
Machine Learning (2018) 107:1495–1515

https://doi.org/10.1007/s10994-018-5735-z

ML-Plan: Automatedmachine learning via hierarchical
planning

Felix Mohr1 ·Marcel Wever1 · Eyke Hüllermeier1

Received: 10 December 2017 / Accepted: 18 June 2018 / Published online: 3 July 2018

© The Author(s) 2018

Abstract

Automated machine learning (AutoML) seeks to automatically select, compose, and

parametrize machine learning algorithms, so as to achieve optimal performance on a given

task (dataset). Although current approaches to AutoML have already produced impressive

results, the field is still far from mature, and new techniques are still being developed. In this

paper, we present ML-Plan, a new approach to AutoML based on hierarchical planning. To

highlight the potential of this approach, we compare ML-Plan to the state-of-the-art frame-

works Auto-WEKA, auto-sklearn, and TPOT. In an extensive series of experiments, we show

that ML-Plan is highly competitive and often outperforms existing approaches.

Keywords Automated machine learning · Automated planning · Algorithm selection ·

Algorithm configuration · Heuristic search

1 Introduction

The demand for machine learning (ML) functionality is growing quite rapidly, and successful

machine learning applications can be found in more and more sectors of science, technology,

and society. Since end users in application domains are normally not machine learning experts,

there is an urgent need for suitable support in terms of tools that are easy to use. Ideally, the

induction of models from data, including the data preprocessing, the choice of a model class,

the training and evaluation of a predictor, the representation and interpretation of results,

etc., would be automated to a large extent (Lloyd et al. 2014). This has triggered the field of

automated machine learning (AutoML).

Editors: Jesse Davis, Elisa Fromont, Derek Greene, and Bjorn Bringmaan..

B Eyke Hüllermeier

eyke@uni-paderborn.de

Felix Mohr

felix.mohr@uni-paderborn.de

Marcel Wever

marcel.wever@uni-paderborn.de

1 Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-018-5735-z&domain=pdf

1496 Machine Learning (2018) 107:1495–1515

State-of-the-art AutoML tools have shown impressive results (Thornton et al. 2013; Komer

et al. 2014; Feurer et al. 2015) but still leave room for improvement. Most of those approaches

squeeze the AutoML problem into the rigid corset of a (Bayesian) optimization problem with

a fixed number of decision variables. Typically, there is one variable for the preprocessing

algorithm, one variable for the learning algorithm, and one variable for each parameter of each

algorithm. While this way of formalizing the AutoML problem leads to a solution space of

fixed dimensionality, it comes with a significant loss of structural information for the search.

TPOT (Olson and Moore 2016) and RECIPE (de Sá et al. 2017) allow for configuring ML

pipelines in a more flexible manner, using evolutionary algorithms for optimizing structure

and parameters, but suffer from scalability issues.

In this paper, we present ML-Plan, a new approach for AutoML based on hierarchical

task networks (HTNs). HTN is an established AI planning technique (Erol et al. 1994; Nau

et al. 2003) usually implemented as a heuristic best-first search over the graph induced by the

planning problem. There have been earlier HTN-based approaches to configure data mining

pipelines by Kietz et al. (2012) and Nguyen et al. (2014). However, the optimization potential

of these techniques is rather limited. In fact, Kietz et al. (2012) ranks candidates based on

usage frequencies of RapidMiner, and Nguyen et al. (2014) adopts a hill-climbing approach

guided by a database of known problems. In contrast, ML-Plan guides the search by ran-

domly completing partial pipelines like the ones in Auto-WEKA and auto-sklearn. This way,

ML-Plan offers a middle-ground solution that combines ideas and concepts from different

approaches, notably the evaluation of candidate pipelines at runtime, as done by Thornton

et al. (2013), Feurer et al. (2015), and the idea of Nguyen et al. (2014) to use HTN for pipeline

construction.

To the best of our knowledge, ML-Plan is the first AutoML approach that includes a

dedicated mechanism to prevent over-fitting. While previous approaches did recognize the

problem, too, specific remedies have not been offered. We propose a two-phase search model

(search + select) and show the benefit of this technique in terms of reduced error rates.

Our experimental evaluation shows that ML-Plan is highly competitive and often out-

performs the above state-of-the-art tools. Focusing on the search space of pipelines with

fixed length as in Thornton et al. (2013), Feurer et al. (2015), we mainly compare our search

technique against the techniques used by Auto-WEKA and auto-sklearn. ML-Plan can be

run with algorithms from both libraries WEKA and scikit-learn. To minimize library-rooted

confounding factors, we evaluate the WEKA version of ML-Plan against Auto-WEKA and

its scikit-learn-version against auto-sklearn, where the available algorithms are respectively

the same. TPOT was included as an additional baseline, although it has a different search

space and allows for more complex pipelines.

2 Problem definition

AutoML seeks to automatically compose and parametrize machine learning algorithms to

maximize a given metric such as predictive accuracy. The available algorithms are typi-

cally related either to preprocessing (feature selection, transformation, imputation, etc.) or

to the core functionality (classification, regression, ranking, etc.). While there are successful

approaches for the flexible composition of these algorithms such as TPOT (Olson and Moore

2016), most approaches arrange the algorithms sequentially and adopt a fixed template for

these pipelines. For example, auto-sklearn optimizes the pipeline shown in Fig. 1 with exactly

three elements, and the Auto-WEKA pipeline has only two such pipeline items. In this paper,

we consider the problem of a 2-step pipeline consisting of a preprocessor and a classifier.

123

Machine Learning (2018) 107:1495–1515 1497

Fig. 1 A classical AutoML pipeline of fixed length

The planning technique we present in this paper is not limited to a particular type of

learning problem. For simplicity and ease of exposition, we nevertheless focus on multi-class

classification. Thus, we subsequently assume that the core machine learning algorithms are

classification algorithms. Depending on the learning problem, the adaptation to other settings

is either straightforward (e.g., for regression or ranking) or may require some changes in the

routine (e.g., in structured output prediction, where not all preprocessing combinations may

be allowed, or in unsupervised learning). However, even in those settings, no change of the

actual search mechanism is required.

Formally, the goal is to find a machine learning pipeline that learns to associate output

elements from a space Y (in our case classes) with input objects from an instance space

X . Often, X = R
d for some integer d , i.e., instances are described in terms of d numerical

attributes (features); however, features may also be binary or categorical. We denote by X the

collections of all such input spaces X . A dataset is a (finite) subset D = {(xi , yi)}
n
i=1 ⊂ X×Y .

