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Abstract 1

Markov random fields (MRF) have been widely used to model images in Bayesian frameworks
for image reconstruction and restoration. Typically, these MRF models have parameters that
allow the prior model to be adjusted for best performance. However, optimal estimation of these
parameters (sometimes referred to as hyperparameters) is difficult in practice for two reasons: 1)
Direct parameter estimation for MRF’s is known to be mathematically and numerically challenging.
2) Parameters can not be directly estimated because the true image cross-section is unavailable.

In this paper, we propose a computationally efficient scheme to address both these difficulties
for a general class of MRF models, and we derive specific methods of parameter estimation for the
MRF model known as a generalized Gaussian MRF (GGMRF).

The first section of the paper derives methods of direct estimation of scale and shape parameters
for a general continuously valued MRF. For the GGMRF case, we show that the ML estimate of
the scale parameter, σ, has a simple closed form solution, and we present an efficient scheme for
computing the ML estimate of the shape parameter, p, by an off-line numerical computation of the
dependence of the partition function on p.

The second section of the paper presents a fast algorithm for computing ML parameter esti-
mates when the true image is unavailable. To do this, we use the expectation maximization (EM)
algorithm. We develop a fast simulation method to replace the E-step, and a method to improve
parameter estimates when the simulations are terminated prior to convergence.

Experimental results indicate that our fast algorithms substantially reduce computation and
result in good scale estimates for real tomographic data sets.
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1 Introduction

Over the past decade, Bayesian methods for image reconstruction and restoration have become

increasingly popular because they allow accurate modeling of both data collection, and image

behavior. For example, Bayesian methods have been widely studied for emission tomography

[1, 2, 3], transmission tomography [4, 5, 6], and image restoration [7, 8].

While the model used for data collection (also known as the forward model) has varied depending

on the application, most of these approaches have used Markov random fields (MRF) to model

the unknown image. This is because the MRF model is computationally tractable and can also

capture many non-Gaussian aspects of images such as edges. A variety of continuously valued

MRF models have been proposed for accurately modeling images [9, 2, 3, 10, 11, 12, 13]. Most of

these are distinguished by the choice of potential function that assigns cost to differences between

neighboring pixels.

While Bayesian methods can improve the quality of reconstructed images, they also have the

potential to create errors when the models do not accurately characterize the data. To avoid

this problem, modern approaches usually include parameters which allow the prior model and/or

forward model to be adjusted to achieve the best possible results for each data set. Often the

prior model parameters are referred to as hyperparameters because their effect is only indirectly

apparent through the measured data.

Ideally, model parameters must be estimated for each data set as part of the image reconstruc-

tion or restoration process. However, estimation of these model parameters is often difficult for

two reasons. First, direct maximum likelihood (ML) estimation of MRF parameters from example

images is known to be a difficult problem. This is because in most cases the normalizing constant

of the distribution, known as the partition function, is an intractable function of the parameters.

Second, in most applications example images are not available for estimation of parameters.

Instead, parameters must be estimated indirectly from collected data because the true image cross-

section is not known. This is a classic example of an incomplete data problem for which the

expectation-maximization (EM) algorithm was developed [14, 15]. Intuitively, the EM algorithm

works by iteratively computing the expectation of the unknown image statistics, and then maxi-
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mizing the likelihood with respect to those statistics2.

Most previous research for the direct estimation of MRF parameters has focused on discrete

MRF’s [17, 18, 19, 20, 21, 22] and used approximations to the ML estimate based on maximum

pseudolikelihood [19, 20] or least squares [21]. The methods of these papers are not directly ap-

plicable to estimation of parameters from the continuously valued MRF’s which are the subject of

this paper. More recently, researchers such as Ogata, Geyer, Thompson, and Gidas have developed

methods which attempt to directly compute the partition function during the estimation process

[23, 24, 25, 26]. Since computation of the partition function requires on-line stochastic simulation,

fast methods of simulation, such as those proposed by Potamianos, Goutsias, Jerrum and Sinclair,

have been of considerable interest [27, 28].

Alternatively, estimation of parameters for Gaussian MRF’s has received wide attention. This

problem is essentially equivalent to estimation of regularization parameters in quadratic regular-

ization. For a review of these approaches, see [29]. We do not consider these methods since, for the

purposes of this research, Gaussian prior models lead to excessive smoothing of image edges.

A number of researchers have specifically studied the problem of estimating continuous MRF

parameters from incomplete data. The simplest and perhaps most natural approach to this problem

is joint MAP estimation of both the image and parameters [30]. Unfortunately, this leads to an

inconsistent estimator that may even be divergent [31, 32]. Mohammad-Djafari has reported good

results by using a joint MAP estimation method which is stabilized with an appropriate prior

distribution for the parameters [33]. Schultz, Stevenson, and Lumsdaine have proposed a method

for ML estimation of parameters by employing a signal-dependent approximation to the partition

function and a quadratic approximation to the posterior distribution of the image [34]. Recently,

Higdon et. al. have independently proposed a method for sampling from the posterior distribution

of the MRF parameters using direct precomputation of the partition function [35]. Samples from the

posterior distribution can be used to compute confidence intervals, and if the posterior distribution

is peaked, then individual samples are likely to be good estimates.

In an effort to avoid the computationally expensive E-step of the EM algorithm, Zhou and

Leahy have developed an approach which uses a mean field theory approximation to compute the

2We note that this application of the EM algorithm is unrelated to Shepp and Vardi’s classic use of EM in image
reconstruction[16]. In Shepp and Vardi’s work the image is treated as the unknown parameter.
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required expectation [36, 32]. This method is philosophically similar to mean field approximations

used by Zhang in segmentation problems [37]. Pun and Jeffs have taken an approach similar in

concept to EM, but replacing the maximum likelihood step with a estimator designed specifically

for the p parameter used in a Generalized Gaussian MRF (GGMRF) [38, 39].

True EM approaches have often been avoided due to the perception of excessive computation.

