, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 8. Effect of the number of estimators on accuracy.

Model N-estimators Time/second Standard deviation Accuracy
50 22.714 0.00054 0.986
100 41.289 0.00040 0.992
150 62.483 0.00033 0.994

ML- LGBM 200 94.190 0.00018 0.995
250 101.897 0.00028 0.995
300 122.649 0.00029 0.995
350 140.217 0.00024 0.996

is 350.
Furthermore, to emphasize the proposed detection method
advantages, five experiments to compare ML-LGBM with
five well-known ML techniques are carried out. The five
models are as follows: Gradient boosting, Extra trees, Ran-
dom forest, K-NN classifier, and XGBoost. Figure 8(a),
(b),(c) and (d) presents the results obtained from the different
classifiers depends on three criteria; the first criterion is
the learning curve which compares the training examples
with accuracy. The second criterion is the model scalability
shown the number of training compared with the fitting time
(training and validation time). The last criterion is the model
performance shows the variation of the time taken to train
each model. The results demonstrate that the ML-LGBM
model outperforms the other four ML algorithms, making
it light and easy to deploy. For an in-depth overview of the
concept of MLLGBM, Figure 9 is presented, which depicts
the model’s first tree (No. 1), and Figure 10 depicts the
model’s last tree (No.300).

Further, to objectively evaluate the proposed scheme, the
results of the ML-LGBM model performance is compared
with the methods proposed by Yavuz et al. [16], Verma et
al. [20], Sharma et al. [21] and Verma et al. [22] that shown
in Table 9. The proposed ML-LGBM model outperforms the
previously proposed schemes significantly, and this is shown
in ML-LGBM outstanding performance achieved with high
accuracy, precision, recall and F-score.

V. CONCLUSION

This paper proposed a machine learning model ML-LGBM
for detecting VNA in an RPL-based network. For our study,
we generates a dataset using the Cooja simulator for testing
and validating and the generated dataset contains 1,050,861
rows where 884.861 are benign and 166.000 are malicious.
The dataset has been used as a benchmark of our model. Con-
siderable analysis has been performed to test the proposed
model at various stages with the conclusion that ML-LGBM
can achieve optimized results and is more advantageous over
all the other machine learning models in terms of accuracy,
precision, recall, F-score, true negative rate and false-positive
rate. In addition, An in-depth comparison between the ML-
LGBM and other well-known ML techniques demonstrated
that the ML-LGBM model has a lower standard deviation,
lower Log Loss, consumes fewer resources, and less training

and testing time. However, ML-LGBM can be a better
choice for attack detection in RPL-based networks from all
the modes and techniques mentioned above. Although the
proposed model showed high performance as it was trained
using a large and unique data (relying on RPL properties such
as version number and rank fields), it has some limitation,
i.e., the data contains only one type of RPL attack. Conse-
quently, future work is needed to add other variants to the
dataset to further evaluate the model.
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and Test-beds for Internet of Things: A Comparison,Ť in 2019 Third
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