In this context, we may apply two types of algorithms. First, preprocessors are functions φ

that map datasets D to datasets D′, possibly changing the representation space from X ×Y to

X ′ × Y ′. Examples of such functions include methods for dimensionality reduction (such as

principal component analysis), feature selection, imputation, discretization, normalization,

etc. Second, learners are functions that map datasets D to a predictor function ψ : X → Y .

A pipeline is the pair consisting of a parametrized preprocessor and a learner. Both types

of algorithms can have continuous, discrete, ordinal, or nominal hyperparameters.1Let App

and Alearn be the space of parametrized preprocessing and learning algorithms, respectively.

A pipeline is a pair C ∈ App × Alearn, where C itself is a learner.

Given a set of labeled data D, the task consists of combining the above algorithms into

a pipeline C that, taking training data D as an input, produces an optimal predictor ψ =

C(D) as output. Here, optimality normally refers to the generalization performance, i.e., the

expected loss caused by ψ when being used for predicting class labels on new data (not

contained in the training data, but being produced by the same data-generating process).

More formally, the goal is to find

C∗ ∈ argmin
C∈App×Alearn

R
(

C(D)
)

, (1)

with the risk or expected loss of the predictor ψ given by

R(ψ) =

∫

X×Y

loss(y, ψ(x)) d P(x, y). (2)

Here, loss(y, ψ(x)) ∈ R is the penalty for predicting ψ(x) for instance x ∈ X when the true

label is y ∈ Y , and P is a joint probability measure on X × Y .

1 The term “hyperparameter” is commonly used for parameters of the learning algorithm, to distinguish them

from the parameters of the learned predictor ψ .

123

1498 Machine Learning (2018) 107:1495–1515

Since (2) cannot be evaluated (the data-generating process P is assumed to exist but is

obviously not known to the learner), we replace the true generalization performance R(ψ)

by an estimation R̂(ψ). The latter is obtained by evaluating ψ on validation data Dval not

used for training:

R̂(ψ) = E

⎡

⎣

1

|Dval |

∑

(x,y)∈Dval

loss
(

y, ψ(x)
)

⎤

⎦ ,

where the expectation is taken with respect to the randomly chosen validation data Dval of

predefined size k = |Dval |, i.e., with respect to all random splits of the data D into Dtrain

and Dval = D\Dtrain . Thus, we eventually solve the problem (1) with R̂ as a surrogate of

R.

Since computing the optimal solution is usually infeasible, we are interested in a solution

that is as good as possible under given resource constraints. As usual, we consider limited

runtime (1 h and 1 day) and hardware resources (CPU and memory).

3 Related work

Auto-WEKA (Thornton et al. 2013; Kotthoff et al. 2017) and auto-sklearn Feurer et al.

(2015) are the main representatives for solving AutoML by so-called sequential parameter

optimization. Both apply the general purpose algorithm configuration framework SMAC

(Hutter et al. 2011) to find optimal machine learning pipelines. In order to fit the AutoML

problem into the problem class of algorithm configuration and enable the application of

SMAC, the ML algorithms that can be used in the pipeline are interpreted as parameters

(of an imaginary pipeline algorithm) themselves. The parameters of the ML algorithms are

considered by SMAC only in case the corresponding algorithms have been chosen (activated).

As in ML-Plan, candidate solutions are executed and tested against a test set during search

in order to estimate their quality.

Compared to Auto-WEKA, auto-sklearn introduces two main innovations. The first is a

so-called “warm-start” technique that uses meta-features of the datasets to determine good

candidates to be considered in the pipeline based on past experiences on similar datasets.

Second, auto-sklearn can be configured to return an ensemble of classifiers instead of a single

classifier.

The main difference between the above approaches and ML-Plan is that ML-Plan suc-

cessively creates solutions in a global search instead of changing given solutions in a local

search as done by Auto-WEKA and auto-sklearn. To organize this search space, ML-Plan

uses hierarchical planning, a particular form of AI planning described in more detail in

Sect. 4. ML-Plan can be configured with arbitrary machine learning algorithms written in

Java or Python. In this paper, we consider a WEKA version and a scikit-learn version of

ML-Plan that use the same algorithms as Auto-WEKA and auto-sklearn, respectively. The

search space only deviates in the algorithm parameters, since ML-Plan adopts a discretization

technique; this is discussed in Sect. 5.1.

Another interesting line of research is the application of evolutionary algorithms. One of

these approaches is TPOT (Olson and Moore 2016). In contrast to the above approaches and

ML-Plan, TPOT allows not just one pre-processing step but an arbitrary number of feature

extraction techniques at the same time. While multiple pre-processors can be handled by HTN

planning as well, the current implementation of ML-Plan does not exploit that opportunity.

TPOT adopts a genetic algorithm to find good pipelines, and adopts the scikit framework to

123

Machine Learning (2018) 107:1495–1515 1499

evaluate candidates. Another approach is RECIPE (de Sá et al. 2017), which uses a grammar-

based evolutionary approach to evolve pipeline construction. Like in other applications,

evolutionary algorithms are not uncritical with regard to runtime. In fact, RECIPE has so

far only been evaluated on rather small datasets, and our evaluation shows that TPOT is not

able to return any solution for the more difficult problems even within 1 day. Of course,

this neither excludes the usefulness of such approaches, especially since their results are

often very good, nor the possibility to improve efficiency in one way or the other (e.g., using

surrogate functions to speed up the evaluation of candidate solutions).

While AI planning has not yet been used in the core AutoML community, we are not the

first to use AI planning for machine learning purposes. A first approach for the configuration

of RapidMiner modules based on HTN planning was presented by Kietz et al. (2009, 2012).

The search algorithm is guided by a ranking that is obtained from usage frequencies of human

users of the RapidMiner tool. Nguyen et al. (2011, 2012, 2014) proposed the use of HTN

planning for data mining in a tool called Meta-Miner. Similar to auto-sklearn, their focus is

on learning the suitability of (partial) workflows for a dataset based on past experiences.

There are two main differences between ML-Plan and Meta-Miner. First, instead of evalu-

ating candidates during search, they apply a hill climbing search strategy where the decisions

are made based on past experiences. That is, the dataset of the active query is compared to

others examined in the past, for which the performance of the candidate workflows is known,

and based on this knowledge, the (partial) workflows are selected. This makes Meta-Miner

very fast at the cost of not having any true estimate of the returned solution. Second, there

is rather little emphasis on parameter tuning. In fact, Nguyen et al. experiment with single

parameters, but in the form of different “versions” of an algorithm rather than considering

the parameters as part of the HTN model. Due to the combinatorial explosion, of course, only

a small subset of the parameters covered by other AutoML approaches (including ML-Plan)

can be considered. In spite of these differences, their studies are of predominant importance

for the further development of ML-Plan, in which we aim at a stronger incorporation of

previous knowledge. In this sense, we consider the approaches as complementary.