One of the earliest attempts was by Geman and McClure when they proposed computing the shape

parameter of a MRF by precomputing the partition function and replacing the expectation step

with stochastic integration [1, 40].

In this paper, we propose a computationally efficient scheme to compute ML estimates of

MRF model parameters from incomplete observations [41, 42, 43, 44]. Our method hinges on two

innovations:

• Simple direct parameter estimation for continuous MRF’s based on closed form expressions

for the dependence of the partition function on the scale parameter.

• Computationally fast algorithms for computing the E-step of the EM algorithm based on fast

simulation and parameter extrapolation.

In addition, we present a method for computing forward model parameters such as dosage which

are often required for Bayesian reconstruction of transmission tomograms [45].

The first section of the paper derives methods for direct estimation of parameters for a general

continuously valued MRF. To do this, we re-parameterize many well known potential functions

using two parameters referred to as scale and shape. We show that in the general case, the scale

parameter, σ, may be computed as the numerical solution to a simple equation. Interestingly, for

the specific case of the generalized Gaussian MRF (GGMRF) [12], σ has a closed-form solution

that is analogous to estimation of standard-deviation for Gaussian random variables [31]. Based

on this result, we derive a general approach to ML estimation of the shape parameter through

precomputation of a one dimensional function of the shape parameter. We then illustrate the

method for the case of the GGMRF by showing computed values of σ and p for a variety of images.

The second section of the paper presents a fast algorithm, based on the expectation maximiza-

tion (EM) algorithm, for computing ML parameter estimates when the true image is unavailable.

We develop a fast simulation method to replace the E-step based on extensions to the conventional

Metropolis algorithm [46, 47, 48], and the heuristics suggested by Green and Han [49]. For the case
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of both transmission and emission tomography problems, our updates may be efficiently computed

using the techniques described in [50]. To further reduce computation, we introduce a method to

extrapolate the parameter estimates when the simulations are terminated prematurely.

Experimental results are presented for real transmission and emission data sets, as well as for im-

age restoration. These results indicate that our fast algorithms substantially reduce computational

cost and result in useful scale parameter estimates.

2 ML Parameter Estimation for Continuously Valued MRF’s

Let X be a continuously valued unknown random image, and let Y be the measured random

observations. We use upper case letters to denote random quantities and lower case letters to denote

their corresponding deterministic realizations. The unknown image is modeled by its probability

density function, Pσ,p(x), where σ and p are unknown scale and shape parameters to be defined.

We will assume that X contains N pixels indexed by Xs for s ∈ S, and that X takes values in

the convex set Ω = {x : xs ≥ 0 for all s ∈ S}. The observations are modeled by their conditional

density function, P(y|x). If Y is discrete, then P(y|x) is a probability mass function.

Our objective is to estimate the parameters σ and p so that we may compute the maximum a

posteriori (MAP) estimate of X given Y

X̂MAP = arg max
x∈Ω
{logP(Y |x) + logPσ,p(x)} (1)

where the constraint of x ∈ Ω enforces positivity in the image. In this section, we develop methods

for computing ML parameter estimates from direct observations of X.

2.1 MRF Prior Models

We model the unknown image X as an MRF with Gibbs distribution

Pσ,p(x) =

{
1

σNz(p)
exp

{
−1
pu(x/σ, p)

}
if x ∈ Ω

0 if x 6∈ Ω
(2)

where σ is a parameter that controls scale or variation in X, and p is a shape parameter that we will

see appears in many common MRF models. We use the notation p because this is the traditional

variable used in the GGMRF model which will be the focus of our analysis. The function u(x/σ, p)

is referred to as the energy function.
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Nonconvex potential functions

Author (name) Reference ρ(∆, p)

Geman and McClure [1, 40] ∆
1+∆2

Blake and Zisserman
(weak spring)

[9, 51] min{∆2, 1}

Hebert and Leahy [2] log(1 + ∆2)

Geman and Reynolds [11] |∆|
1+|∆|

Convex potential functions

Author (name) Reference ρ(∆, p)

(Gaussian) ∆2

Besag (Laplacian) [52] |∆|
Green [3] log cosh ∆

Stevenson and Delp
(Huber)

[10] min{|∆|2, 2|∆| − 1}

Bouman and Sauer
(GGMRF)

[11] |∆|p

Table 1: List of nonconvex and convex potential functions that have been used.

The normalizing constant of the distribution, σNz(p), is known as the partition function, and

is computed as
∫
x∈Ω exp

{
−1
pu(x/σ, p)

}
dx. It is easily verified that this function is proportional to

σN where N is the number of pixels.

We consider energy functions of the form

u(x/σ, p) =
∑

{i,j}∈N

bi−jρ

(
xi − xj
σ

, p

)
(3)

where N is the set of all neighboring pixel pairs, and ρ(·, ·) is the potential function which assigns

a cost to differences between neighboring pixel values3.

Depending on the choice of the potential function, (2) includes many common MRF models

that have been proposed in the literature. Table 1 lists a variety of such potential functions. Notice

that only the GGMRF model depends on p through the potential function. All other models listed

depend on p solely through its explicit role in (2).

While these MRF models include Gaussian MRF’s, Gaussian MRF’s are of less interest because

they tend to be excessively smooth. In an effort to better model image edges, a variety of functions

have been suggested for ρ(∆, p). These generally can be separated into functions which are convex

3Notice that this distribution is not proper since its integral is infinite. The distribution may be made proper by
adding terms of the form ερ(xi/σ, p) to the energy function. All results of the paper may then be obtained by taking
the limit as ε→ 0.
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or nonconvex in ∆. Convex potential functions often allow global optimization of (1) and are

therefore computationally preferable. In addition, convex potential functions have been shown to

lead to continuous or stable MAP estimates [12]. On the other hand, nonconvex potential functions

tend to result in sharp discontinuities, which may be advantageous in applications such as edge

detection.