4 Planning with hierarchical task networks (HTN)

The basis of HTN planning (Ghallab et al. 2004) is a logic language L and planning operators

that are defined in terms of L. The language L has function-free first-order logic capacities,

i.e., it defines an infinite set of variable names, constant names, predicate names, and quanti-

fiers and connectors to build formulas. An operator is a tuple 〈nameo, preo, posto〉, where

nameo is a name and preo and posto are formulas from L that constitute preconditions and

postconditions, respectively. For example, an operator PCA may conduct a principal compo-

nent analysis on a given dataset; preo would specify the conditions under which the operator

is applicable, and posto the effect it achieves.

A plan is a sequence of ground operations. As usual, we use the term ground to say that all

variables have been replaced by terms that only consist of constants. That is, an operation is

ground if all variables in the precondition and postcondition have been substituted by terms

from L that only contain constants. Ground operators are also called actions; we write prea

and posta for its precondition and postcondition, respectively.

The semantic of an action is that it modifies the state in which it is applied (e.g., turning

numeric attributes into discrete ones). A state is a set of ground positive literals. Working under

the closed world assumption, we assume that every ground literal not explicitly contained in

123

1500 Machine Learning (2018) 107:1495–1515

Fig. 2 Creation of pipelines with hierarchical planning. Left: a pipeline that uses a decision tree for prediction

where data are preprocessed with rescaling and imputation and features are preprocessed using fast ICA.

Middle: a pipeline that uses a (configured) nested dichotomy for prediction where data are preprocessed using

PCA. Right: a pipeline that uses a (configured) neural network for prediction and without preprocessing

a state is false. An action a is applicable in state s iff s |	cwa prea . The successor state s′

induced by this application is s if a is not applicable in s and (s ∪ add)\del otherwise; here,

add and del contain all the positive and negative literals, respectively.

A hierarchical task network (HTN) is a partially ordered set T of tasks. A task t(v0, .., vn)

is a name with a list of parameters, which are variables or constants from L. For example,

configureC45(c) could be the task of creating a set of options for a decision tree and assigning

them to the decision tree c. A task named by an operator [e.g., setC45Options(c, o)] is called

primitive, otherwise it is complex. A task whose parameters are constants is ground.

We are interested in deriving a plan from a task network. Intuitively, we can refine (and

ground) complex tasks iteratively until we reach a task network that has only ground primitive

tasks, i.e., a set of partially ordered actions. While primitive tasks can be realized canonically

by a single operation, complex tasks need to be decomposed by methods. A method m =

〈namem, taskm, prem, Tm〉 consists of its name, the (non-primitive) task taskm it refines,

a logic precondition prem ∈ L, and a task network Tm that realizes the decomposition.

Replacing complex tasks by the network of the methods we use to decompose them, we

iteratively derive new task networks until we obtain one with ground primitive tasks (actions)

only.

To get an intuition of this idea, consider the (totally ordered) task networks in the boxes

of Fig. 2 as an example. The colored entries are the tasks of the respective networks. Orange

tasks are complex (need refinement), and green ones are primitive. The tree shows an excerpt

of the possible refinements for each task network. The idea is very similar to derivations

in context-free grammars where primitive tasks are terminals and complex tasks are non-

terminal symbols. The main difference is that HTN considers the concept of a state, which is

modified by the primitive tasks and poses additional constraints on the possible refinements.

123

Machine Learning (2018) 107:1495–1515 1501

The definition of a simple task network planning problem is then straight-forward. Given

an initial state s0 and a task network T0, the planning problem is to derive a plan from T0 that

is applicable in s0. A simple task network planning problem is a quadruple 〈s0, T0, O, M〉,

where O and M are finite sets of operators and methods, respectively.

HTN problems are typically solved by a reduction to a standard graph search problem

that can be approached with algorithms such as depth-first search, best-first search, etc. A

typical translation of the HTN problem into a graph is to select the first complex task in the

network of a node and to define one successor for each ground method that can be used to

resolve the task; this is called forward-decomposition (Ghallab et al. 2004). Every node in

the resulting graph corresponds to a plan prefix (the part of the plan that has been fixed)

together with remaining tasks. The root node has an empty plan with the initial task network,

and the goal nodes have solution plans and empty rest networks. The graph in Fig. 2 sketches

(an excerpt of) such a search graph for the AutoML problem. The root node corresponds to

the pipeline with the initial complex task, and goal nodes are nodes that have fully defined

pipelines. Usually, there is a one-to-one correspondence between search space elements, e.g.,

the machine learning pipelines, and the goal nodes.

5 ML-Plan

ML-Plan reduces AutoML to a graph search problem via HTN planning. More specifically,

ML-Plan invokes a best-first search algorithm on the graph induced by a forward decom-

position (see above) of “the” HTN planning problem. This is exactly what standard HTN

solvers like SHOP2 (Nau et al. 2003) are doing, but those solvers require that the costs of

a solution (plan) decompose over its actions, and that these costs are known in advance.

ML-Plan overcomes this limitation and, hence, constitutes an HTN planner tailored for the

needs of AutoML.

5.1 AutoML through HTN planning

ML-Plan encodes an HTN problem that divides the AutoML problem defined in Sect. 2 into

an algorithm selection and an algorithm configuration phase. ML-Plan is initialized with a

fixed set of preprocessing algorithms, classification algorithms, and the respective parameters

and their domains. The first phase is to decide the feature preprocessing algorithm (if any) and

then the classification algorithm. Inversely, the second phase first configures the classification

algorithm and then the preprocessing algorithm (if any).

Note that these phases must not be understood as phases of the algorithm in the sense

that ML-Plan first chooses the algorithms and then configures them, but as phases (regions)

of the search graph. More precisely, our formulation of the HTN problem induces an upper

and a lower part of the search graph—this is what we mean by phases. ML-Plan adopts a

global best-first search within that graph and, hence, does not greedily pick algorithms and

then configure them. Given sufficient time, ML-Plan will detect all solutions.

In the following, we describe the HTN problem encoded by ML-Plan. The complete

problem description is very technical, so we focus on giving an intuition. In particular,

we omit the variables of the tasks and methods to maintain readability. The full formal

specification is available with our implementation.2

2 Attached as supplementary material during review phase.

123

1502 Machine Learning (2018) 107:1495–1515

The initial task network consists of the tasks choosePP, setupClassifier,

configPP. The first task can be refined to an empty task network to omit preprocessing or

any of the available preprocessing algorithms. That is, for m preprocessing algorithms, there

are m + 1 methods to resolve choosePP. The task networks associated with each of these

methods consists of a single primitive task that adds the chosen algorithm to the state using

a special predicate chosenPP. For example, it adds chosenPP(PCA) to indicate that the

chosen preprocessor is the principal component analysis. Storing this decision is necessary

to make sure that the correct preprocessor is refined when resolving the configPP task.

The second task setupClassifier is meant to choose and configure any of the

available classifiers. Similar to Auto-WEKA, ML-Plan assumes that classifiers belong to

predefined algorithm groups, e.g., basic learners, meta learners, ensembles, etc. To use this

information for the organization of the search graph, ML-Plan generates one method for

each of these algorithm groups, each of which has a task network with exactly one task

that means to setup a classifier of that group. For example, for the group of meta learners,

there is a method that refines setupClassifier to setupMetaClassifier. There

is exactly one method for each classifier, and it can be used for the task of the respec-

tive algorithm group. Each of these methods refines the task to a network of the form

selectClassifier,setupParam1, …, setupParamN for all of the N parameters

of the respective classification algorithm, so the network enforces that a decision is made

for all parameters. The selectClassifier task is primitive and only adds the choice of

the classifier to the state. For each of the parameters, there are methods that induce primitive

tasks either setting or not setting the respective parameter, i.e., leaving it at the default value.

The base learners of ensemble classifiers such as voting are considered as parameters in this

model.

The same technique is then applied to refine the third task refinePP. Refining this task

means to configure the initially chosen preprocessor (if any) and completes the configuration.

Note that the reduction conducted by ML-Plan is not a canonical one. In fact, there are

many different HTN problems that can cover exactly the same search space. So apart from any

questions related to heuristics, node evaluation, etc., the mere way of how the HTN problem is

formulated can have a tremendous impact on the search efficiency. For example, besides the

above technique, we could also use a two-step network where we first choose and configure

the preprocessor (or choose to not use any) and then choose and configure the classifier. While

this looks like a trivial alteration that does not influence the set of constructible pipelines, it

has important consequences on the structure of the search tree.

In the current implementation, ML-Plan chooses the parameter values from a small pre-

defined set of possible values. To this end, numerical parameters are discretized either on a

linear scale or a log scale. The interval and discretization technique for a parameter is not a

choice point but is fixed in advance.

While there is certainly room for improvement in this technique, this simple discretization

seems to be often sufficient. Indeed, discretization is less flexible than the native support for

numeric variables offered, say, by Bayesian optimization as used in Auto-WEKA (Thornton

et al. 2013) and auto-sklearn (Feurer et al. 2015), and the decision about how a parameter

should be discretized may seem arbitrary and should be subject to optimization itself. On the

other side, experience has shown that, for most learning algorithms, the performance is suf-

ficiently robust toward small variations of the parameters. Thus, as long as the discretization

contains a value that is not too far from the theoretical optimum, AutoML can be expected

to find a good solution. Besides, it is interesting to note that restricting the set of possible

parameter values (via discretization or in any other way) may also have a positive influence,

as it comes with a regularization effect.

123

Machine Learning (2018) 107:1495–1515 1503

5.2 The node evaluation function

ML-Plan adopts a best-first search algorithm in order to identify good pipelines. A best-first

search algorithm explores an implicitly given graph by assigning a number to each node

and choosing in each iteration the node with the currently best (usually lowest) known value

for expansion. Expansion means computing all successors of a node. The graph description

consists of the root node, the successor computation function used for the expansion, and a

predicate over the nodes that tells whether or not a node is a goal node. The task is to find a

path from the root to a goal node with a minimum score, and a best-first algorithm tries to

find such a path by expanding the intermediate nodes with minimum scores.

Since the prediction error as the solution quality does not decompose over the path (which

is a necessary requirement for A*), we adopt a randomized depth-first search similar to the

one applied in Monte Carlo tree search (MCTS) (Browne et al. 2012) to inform the search

procedure. Given the node for which we need a score, we choose a random path to a goal

node. This is achieved by randomly choosing a child node of the node itself, then randomly

choosing a child node of the child node, etc. until a leaf node is reached; note that every leaf

node is also a goal node in our search graph. We then compute the solution “qualities” of n

such random completions and take the minimum as an estimate for the best possible solution

that can be found beneath that node.

There are two main differences to standard MCTS when used with the UCT algorithm

(Kocsis et al. 2006). First, UCT aims at optimizing the average score achieved below a

node. While this is reasonable if one assumes that there is no full control about the eventual

track that will be taken in the graph, such as in multi-player games, in our case, we want

to optimize for the minimum score. Modifications of UCT for single-player games that take

this issue into account have been presented (Schadd et al. 2008; Bjornsson and Finnsson

2009). Second, MCTS takes a rather asymptotic view where a large number of (cheap) play-

outs makes sure that the algorithm converges to the optimal solution. However, play-outs in

AutoML are quite expensive, so ML-Plan tries to reliably detect sub-optimal solutions early

and effectively prunes them if all completions delivered bad results.

Since the node evaluation function computes solutions, we propagate these solutions to

the search algorithm. More precisely, we propagate the best of the n solutions drawn for

each node to the search routine. This way, ML-Plan is (as long as at least one node has been

evaluated) always able to return solutions even if the main search routine did not already

discover any goal node.

ML-Plan supports two procedures to determine the qualities of solutions:

1. k-fold cross-validation (CV) This is the standard cross-validation used by many

approaches, which, in our case, is only applied to the portion of the data that is allo-

cated for search. The dataset is split into k folds and, in k iterations, the validation

procedure uses k − 1 of them for training and the remaining one for validation. The per-

formance is then the average performance over the k runs. Auto-WEKA adopts tenfold

cross-validation. In ML-Plan, the number of folds can be defined by the user.

2. Monte Carlo cross-validation (MCCV) This technique is also called “hold out”. The data

(allocated for search) is partitioned k times into a stratified training and validation set.

For each of the k splits, the solution pipeline is trained with the respective training set

and tested on the validation set. The mean 0/1-loss of this evaluation is the score of that

solution.

Even though the evaluation technique influences the overall algorithm performance, it is

not meant to be optimized by the user but rather to give flexibility for scientific analysis.