The GGMRF model will be of particular interest to us because it will result in simple closed

form expression for the ML estimate of σ. For this model, the density function for X ∈ Ω is given

by

Pσ,p(x) =
1

σNz(p)
exp

− 1

pσp

∑
{i,j}∈N

bi−j|xi − xj|
p

 (4)

where normally p ∈ [1, 2]. Notice that (4) has a form which is analogous to a Gaussian distribution

where σ plays the role of standard deviation. When p = 2, (4) reduces to a Gaussian model.

Smaller values of p tend to produce sharper edges.

The GGMRF model has the advantage that its behavior is scale invariant [12, 13]. This property

results from the fact that for all x ∈ Ω, and σ > 0

u (x/σ, p) =
1

σp
u (x, p) . (5)

While Bouman and Sauer [12] showed that the function |x|p characterized all scale invariant func-

tions of ∆ = xi − xj , Brette, Idier, and Mohammad-Djafari [13] have shown that the class of scale

invariant potential functions can be expanded if functions of both xi and xj are considered. For ex-

ample, consider the divergence potential function proposed by O’Sullivan [53] and listed in Table 2.

This function also leads to the scalable property of equation (5) for p = 1, and therefore results in

a scale invariant prior. In addition, the divergence function is known to be a convex function of

(xi, xj) [54]. A third example, which we call the generalized divergence, is given in Table 2. This

function behaves like the divergence in the limit as p→ 1, but is well defined for xi = xj = 0. For

a more detailed discussion of scale invariant priors, see [13].

2.2 ML Estimation of σ

We first derive the ML estimate of the scale parameter, σ, in the general case, and then specialize

it to the GGMRF or any other scale invariant MRF model which obeys the property of (5).
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Scalable potential functions

Author (name) Reference ρ(xi, xj , p) range of p

Bouman and Sauer
(GGMRF)

[11] |xi − xj |p p > 0

O’Sullivan (diver-
gence)

[53, 13] (xi − xj) log(xi/xj) p=1

(generalized diver-
gence)

This paper (xi − xj)(x
p−1
i − xp−1

j ) p > 1

Table 2: List of scalable potential functions. The divergence and generalized divergence are exam-
ples of scalable potential functions which require two positive arguements.

The normalized log-likelihood may be computed from (2) to be

1

N
logPσ,p(x) =

−1

Np
u(x/σ, p)− log σ −

1

N
log z(p) . (6)

Differentiating (6) with respect to σ and equating the result to zero yields the equation for σ̂, the

ML estimate of σ [41].

σ̂

Np

∂

∂σ
u(x/σ, p)

∣∣∣∣
σ=σ̂

= −1 (7)

While this expression may look complex, σ̂ may be easily evaluated to any desired precision

using a standard root finding algorithm such as half interval search. This is interesting since in

the general case ML estimation of MRF parameters is considered intractable due to the complex

nature of the partition function. Note that a similar parameterization by Ogata and Tanemura [55]

did not lead to such a simple solution due to the assumption that P(x) had bounded support.

For any scale invariant prior of Table 2, we may evaluate the expression of (7) by substituting

in the scaling relation of (5). This results in the simple expression

σ̂p =
1

N
u(x, p) . (8)

The above result is very appealing since it is quite simple, and applies for the GGMRF, divergence,

and generalized divergence cases. In order to gain intuition, consider the case when Xi are i.i.d.

Gaussian random variables. In this case p = 2, σ2 is simply the variance, and (8) reduces to the

familiar expression σ̂2 = 1
N

∑N
i=1 x

2
i . Lange obtained a result equivalent to (8) in [31].

2.3 Joint ML Estimate of σ and p for Scalable Priors

In this section, we will derive a method for computing the joint ML estimate of p and σ for the

GGMRF model or any other model which obeys (5).
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We can reduce this problem to a one-dimensional optimization since we have the closed form

ML estimate of σ (8) in terms of p. To do this, we substitute the ML estimate of σ from (8) into

the log-likelihood function of (6).

1

N
logPσ̂,p(x) =

−1

p
−

log(u(x, p)/N)

p
−

log z(p)

N
(9)

The ML estimate of p is then given by

p̂ = arg min
p

{
log(u(x, p)/N)

p
+

1

p
+

log z(p)

N

}
. (10)

In this form, we can see that the function σp = u(x, p)/N is a sufficient statistic for the parameter

p.

The first two terms of (10) are easily computed, but the third term, log z(p)
N , is generally an

intractable function of p since it requires the computation of a N-dimensional integral. However,

we may compute the partition function indirectly through its derivative using stochastic simulation

[55]. The derivative is given by

d

dp

log z(p)

N
=

d

dp

1

N
log

∫
x∈Ω

exp

{
−

1

p
u(x, p)

}
dx

=
−1

Nz(p)

∫
x∈Ω

(
d

dp

1

p
u(x, p)

)
exp

{
−

1

p
u(x, p)

}
dx

=
1

p2
−

1

Np
E

[
d

dp
u(X, p)

∣∣∣∣ σ = 1, p

]
(11)

where the last equality uses the consistency of the ML estimator for σ. The rest of the development

in this section will be for the GGMRF prior. The extension to other scalable priors is similar.

Rewriting equation (11) for the GGMRF prior, we obtain

d

dp

log z(p)

N
=

1

p2
−

1

Np2

∑
{i,j}∈N

bi−j E [ |Xi −Xj|
p log(|Xi −Xj |

p)|σ = 1, p]

where the function ∆plog(∆p) is interpreted to be 0 for ∆ = 0. Next, define the function f(p) so

that

df(p)

dp
=
−1

Np2

∑
{i,j}∈N

bi−j E [ |Xi −Xj |
p log(|Xi −Xj |

p)|σ = 1, p] . (12)

Then the ML estimate of p is given by

p̂ = arg min
p

{
log(u(x, p)/N)

p
+ f(p)

}
. (13)
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The minimization of (13) may be evaluated by first computing f ′(p) of (12) using stochastic in-

tegration. The stochastic integration may be done by generating samples from the desired MRF

using σ = 1, and computing the desired average. We note that this result rests on the reduction of

the 2-D parameter estimation problem to a 1-D problem since in 1-D a derivative of f ′(p) is easily

integrated to yield f(p).

Note that all expectations are normalized by N . While the limN→∞ logPσ,p(x) generally does

not exist, the normalized log-likelihood, limN→∞
1
N logPσ,p(x) does. Therefore, if we compute f(p)

for a sufficiently large lattice, we may assume that it does not vary with N .

2.4 ML Estimate of σ and p for Non-scalable Priors

In this section, we derive methods to compute the joint ML estimates of σ and p when the potential

function is not scalable. This includes all the potential functions of Table 1 except the Gaussian,

Laplacian, and GGMRF.

Notice that u(x, p) is not a function of p for any of the non-scalable potential functions. This

means that for σ = σ̂ the log-likelihood of (6) may be simplified to be

1

N
logPσ̂,p(x) =

−1

Np
u(x/σ̂)− log σ̂ −

log z(p)

N
. (14)

where σ̂ is given by (7). The term log z(p)/N may be computed in a manner similar to f(p) by

first computing its derivative.

d

dp

log z(p)

N
=

1

Np2
E [u(X) | σ = 1, p] (15)

Therefore the solution may be computed as the simultaneous solution to (7) and

p̂ = arg min
p

{
u(x/σ̂)

Np
+ log σ̂ +

log z(p)

N

}
.

3 Parameter Estimation from Incomplete Data

The previous section dealt with the problem of estimating the prior model parameters σ and p from

the observed image X. However, in many applications the image X is never directly observed. For

example, in tomography the photon counts, Y , are only indirectly related to the image X. In this

case, there may be additional parameters, φ, related to the forward model, Pφ(y|x).
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Ideally, the ML parameter estimate is then given by

(φ, σ, p) = arg max
(φ,σ,p)

∫
x∈Ω
Pφ(y|x)Pσ,p(x)dx . (16)

While (16) is often difficult to compute directly, the EM algorithm is an effective method for

iteratively maximizing (16) [14, 15].

In order to simplify notation, we will use the parameterization (γ, p) where γ = σp. Then a

single update of the EM algorithm is given by

φk+1 = arg max
φ

E[logPφ(y|X)|Y = y, φk, γk, pk] (17)

(γk+1, pk+1) = arg max
(γ,p)

E[logPγ,p(X)|Y = y, φk, γk, pk] (18)

where γk and pk are the parameters generated at the kth iteration of the EM algorithm. It can be

shown that each iteration of the EM algorithm increases the likelihood, so that the likelihood value

is guaranteed to converge to a local maximum.

For the GGMRF prior, the EM update of (18), may be explicitly computed as

pk+1 = arg min
p

{
1

p
logE [u(X, p)/N | Y = y, φk, γk, pk] + f(p)

}
(19)

γk+1 =
1

N
E [u(X, pk+1) | Y = y, φk, γk, pk] (20)

The expectations of (19) and (20) may be approximated using on-line stochastic integration. This

is done by generating samples from the posterior distribution of X given Y , and then computing the

desired sample averages in place of the true expectations [1, 40, 22]. Unlike the off-line stochastic

integration of (12), evaluation of EM updates must be computationally efficient. In Section 3.3, we

will show how this is possible.

If p is known, then only σ needs to be estimated. In fact, estimation of σ is essential in many

inverse problems. Too small a value of σ results in overly smooth images and too large a value of σ

results in images with excessive noise. For this case, only (20) need be applied, and the expectation

may be computed by averaging values of u(X, p) for multiple samples of the image X generated

from the posterior distribution of X given Y . We will discuss efficient algorithms for generating

these samples in the next sections.

If both p and σ must be estimated, then the update of (19) must be computed first, and the

result used to compute (20). Computation of (19) is somewhat more difficult since it requires that
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multiple samples of X be stored so the expectation may be computed as a function of p. However,

we will show that often a single sample of X is sufficient to perform each EM update, so only a

single image need be stored.

For non-scalable priors, the new parameters σk+1 and pk+1 are given by the solution to the

coupled equations

pk+1 = arg min
p

{
E

[
u(X/σk+1)

Np
| Y = y, φk, σk, pk

]
+ log σk+1 +

log z(p)

N

}
(21)

σk+1

Npk+1
E

[
d

dσ
u(X/σ)

∣∣∣∣
σ=σk+1

| Y = y, φk, σk, pk

]
= −1 . (22)

These equations may be solved by iteratively computing the solution to each. Since each equation

represents the minimization with respect to the corresponding variable, iterative solution will not

diverge (if the ML estimate exists). When p is assumed known, the EM update for σ is given by

(22) alone. However, computing the expectation of (22) requires buffering of the sample images.

3.1 Stochastic Data Models for Tomography

In this section, we introduce the stochastic models that we will need for emission and transmission

tomography. For a description of photon counting models in tomography see [16] and [4], and for

a development which is notationally similar to the one presented here, see [50].

Let x denote the column vector of emission intensities in the emission case or the attenuation

densities in the transmission case. For the emission case, let Aij be the probability that a photon

emitted from cell j is registered at the ith detector. Let A be the projection matrix with elements

{Aij}, and let Ai∗ denote the ith row of the projection matrix. Let y denote the column vector

of measurements of Poisson-distributed photon counts at the detectors for all angles and displace-

ments. Then, for the emission case, the log conditional distribution of the photon counts Y given

x is

(emission) logP(Y = y|x) =
∑
i

(−Ai∗x+ yi log{Ai∗x} − log(yi!)) . (23)

This formulation is general enough to include a wide variety of photon-limited imaging problems,

and the entries of A may also incorporate the effects of detector response and attenuation.

The transmission case is similar, but has Aij corresponding to the length of intersection between

the jth cell and the ith projection. Let the input photon counts be Poisson-distributed with rate
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yT . Then the conditional log-likelihood of Y given x for the transmission case is

(transmission) logP(Y = y|x) =
∑
i

(−yT e
−Ai∗x + yi(log yT −Ai∗x)− log(yi!)) . (24)

3.2 ML Estimate of Dosage yT

The data for transmission tomography is often recorded in the form zi = ln(yTyi ). This preserves

the ML estimates of integral densities, but results in the loss of the parameter yT which is required

for the log-likelihood of (24). If yT is unknown, it can be estimated along with other parameters

using the EM algorithm update equation of (17).