123

1504 Machine Learning (2018) 107:1495–1515

In fact, ML-Plan is configured to use MCCV with 5 iterations, each of which with a split

of 70% for training and 30% for validation. The ability to use other techniques has been

included to eliminate confounding factors when comparing ML-Plan to other AutoML tools

using different evaluation techniques. In fact, the choice of the validation technique can have

a significant impact on the algorithm performance. On one hand, more exhaustive validations

bring more reliable estimates of the quality of a single solutions. On the other hand, these

validations can be very expensive in terms of time and memory; for some datasets, this can

take several minutes, or even hours, and quickly exhaust the time resources of the entire

algorithm.

Coming back to the discussion of the random completion strategy, we observed that the

estimates acquired by the above strategy unfortunately give rather confusing estimates when

used in the upper region of the search graph. We observed that sub-trees with very good

solutions are sometimes effectively pruned just because all completions of the top-node of

that sub-tree led to highly sub-optimal solutions. For example, on the Madelon dataset, we

obtain around 18% error rate after 1 min for a pipeline consisting of a scaling preprocessor

and a random forest classifier, but applying the random completion from the very beginning

suggests that the best solution quality under a top-level node that contains this solution

is about 49%. The node is effectively pruned, and the quality of the returned solution is

around 45%. The problem is that the random completions adopt inappropriate classification

algorithms with highly sub-optimal solutions. In other words, the top-layer nodes embrace

many different types of solutions, so the estimates may deviate significantly from the truly

best score obtainable in a corresponding sub-tree.

Based on several observations of this type, ML-Plan was designed to expand all nodes for

the algorithm selection part of the search tree without computing any node evaluations and

adopts the random completions only for nodes in the deeper layers corresponding to algorithm

configuration decisions. More precisely, ML-Plan assigns a value of 0 (optimum) to all nodes

in which the classifier has not yet been chosen. This effectively means to disable the informed

search for the algorithm selection part, but since only a few hundred algorithm selections are

usually possible, all these possibilities can be efficiently enumerated. The random completion

technique then is only applied to nodes below the algorithm selection region. This strategy

ensures that each combination of preprocessors and classifiers is at least considered once

with random completions and also increases the reliability of these estimates.

In order to break ties among the different algorithm selections, ML-Plan defines a (prefer-

ential) pre-order on the classification algorithms. This order is used to sort the “leaf” nodes

of the algorithm selection region and hence defines in which order the first random com-

pletion evaluations are conducted. More precisely, nodes whose partial plan contains the

selectClassifier action but no parameters have been refined, are leaf nodes of the

algorithm selection region and receive a score k
n

, where k is their rank and n is the number

of classifier algorithms; unkranked algorithms have k = n. The order is similar to the one

used in Auto-WEKA: KNN, random forests, voted perceptron, SVM, logistic regression (in

this order). These choices are based on results of Auto-WEKA reported in Thornton et al.

(2013). In ongoing work, we develop a method for deciding this order in a more flexible,

data-driven manner, specifically tailored for the learning problem at hand; this approach is

not yet realized, however.

Since we use two different node evaluation functions within the same graph, these need

to be made consistent to avoid strange behavior. To this end, the scores in the upper part are

scaled by the factor 10−3. This way, they are on a consistent scale with the accuracy estimates

and are preferred (unless ML-Plan gets an estimate for a solution with error rate below 10−3,

which would indicate an almost perfect solution).

123

Machine Learning (2018) 107:1495–1515 1505

5.3 Mitigating oversearch: a two-phasemodel

Intuitively, an extensive, systematic search for good predictors should bear a strong risk of

over-fitting, and previous approaches have confirmed this intuition (Thornton et al. 2013). By

their ability to choose among all learners and even construct new and arbitrary large ones using

ensemble methods, AutoML tools are on the right extreme of the bias-variance spectrum. If

the data available for the search process is not sufficiently substantial and representative for

“real” data, the danger of over-fitting in AutoML is higher than for basic learning algorithms.

We address this problem with a two-phase search mechanism. The first phase covers the

actual search in the space described above, and produces a collection of solution candidates.

The second phase takes these candidates and selects the one that minimizes the estimated

generalization error. This estimation is achieved by splitting the data given to the AutoML

tool into two sets Dsearch and Dselect . Phase 1 only has access to Dsearch, which is used for

the evaluation of nodes as described in the previous section. Phase 2 performs Monte Carlo

cross-validation on Dsearch ∪ Dselect for a fixed number of iterations (10 in our evaluation).

For each iteration, we obtain a stratified split (70% train and 30% validation) that is used to

train and evaluate a candidate solution s. We estimate the generalization error of s by taking

the average of the “internal” evaluation of s as in the previous section (only on Dsearch), and

the .75-percentile of the evaluations that include Dselect . We use the .75-percentile to make

the estimate for the generalization more conservative (and robust) but also robust toward

outliers. Intuitively, a good solution should not only have a strong average performance on

the internal data, but also perform well on most of the more general splits.

Since phase 1 may detect hundreds or even thousands of models, phase 2 only operates

on a small subset of these solutions. The portfolio used in the second phase consists of two

equally large subsets Sbest and Srandom. The size of these sets is fixed by a parameter k; we

used a size of 25 in our evaluation. Sbest and Srandom contain, respectively, the k best and

random solutions the internal evaluation of which deviates by at most ε from the optimal

one. The random candidates are important to ensure a certain diversity in the selection set,

but the expected quality should still be reasonably good. Since the domain for the prediction

loss is fixed to [0, 1], ε is not a relative but an absolute deviation from the optimum; in our

experiments, we set ε = 0.03.

Of course, this prevention strategy comes at a cost. First, less data is available for evaluating

the nodes, which in particular implies that models with higher variance are more likely to

be discarded even though they could be preferable choices. Second, the selection phase

consumes valuable search budget. The search in phase 1 is accompanied by a timer that

estimates the time required by phase 2; this is done by extrapolating from the times required

to evaluate the models during search. When the expected time for phase 2 is close to the

remaining overall budget, ML-Plan switches to phase 2.

6 Experimental evaluation

6.1 Experimental setup

The experimental evaluation of ML-Plan is twofold. First, we compare ML-Plan as introduced

in the preceding sections to other state-of-the-art AutoML tools. Second, we carry out a more

detailed analysis of individual components of the ML-Plan. To this end, we evaluate the

influence of isolated concepts using Auto-WEKA as a baseline. More specifically, we assess

123

1506 Machine Learning (2018) 107:1495–1515

the impact of HTN, Monte Carlo cross-validation as evaluation technique, and adopting a

second phase for selecting the returned solution on the performance of ML-Plan. Furthermore,

we discuss the combinations of preprocessors and classifiers as chosen by ML-Plan.