Using the result of the appendix, we obtain the following EM update equation for yT

yT k+1 =
M

2

{
M∑
i=1

E
[{
e−Ai∗X +Ai∗Xe

−zi
}
| Z = z, σk, pk, yT k

]
− e−zi − zie

−zi

}−1

(25)

3.3 Fast Simulation Technique

The EM parameter updates derived in Section 3 require the expectation of functions of X. Direct

computation of these expectations is intractable, but we can approximate them by first generating

sample images from the posterior distribution of X given Y and then computing averages using the

sample images. The well-known Metropolis algorithm [46] can be used to generate these samples

from the posterior distribution, but it tends to suffer from slow convergence.

In this section, we propose a faster simulation method based on the algorithms of Hastings [47]

and Peskun [48]. The experimental results indicate that the required expectations can be accurately

estimated using only a single image sample.

Let q(x′|x) be an arbitrary transition probability for generating a new state x′ from the current

state x. Then in order to generate a sample with distribution π(x), one should accept new samples

with probability

α(x′, x) = min

{
1,
q(x|x′)π(x′)

q(x′|x)π(x)

}
.

The Metropolis algorithm is a special case of this general formulation when we choose q(x′|x) =

q(x|x′). Another special case is the Gibbs sampler [8] when the new state for pixel j is generated

using the conditional distribution, under π(x), of xj given the values of all other pixels. For the

Gibbs sampler, α(x, x′) = 1, and we always accept the new state.

13



A good choice of transition probability q(x′|x) results in faster convergence of the stochastic

simulation; but at present, the optimal selection of q(x′|x) is an open problem. For the tomography

problem, it has been shown that greedy pixel-wise optimization of the posterior distribution has fast

convergence [6, 50]. We therefore conjecture that the Gibbs sampler is desirable for the tomography

problem because each new pixel is generated from its marginal posterior distribution. Experimental

results presented in Section 4.2 will support this conjecture.

Let us first examine the form of the conditional distribution of xj required by the Gibbs sampler.

Let xn be the image at the nth iteration. Then for the emission case, from (23), (2) and (3), we

have

logP(xj |{Xk = xnk : k 6= j}, y) =∑
i

(−Aijxj + yi log{Aij(xj − x
n
j ) +Ai∗x

n} −
1

p

∑
k∈Nj

bj−k ρ(
xj − xnk

σ
, p) + C (26)

where C is constant independent of xj and xj > 0. Note that directly generating samples from

(26) would be very computationally expensive. Green and Han [49] suggested using a Gaussian

distribution instead with parameters chosen to approximate the transition distribution of the Gibbs

sampler. However, due to the non-Gaussian nature of our prior term, this approximation is good

only for the data term [50] in (26). We can therefore obtain a good approximation by retaining the

prior term as it is and using a second order Taylor series expansion for the data term of (26)

logP(xj |{Xk = xnk : k 6= j}, y) ≈

d1(xj − x
n
j ) +

d2

2
(xj − x

n
j )

2 −
1

p

∑
k∈Nj

bj−k ρ(
xj − xnk

σ
, p) + C ′ , (27)

where d1 and d2 are the first and second derivative of the data term with respect to xj evaluated

at xnj . In [50] it is shown that

d1 = −
∑
i

Aij

(
1−

yi
p̃ni

)

d2 = −
∑
i

yi

(
Aij
p̃ni

)2

where p̃n = Axn. The approximation holds for the transmission case also, with the corresponding

expressions for d1 and d2 as follows.

d1 = −
∑
i

Aij
(
yi − yT e

−p̃ni
)
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d2 = −
∑
i

A2
ijyTe

−p̃ni

For efficient computation, we keep p̃n as a state vector and update it after each pixel update as

follows

p̃n+1 = A∗j(x
n+1
j − xnj ) + p̃n

Let the transition distribution for generating the new state for the jth pixel be denoted as qj(x).

Then we would like qj(x) to be a Gaussian distribution with mode m equal to the mode of the

approximated conditional distribution (27). Unfortunately, generating positive samples from qj(x)

is computationally intensive when m� 0. However, we can use the fact that the tail of a Gaussian

distribution may be accurately approximated as an exponential distribution. In the light of the

above discussion, we choose qj(x) with the following form

qj(x) =


1

C(s,m) exp
{
−(x−m)2

2s2

}
m > 0, x > 0

1
β exp

{
−x
β

}
m < 0, x > 0

0 x < 0

where C(s,m) is the normalizing constant of the truncated Gaussian distribution and m is the

mode of the approximated conditional distribution (27)

m = arg max
x

d1(x− x
n
j ) +

d2

2
(x− xnj )

2 −
1

p

∑
k∈Nj

bj−k ρ(
x− xnk
σ

, p)

 (28)

Choosing s2 is more difficult due to the prior term. Since we can at best do an approximate fit

to the original distribution (26), it is not clear whether a more precise choice of s2 would yield a

significant improvement in performance. We therefore choose

s2 =
1

d2

to be the variance of the data term. Note that the variance of the approximated distribution (27)

is over estimated by this particular choice. β is determined by setting the derivative of the log of

the exponential distribution equal to the derivative of (27) at xj = 0,

β =

−d1 + d2x
n
j +

1

σp

∑
k∈Nj

bj−k ρ
′(
−xnk
σ

, p)


−1

where ρ′(·, ·) is the derivative of ρ(·, ·) with respect to its first argument.
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Once d1 and d2 are computed, the optimization of (28) is computationally inexpensive since

the sum associated with the prior typically involves few pixels. We use the half interval method to

compute m. Note that during MAP reconstruction, m is also the updated value of pixel xj in the

iterative coordinate descent (ICD) algorithm of Bouman and Sauer [50].

3.4 Extrapolation of Parameter Estimates

Even with exact computation of the E-step, the convergence of the EM algorithm can sometimes

be slow. One way to further reduce the computation is to improve the current EM parameter

estimates by extrapolating them. This extrapolation requires very little computation, so it may

be applied at each EM iteration. At each iteration k, the extrapolated parameter, θ
(e)
k , is then an

improvement over the EM parameter θk.

First consider the case of the GGMRF where p is known and γ = σp must be estimated. This

is an important special case. It is well known that

d

dγ
E [logPγ(X) | Y = y, γ̂]

∣∣∣∣
γ=γ̂

= 0

where γ̂ is the maximum likelihood estimate of γ. From this it can be shown that

γ̂ = E [u(X, p)/N | Y = y, γ̂] . (29)

The EM algorithm iteratively solves for the fixed point of this equation. However, a fast method

is to search directly for its root. Define the function

g(γ) = E [u(X, p)/N | Y = y, γ]− γ . (30)

Then the ML estimate of γ is the solution to g(γ̂) = 0. At iteration k of the EM algorithm, the

value of g(γk) is given by

g(γk) = E [u(X, p)/N | Y = y, γk]− γk

= γk+1 − γk . (31)

Therefore, we can plot the function g(γ) computed from (31).

Fig. 1 shows such a plot of g(γ) with respect to γ for an emission phantom when we use only

one sample of X to estimate the expectation of u(X, p). At each iteration, we use the last three
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values of (γk, g(γk)) to compute a least squares fit to a straight line. The zero crossing of the least

squares fit then yields the extrapolated value of γ
(e)
k . Note that γ

(e)
k is close to the ML estimate

after just 4 iterations.

LS fit

0.1 0.15 0.2 0.25
−0.035
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−0.005

0

γ −−−>

g(γ)

1
2

34

56

7

ML estimate of γ 

g(
γ)

 -
--

>

Figure 1: The plot shows the normalized gradient g(γ) computed at the EM updates of γk for a
emission phantom using a GGMRF prior with p = 1.1. The ML estimate of γ is given by the root
of g(γ). The least squares (LS) fit obtained at the first 7 points are numbered (1-7) and shown with
a dashed line. The intersection of the dashed lines with the top of the graph are the extrapolated

parameter values, γ
(e)
k .

The generalization to the case when p is not known is conceptually easy. In this case, the ML

estimates of γ and p are given as the roots of the following equations

d

dγ
E[logPγ,p̂(X)|Y = y, γ̂, p̂]

∣∣∣∣
γ=γ̂

= 0

d

dp
E[logPγ̂,p(X)|Y = y, γ̂, p̂]

∣∣∣∣
p=p̂

= 0

Similar to the case where p is known, we can now define the vector valued function

g(γ, p) =

[
E[u(X, p)/N |Y = y, γ, p]− γ
p2

NE
[
d
dp

1
pu(X, p)

∣∣∣ Y = y, γ, p
]
+ γ(1− log γ) + γp2 df(p)

dp

]

Then the ML estimates of γ and p are given as the roots of g(γ̂, p̂) = 0. Note that we can easily

compute g(γk, pk) when computing the EM updates for γ and p. The computed values of g(·, ·) at

the past n EM updates are used to obtain least squares fits to two planes. The roots of the fitted

planes are then the extrapolated values, γ
(e)
k and p

(e)
k .

The non-scalable priors are handled in a similar fashion. In this case, the function g(·, ·) is given
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as

g(σ, p) =

[
σ
NE

[
d
dσu(X/σ) | Y = y, p, σ

]
+ p

1
NE [u(X/σ) | Y = y, p, σ]− 1

NE [u(X) | p, σ = 1]

]
The two components of the vector valued function g(·, ·) can be rooted simultaneously or individ-

ually to obtain the extrapolated values, σ
(e)
k and p

(e)
k .

4 Experimental Results

In the following two sections, we experimentally study the convergence speed and accuracy of the

proposed parameter estimation method. Section 4.1 presents results of direct parameter estimation

from observed images; while Section 4.2 presents results for parameter estimation from incomplete

data.

4.1 Direct Estimation of σ and p

In order to compute the ML estimates of p, we first computed the function f ′(p) using (12) and

then integrated it using a second order spline to yield f(p). To compute f ′(p), we computed

batches of 10, 000 full iterations of a 64 × 64 periodic MRF with an 8 point neighborhood using

bi−j = (2
√

2 + 4)−1 for nearest neighbors and bi−j = (4
√

2 + 4)−1 for diagonal neighbors. From

each batch of 10, 000 iterations, an estimate of f ′(p) was computed. This procedure was repeated

for a single value of p until the estimate was found to stablize. Then the value of p was updated

and the complete procedure repeated. Once the function f(p) was computed, the accuracy of the

result was tested by estimating p from sample GGMRF’s with known values of p.

0.5 1 1.5 2
−6

−5

−4

−3

−2

−1

0

p −−−>

Figure 2: The solid line shows f ′(p) and the dashed line shows f(p).

Figure 2 shows the plots of f(p) for 0.4 < p < 2.0. Since the computation of f(p) need only be

done once, the speed of convergence is not a great issue. However, we found that more iterations
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were required as p decreased. Also, the function f ′(p) was sampled more finely for p < 1.

Figure 3 shows a host of natural and synthetic images with their corresponding joint ML es-

timates of p and σ. Figures 3(m) and (n) show two sample images generated using the GGMRF

model with known values of p and σ. In both cases, the ML estimates are close to the true values.

Note that for most natural images except for a few texture images, the ML estimate of p was

less than 1, and for many images containing man made objects p was less than 0.4. In fact, a

similar result has been independently reported by Higdon et. al. [35]. Very small values of p

may not lead to the best quality MAP reconstructions4. In particular, the tomographic cross-

sections of Fig. 3(o) and (p) yield values of p < 0.4 which we have found to be undesirable for

MAP tomographic reconstruction. Since the ML estimator has well known optimality properties,

this behavior of the ML estimate may be due to the mismatch between the typical tomographic

cross-sections and the GGMRF model. In light of this result, alternative methods for estimating p,

such as those of Jeffs and Pun [39], might be advantageous depending on the intended application.