In the first part, we compare ML-Plan to Auto-WEKA (version 2.3) (Thornton et al. 2013),

auto-sklearn (both vanilla and warm-started with ensembles) (Feurer et al. 2015), and TPOT

(Olson and Moore 2016), which represent the state-of-the-art in AutoML.

Due to missing features in RECIPE to set a timeout and other technical issues, we refrain

from a comparison to RECIPE. In order to reduce the number of confounding factors as

introduced by using different libraries, i.e., WEKA (Java) or scikit-learn (Python), we run

ML-Plan once using WEKA and once using scikit-learn. Since Auto-WEKA was already

shown to outperform other (more basic) baselines (Thornton et al. 2013), we do not consider

these anymore.

To maximize the insights about the performances of individual changes brought in by

ML-Plan, in the second part of our evaluation, we compare four different configurations of

ML-Plan against Auto-WEKA. We chose Auto-WEKA over the other AutoML tools since

(i) Auto-WEKA internally uses the same search strategy as auto-sklearn (SMAC), and (ii)

ML-Plan itself is implemented in Java, so that confounding factors arising from the usage

of different platforms can be excluded. Apart from the different search space model (HTN

vs. SMAC), ML-Plan brings two new aspects into play, which could be confounding factors

in a comparison with Auto-WEKA. The first is a different solution evaluation technique:

Auto-WEKA uses tenfold cross-validation (10-CV) while ML-Plan, by default, uses fivefold

Monte Carlo cross-validation (5-MCCV). Moreover, ML-Plan adopts a selection phase to

prevent overfitting, whereas nothing comparable is used in Auto-WEKA.

To isolate the different effects, we consider the variants of ML-Plan for 10-CV/5-MCCV

with the selection phase disabled (SD) and enabled (SE), respectively. If the selection phase

is disabled, ML-Plan uses all the data during search. Thus, the version of ML-Plan that is

closest to Auto-WEKA and only deviates in the search space exploration is 10-CV-SD.

Our evaluation is based on a selection of 20 datasets from the openml.org (Vanschoren

et al. 2013) repository, all of which have previously been used to evaluate AutoML approaches

(Thornton et al. 2013; Feurer et al. 2015). More precisely, we present results for the same

datasets that were used in the original Auto-WEKA paper (Thornton et al. 2013). The imple-

mentation of ML-Plan, the evaluation code that produced the results shown in this section,

and the used datasets are publicly available to assure reproducibility.3

Results were obtained by carrying out 20 runs on each dataset with timeouts of 1 h and

1 day, respectively. Depending on the overall timeout, the timeout for the internal evaluation

of a single solution was set to 5m and 20m, respectively. In each run, we used 70% of a

stratified split of the data for the respective AutoML framework and 30% for testing. Note

that we used the same splits for all frameworks, i.e., for each split and each timeout, we ran

once Auto-WEKA, auto-sklearn, TPOT, and ML-Plan. Likewise, the timeout to evaluate a

single pipeline was set to the same values for all frameworks, i.e., we did not use the default

values. The computations were executed on 100 Linux machines in parallel, each of them

equipped with 8 cores (Intel Xeon E5-2670, 2.6 Ghz) and 32 GB memory. The accumulated

time of all experiments was over 400k CPU hours (over 45 CPU years).

Runs that did not adhere to the time or resource limitations (plus a tolerance threshold)

were canceled without considering their results. That is, we canceled the algorithms if they

did not terminate within 110% of the predefined timeout. Likewise, the algorithms were

killed if they consumed more resources (memory or CPU) than allowed, which happens as

3 https://github.com/fmohr/ML-Plan.

123

https://github.com/fmohr/ML-Plan

Machine Learning (2018) 107:1495–1515 1507

both implementations fork new processes whose overall CPU and memory consumption is

hard to control.

An exception for the timeout rule has been made for TPOT, as not even a single result has

been returned in the long runs. Therefore, we configured TPOT to log intermediate solutions

and considered the most recent one of these to compute the respective value in the results

tables.

6.2 ML-Plan versus other AutoML tools

The results of the comparison with other AutoML tools is summarized in Table 1 (1 h timeout)

and Table 2 (1 day timeout). The tables show the mean 0/1-loss over the 20 runs and the

standard deviation. The best average results per library and dataset are in bold. A • indicates

that ML-Plan is significantly better, and analogously a ◦ that it is significantly worse, than

another approach; significance is determined by a t test with p = 0.05. At the bottom of the

table, the numbers of wins and losses of each tool and the numbers of statistically significant

improvements and degradations are summarized over the various datasets.

The key message resulting from Tables 1 and 2 is that ML-Plan is competitive with the

other approaches in terms of the predictive accuracy of the returned solutions, and even shows

some advantages. ML-Plan largely dominates Auto-WEKA in both time setups. It performs

similar and sometimes superior to auto-sklearn (vanilla) and TPOT in the 1 h run and still

with a slight advantage after 1 day. TPOT did not return any results for larger resp. more

complex datasets, such as cifar10, dexter or mnist. Thus, TPOT seems to scale worse than

all the other AutoML approaches, which might be a configuration issue. We now discuss the

results in some more detail.

In the setting of using WEKA as a library, we observe that ML-Plan clearly dominates

Auto-WEKA and obtains worse performance on only a few datasets. For a number of datasets,

ML-Plan achieved significantly better results even after 1 h compared to the result returned

by Auto-WEKA within one day; e.g., on Amazon, Convex, Krvskp, and Semeion. On

some datasets, the gap is quite drastic, e.g., there are differences of 25% on Amazon and

Convex. But even when the difference is not so pronounced, the advantage of ML-Plan is

often quite substantial, showing an improvement of at least 2% in 9 of 20 cases with a timeout

of 1 day. In total, ML-Plan achieves the best result on 18 of 20 datasets for a timeout of 1 h,

and on 17 of 20 for a timeout of 1 day. Out of these, ML-Plan is significantly better than

Auto-WEKA 12 (1 h) and 14 (1 day) times, whereas a significant degradation can only be

observed once for both the timeouts.

Coming to the comparison with AutoML tools based on scikit-learn, there is no such

clear dominance, although significant improvements over auto-sklearn can still be observed.

Irrespective of the timeout, ML-Plan performs best on 9 of 20 datasets while auto-sklearn

yields the best result in 6 of 20 cases, and TPOT in 7 of 20 (1 h) resp. 6 of 20 (1 day) cases.

Within the given timeouts, we note 7 (1 h) resp. 5 (1 day) significant improvements over

auto-sklearn, whereas significant degradations occur in 1/20 resp. 3/20 cases.

Comparing ML-Plan to TPOT, there is no clear winner or loser. However, given the

default parametrization (except for timeouts), TPOT often did not return any result within

the specified timeout, so that the results shown in Table 2 had to be recovered from its log

output. For larger datasets, TPOT did not even output a preliminary candidate solution within

the specified timeout. This might be due to inappropriate parameters for the evolutionary

algorithm, such as population size etc., which would have to be adapted to each specific

dataset. Here, we only considered the default parameter setting and refrained from optimizing

123

1508 Machine Learning (2018) 107:1495–1515

T
a
b
le
1

M
ea

n
0
/1

-l
o
ss

es
(i

n
%

)
±

S
D

fo
r

1
h

ti
m

eo
u

t

D
at

a
se

t
W

E
K

A
S

ci
k
it

-l
ea

rn

M
L

-P
la

n
A

u
to

-W
E

K
A

M
L

-P
la

n
A

u
to

-s
k
le

ar
n
-v

A
u
to

-s
k
le

ar
n
-w

e
T

P
O

T

A
b
a

l
o

n
e

7
3
.7

2
±

1
.2

3
7

3
.4

6
±

1
.0

8
7

3
.7

7
±

1
.1

1
8

2
.9

2
±

8
.3

8
•

8
0
.5

9
±

8
.3

2
•

7
3

.1
4

±
1

.0
2

A
m

a
z
o

n
2

5
.5

5
±

1
.8

0
5

1
.7

2
±

2
.6

9
•

2
2
.9

2
±

3
.0

4
2

7
.8

3
±

5
.7

2
•

1
9

.7
2

±
2

.1
8

◦
–

C
a

r
1
.2

7
±

0
.5

6
0

.6
6

±
0

.3
8

◦
0

.3
4

±
0

.5
1

1
.3

8
±

0
.6

7
•

1
.2

6
±

0
.5

3
•

0
.3

7
±

0
.3

3

C
if

a
r
1
0

6
8

.9
0

±
2

.5
4

–
7

7
.0

4
±

8
.7

1
–

–
–

C
if

a
r
1
0
s
m

a
l
l

5
8

.2
5

±
0

.6
2

7
0
.2

3
±

0
.0

0
•

5
8
.0

9
±

1
.8

8
5

8
.1

1
±

0
.6

5
5

6
.6

2
±

1
.5

0
◦

–

C
o

n
v

e
x

1
5

.6
0

±
0

.2
3

4
6
.8

3
±

0
.3

9
•

1
6
.8

2
±

2
.2

2
1

6
.3

4
±

0
.7

8
1

3
.5

6
±

0
.3

3
◦

–

C
r
e
d

it
-

g
2

5
.5

4
±

1
.2

8
2

6
.5

0
±

2
.3

2
2

4
.5

6
±

2
.5

3
2

5
.9

5
±

1
.8

9
2

5
.3

9
±

0
. 8

8
2

3
.9

1
±

2
.2

2

D
e
x

t
e
r

8
.7

3
±

2
.6

7
1

1
.4

4
±

2
.6

8
•

4
.6

3
±

1
.2

9
8
.1

0
±

2
.1

3
•

6
.0

1
±

1
.1

7
•

–

D
o

r
o

t
h

e
a

6
.4

9
±

1
.2

3
–

8
.6

9
±

1
.5

4
6
.3

2
±

1
.1

6
◦

6
.0

2
±

1
.0

1
◦

–

G
is

e
t
t
e

2
.9

2
±

0
.2

7
3
.9

0
±

0
.4

0
•

2
.7

6
±

0
.3

6
2
.5

6
±

0
.3

6
2

.2
4

±
0

.3
3

◦
–

K
r
v

s
k

p
0

.5
4

±
0

.2
0

2
.6

1
±

2
.6

8
•

0
.7

0
±

0
.2

3
0
.7

5
±

0
.3

2
0
.7

7
±

0
.3

1
0

.5
8

±
0

.2
4

M
a

d
e
l
o

n
1

9
.2

8
±

2
.2

6
2

5
.5

2
±

3
.8

0
•

1
4

.7
5

±
2

.0
6

1
5
.9

9
±

1
.7

3
1

5
.3

3
±

1
.8

9
1

5
.3

±
2
.4

6

M
n

is
t

3
.4

8
±

0
.1

1
7
.2

3
±

0
.2

0
•

3
.8

7
±

0
.6

6
3
.6

0
±

0
.1

1
3

.5
0

±
0

.1
1

◦
–

M
n

is
t
r
o

t
a

t
io

5
5

.8
8

±
5

.9
4

7
8
.5

6
±

0
.4

3
•

5
4
.5

5
±

1
3
.1

9
5

1
.8

6
±

1
.2

6
5

2
.0

6
±

0
.3

7
–

S
e
c
o

m
6

.4
7

±
0

.1
6

6
.5

5
±

0
.3

9
6
.7

9
±

0
.0

0
6
.6

9
±

0
.3

5
6
.6

8
±

0
.4

4
6

.4
9

±
0

.1
9

◦

S
e
m

e
io

n
6

.7
8

±
0

.8
4

1
2
.5

9
±

3
.9

3
•

4
.6

6
±

0
.6

4
6
.7

9
±

1
.3

4
•

5
.7

9
±

1
.0

2
•

6
.2

2
±

0
.9

7
•

S
h

u
t
t
l
e

0
.0

1
±

0
.0

1
0
.1

2
±

0
.0

6
•

0
.0

2
±

0
.0

1
0
.0

2
±

0
.0

1
0

.0
2

±
0

.0
1

0
.0

2
±

0
.0

2

W
a

v
e
f
o

r
m

1
3

.2
4

±
0

.6
4

1
3
.3

5
±

0
.8

1
1

3
.2

3
±

0
.7

6
1

3
.6

±
0
.7

5
1

3
.2

3
±

0
.5

7
1

2
.9

4
±

0
.6

2

W
in

e
q

u
a

l
it

y
3

2
.6

2
±

0
.9

1
3

3
.6

9
±

1
.9

0
•

3
2

.5
3

±
1

.3
1

3
6
.8

3
±

1
.2

7
•

3
5
.8

7
±

1
.1

8
•

3
2
.9

4
±

1
.0

9

Y
e
a

s
t

3
9

.3
7

±
2

.5
4

3
9
.7

2
±

2
.2

9
3