4.2 Estimation of σ and p from Incomplete Data

In this section, we study the performance of our proposed algorithms for estimating σ and p

from incomplete observations. We present examples using both real and synthetic data for both

tomographic reconstruction and image restoration. For the tomographic reconstruction examples,

we fix p = 1.1 and estimate σ because the results of Section 4.1 indicate that ML estimates of p

from tomographic cross-sections are excessively small. However, we emphasize that estimation of

σ is a problem of primary importance in tomographic reconstruction since σ determines the overall

smoothness of the reconstruction. MAP image reconstructions are then presented which indicate

that the ML estimate of σ yields a good tradeoff between detail and noise reduction.

To illustrate the utility of our method for optimal joint estimation of p and σ, we apply our

method to an image restoration problem, and show that for this case we can accurately estimate p

and σ simultaneously from the noisy observations.

For tomographic reconstruction, we found that it was important to restrict the parameter

estimates to the support of the object. If the flat background was included, then the estimation of

σ tended to be too small and the reconstructions too smooth. For synthetic images, the support

4For p less than one, convergence of the MAP estimate can not generally be guaranteed since the functional being
minimized is not convex.
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was known, but for real images it was extracted by first computing the convolution back projection

(CBP) reconstruction, thresholding with a zero threshold, eroding 3 times, dilating 6 times and

then eroding 3 times.

Figure 4 shows a synthetic emission phantom and the corresponding convolution back projection

(CBP) reconstruction. The emission rates are on an array of 128 by 128 pixels of size 1.56mm2,

and 128 Poisson distributed projections are generated at each of 128 uniformly spaced angles. The

total photon count was approximately 3 million.

Figure 5 shows the convergence of the ML estimate for σ using the GGMRF prior. We will

refer to the three simulation methods as the conventional Metropolis (CM) method, the acceler-

ated Metropolis (AM) method of Section 3.3, and the extrapolated-accelerated Metropolis (EAM)

method of Section 3.4. For each case, each EM update is done after a single full sample of X is

computed. The EM algorithm is initialized with the CBP reconstruction and the ML estimate of

σ obtained from the CBP reconstruction. Each plot also contains a line labeled as the true ML

estimate. This value is computed by using 50 samples of X for each EM update and running the

EM updates until convergence.

Figure 5(a) shows the results using the CM method with a transition distribution chosen to

be Gaussian with the variance as the free parameter. Notice that the convergence rate varies

substantially with the choice of variance. In practice, it is unclear how to choose the best variance

before performing the simulations.

Figure 5(b) compares the EAM, AM and CM methods where the CM method uses the variance

that produced the most rapid convergence. Notice that the EAM method has the most rapid

convergence and all three methods converge to the desired ML value.

Figure 6 compares the quality of MAP reconstructions using σ̂, σ̂/2, 2σ̂, and σ̂CBP , the estimate

obtained directly from the CBP. Of the four results, the ML estimate of σ seems to produce the

most desirable tradeoff between detail and noise reduction. Figure 7 shows the corresponding

reconstructions for the logcosh(·) prior with p = 1, 10, and 100 and the ML estimates of σ. The

value p = 10 for the logcosh(·) prior yields reconstructions similar to that of a GGMRF prior with

p = 1.1. The value of p = 100 for the logcosh(·) prior tends to the GGMRF with p = 1 and the

MAP reconstruction is difficult to compute due to the extremely slow convergence.

Figure 8 shows the images corresponding to real transmission data for a flashlight. The original
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data consisted of 1024 projections taken at 792 equally spaced angles. From this original data,

we generated a low resolution data set by retaining every 4th projection at every 4th angle. We

used the full resolution data to form a “ground truth” image using CBP reconstruction which is

shown in Fig. 8(a). All other reconstructions were then done with the lower resolution data. This

approach allows us to determine if the reconstructions using the GGMRF prior actually produce

more accurate detail.

Figure 8(b) shows the CBP reconstruction and Fig. 8(c) shows the GGMRF reconstruction using

the ML estimate of the scale parameter. Figure 9 shows blowups of the same three images. Notice

that the GGMRF reconstruction is sharper than the CBP reconstruction, and in some regions, it

contains more detail than the ground truth image reconstructed with 16 times more data.

Figure 10(a) compares the EM updates of σ for the flashlight data using the CM, AM and EAM

methods. It seems from this plot that the estimate obtained from the CM method has a bias. But

Fig. 10(b) shows that the after a large number of iterations, the CM method tends toward the ML

estimate.

Figure 11 shows the reconstructions corresponding to a 3D SPECT data set obtained from

cardiac perfusion imaging using Tc-99m sestamibi. For each slice, 128 projections were taken at

120 uniformly spaced angles between 0 and 2π. Figure 11(a) shows the CBP reconstruction of

one slice. The reconstruction was done at 128 by 128 0.356cm pixel resolution. The total photon

count for this slice was 148761. Figure 11(b-d) compares the MAP reconstructions corresponding

to different values of the scale parameter σ. Again we see that the ML estimate of σ produces a

reasonable tradeoff between detail and noise reduction.

Figure 12 shows the parameter estimation plots using the CM, AM and EAM method for the

SPECT data. In this case it takes just 1 iteration for the AM or EAM method to converge to the

ML estimate whereas the CM method takes about 15 iterations.

Figure 13(a) shows the original texture image that we use for a restoration example. Fig-

ure 13(b) shows the noisy image obtained by adding uncorrelated Gaussian noise. The SNR of the

observations is 37dB. Fig. 14 shows the joint estimation of p and σ for this case using the CM, AM

and EAM methods. Note that the ML estimates obtained are very close to the estimates obtained

from the original image. It takes about 10 iterations for the AM and EAM methods to converge to

the ML estimate as compared to 20 iterations for the CM method. Figure 13(c) shows the MAP
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restoration for this example using the ML estimates of p and σ.

5 Conclusion

We have shown in this paper that maximum-likelihood estimation of free parameters for Bayesian

image reconstruction is feasible for a broad selection of image models and problem settings. Our

method is based on parameterization of continuous MRF’s by a scale parameter, σ, and a shape

parameter, p. For the class of scalable MRF’s, the ML estimate of σ may be easily computed in

closed form. For other continuous MRF’s, the ML estimate of σ may be easily computed as the

solution to an equation. Using this result, we also derive a method for computing the ML estimate

of the shape parameter, p.

In most practical problems, σ and p must be estimated indirectly from measured data. For this

case, we employ the EM algorithm, and develop a fast simulation algorithm together with a method

for extrapolating the estimates when the EM algorithm is prematurely terminated. Together these

methods allowed good parameter estimates to be computed in less than 10 iterations for the real

and synthetic data sets that were used.

Appendix

In this appendix, we derive the ML estimate of yT . For the following development, we assume

our observations are the random integral projection measurements {Zi = ln(yTYi )}. Consider the

log-likelihood function of z in terms of the unknown dosage parameter yT . Let the i-th actual

discretized projection measurement across X be z̃i = Ai∗x. Note that Yi are Poisson distributed

with mean and variance yTe
−z̃i . Then by a simple transformation, we have

P(Z = z|X = x) =
M∏
i=1

exp
{
−yTe−z̃i

} (
yT e

−z̃i
)(yT e−zi)

(yT e−zi)!
(32)

for values of zi corresponding to positive integer values of yi and M denotes the number of projec-

tions. Stirling’s formula provides a simplifying approximation for the factorial, which is relatively

accurate for numbers in the typical range of transmission photon counts [56]:

(
yTe
−zi
)
! ≈

(
2πyT e

−zi
) 1

2
(
yTe
−zi
)yT e−zi exp

{
−yTe

−zi
}
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Using this substitution, differentiating the logarithm of (32) with respect to yT and setting the

result to zero yields the ML estimate of yT .

ŷT =
M

2
∑M
i=1 [e−z̃i − e−zi + e−zi(z̃i − zi)]
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(a) p̂ = 0.594 σ̂ = 4.84 (b) p̂ = 0.445 σ̂ = 2.90 (c) p̂ = 0.495 σ̂ = 4.23 (d) p̂ = 0.422 σ̂ = 1.74

(e) p̂ = 0.694 σ̂ = 7.08 (f) p̂ = 0.418 σ̂ = 1.89 (g) p̂ = 0.830 σ̂ = 6.64 (h) p̂ < 0.4

(i) p̂ = 1.193 σ̂ = 5.78 (j) p̂ = 0.674 σ̂ = 4.57 (k) p̂ = 0.574 σ̂ = 5.16 (l) p̂ = 0.524 σ̂ = 5.78

(m) p̂ = 0.646 σ̂ = 2.72 (n) p̂ = 1.860 σ̂ = 0.74 (o) p̂ < 0.4 (p) p̂ < 0.4

Figure 3: The above figure shows joint estimation of p and σ for a variety of different images. In
particular, (a-h) are images of natural scenes, (i-l) are images of different textures, (m) and (n)
are synthetic images generated from the GGMRF distribution with parameters p = 0.6, σ = 2.34
and p = 1.8, σ = 0.72 respectively, (o) is the CBP image obtained from transmission data for a
flashlight, and (p) is a synthetic phantom that we will use for emission tomography.
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a b

Figure 4: (a) Original emission phantom and (b) convolution back projection (CBP) reconstruction.
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Figure 5: Convergence plots of σ for the emission phantom modeled by a GGMRF prior (p = 1.1).
(a) CM method where s denotes the standard deviation of the symmetric transition distribution.
(b) EAM method, AM method, and the CM method. All the updates are done using a single
sample of X to compute the expectation. However, the true ML estimate is the converged value of
σ when 50 samples are used to compute the expectation.
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a b

c d

Figure 6: Reconstructed emission phantom using GGMRF prior with p = 1.1 The scale parameter
σ is (a) σ̂, (b) σ̂CBP , (c) 1

2 σ̂, and (d) 2σ̂.

a b c

Figure 7: Reconstructed emission phantom using logcosh(·) prior with the scale parameter σ opti-
mally estimated for different values of p. The value of p is (a) 1, (b) 10, and (c) 100.
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a b c

Figure 8: (a) Ground truth obtained from high resolution transmission data, (b) CBP image, and
(c) Reconstructed image using GGMRF prior with p = 1.1 and σ = σ̂. (Data courtesy of Trent
Neel, Wright-Patterson Air Force Base, and Nicolas Dussausoy, Aracor.)

a b c

Figure 9: Blowup of images corresponding to Fig. 8. (a) Ground truth, (b) CBP image, and (c)
Reconstructed image using GGMRF prior with p = 1.1 and σ = σ̂.
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Figure 10: Comparison of σ’s convergence for CM, AM, EAM algorithms for the flashlight phantom
modeled by a GGMRF prior (p = 1.1). The true ML estimate is the converged value of σ when 50
samples are used to compute the expectation.
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a b

c d

Figure 11: (a) CBP reconstruction; Reconstructions using GGMRF prior with p = 1.1 and (b)
σ = σ̂, (c) σ = σ̂/2, (c) σ = 2σ̂. (Data courtesy of Tin-Su Pan & Michael A. King, Univ. of
Massachusetts.)
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Figure 12: Comparison of σ’s convergence for CM, AM, EAM algorithms for the SPECT data
modeled by a GGMRF prior (p = 1.1). The true ML estimate is the converged value of σ when 50
samples are used to compute the expectation.
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a b c

Figure 13: (a) Original image (b) Image corrupted with Gaussian noise (37dB) (c) Restored image
using GGMRF prior and ML estimates of σ and p.
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Figure 14: These plots show the EM updates for (a) σ, and (b) p for the restoration example using
a GGMRF prior. The plots also show the ML estimate obtained for σ and p using the original
image. All the updates are done using a single sample of X to compute the expectation.
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