9
.5

2
±

2
.6

6
4

0
.5

1
±

2
.1

7
3

8
.9

9
±

2
.2

8
3

8
.4

7
±

2
.3

6

W
in

s/
lo

ss
es

1
8
/2

2
/1

8
6

/1
4

1
/1

9
7

/1
3

7
/1

3

t
te

st
im

p
/d

eg
–

1
2
/1

–
6
/1

5
/6

1
/1

123

Machine Learning (2018) 107:1495–1515 1509

T
a
b
le
2

M
ea

n
0
/1

-l
o
ss

es
(i

n
%

)
±

S
D

fo
r

1
d

ay
ti

m
eo

u
t

D
at

a
se

t
W

E
K

A
S

ci
k
it

-l
ea

rn

M
L

-P
la

n
A

u
to

-W
E

K
A

M
L

-P
la

n
A

u
to

-s
k
le

ar
n
-v

A
u
to

-s
k
le

ar
n
-w

e
T

P
O

T

A
b
a

l
o

n
e

7
2

.8
3

±
0

.8
9

7
3
.4

6
±

0
.7

1
•

7
3
.4

6
±

1
.0

7
–

7
4
.8

±
0
.9

4
•

7
3

.3
5

±
0

.9
3

A
m

a
z
o

n
2

5
.2

0
±

2
.3

1
5

0
.2

8
±

3
.5

1
•

1
8

.5
2

±
1

.8
8

2
2
.0

±
1
.0

0
1

9
.9

4
±

2
.1

7
–

C
a

r
1
.1

8
±

0
.5

3
0

.2
4

±
0

.2
6

◦
0

.3
5

±
0

.4
4

1
.6

4
±

0
.9

6
•

1
.1

5
±

0
.3

0
•

0
.4

0
±

0
.3

3

C
if

a
r
1
0

5
5

.2
6

±
0

.5
1

6
4
. 0

6
±

1
.3

7
•

6
0

.3
1

±
4

.1
2

–
–

–

C
if

a
r
1
0
s
m

a
l
l

5
8

.3
1

±
0

.5
8

6
2
.0

9
±

3
.1

9
•

5
6
.4

6
±

2
.0

1
5

5
.0

8
±

2
.5

9
4

7
.4

7
±

1
.9

0
◦

–

C
o

n
v

e
x

1
4

.8
0

±
0

.6
8

4
5
.7

0
±

5
.4

6
•

1
4
.9

3
±

1
.7

2
1

2
.1

6
±

1
.7

1
◦

9
.7

7
±

1
.0

6
◦

–

C
r
e
d

it
-

g
2

5
.1

7
±

2
.5

2
2

6
.4

4
±

2
.0

5
2

4
.9

0
±

2
.0

9
–

–
2

3
.5

3
±

1
.5

2
◦

D
e
x

t
e
r

9
.8

3
±

2
.7

1
9

.8
2

±
2

.4
3

5
.0

6
±

1
.4

4
7
.3

0
±

0
.7

9
•

5
.2

4
±

1
.9

9
–

D
o

r
o

t
h

e
a

6
.3

7
±

0
.9

3
1

1
.0

1
±

1
.7

3
•

6
.5

9
±

0
.8

7
6

.0
4

±
1

.0
5

6
.5

8
±

1
.3

3
–

G
is

e
t
t
e

2
.8

8
±

0
.3

0
4
.1

8
±

0
.6

0
•

2
.1

4
±

0
.2

7
2
.2

2
±

0
.2

9
1

.9
7

±
0

.2
5

–

K
r
v

s
k

p
0

.5
3

±
0

.2
5

4
.0

2
±

2
.7

0
•

0
.6

6
±

0
.3

7
0
.7

4
±

0
.3

2
0
.6

8
±

0
.3

3
1
.0

8
±

2
.0

4

M
a

d
e
l
o

n
1

7
.7

3
±

3
.0

7
2

0
.3

4
±

2
.5

3
•

1
4
.3

7
±

1
.6

4
1

4
.7

±
1
.6

1
1

3
.4

7
±

1
.1

4
1

5
.2

6
±

0
.7

3

M
n

is
t

3
.4

4
±

0
.1

2
5
.3

9
±

0
.6

7
•

2
.9

8
±

0
.3

6
2
.9

0
±

0
.5

1
1

.6
2

±
0

.0
6

◦
–

M
n

is
t
r
o

t
a

t
io

5
0

.1
2

±
1

.3
0

7
4
.3

0
±

4
.7

9
•

4
7
.3

3
±

4
.4

9
4

3
.4

9
±

2
.1

9
◦

3
1

.5
1

±
1

.6
2

◦
–

S
e
c
o

m
6

.4
8

±
0

.1
2

6
.6

0
±

0
.4

2
6
.8

2
±

0
.0

9
6
.5

7
±

0
.2

7
6
.6

4
±

0
.2

3
6

.5
0

±
0

.2
0

◦

S
e
m

e
io

n
4

.7
3

±
1

.0
3

8
.4

2
±

2
.3

2
•

4
.7

9
±

1
.1

1
6
.2

9
±

1
.1

1
•

5
.8

2
±

1
.3

7
•

6
.0

6
±

1
.0

4
•

S
h

u
t
t
l
e

0
.0

1
±

0
.0

1
0
.1

3
±

0
.0

7
•

0
.0

2
±

0
.0

1
0
.0

1
±

0
.0

2
0
.0

2
±

0
.0

1
0

.0
1

±
0

.0
2

W
a

v
e
f
o

r
m

1
3
.2

7
±

0
.6

4
1

3
.0

5
±

0
.6

8
1

3
.2

3
±

0
.8

3
1

3
.6

±
0
.7

4
1

3
.4

2
±

0
.6

9
1
3
.1

±
0

.6
6

W
in

e
q

u
a

l
it

y
3

2
.5

4
±

0
.9

9
3

3
.5

8
±

1
.2

3
•

3
2

.4
5

±
0

.9
8

3
6
.2

5
±

1
.5

3
•

3
6
.0

3
±

0
.8

2
•

3
2
.6

6
±

0
.7

7

Y
e
a

s
t

3
8

.3
0

±
2

.2
3

3
9
.8

0
±

2
.5

6
3

9
.7

9
±

2
.3

8
3

9
.2

7
±

0
.6

1
3

7
.7

3
±

0
.0

0
◦

3
8
.7

5
±

2
.3

7

W
in

s/
lo

ss
es

1
7
/3

3
/1

7
9

/1
1

6
/1

4
7

/1
3

6
/1

4

t
te

st
im

p
/d

eg
–

1
4
/1

–
4
/2

4
/5

2
/2

123

1510 Machine Learning (2018) 107:1495–1515

the hyperparameters of TPOT; the only parameter we set was the timeout for evaluating a

single pipeline. However, algorithm-specific configurations should not play an important role

in AutoML since the goal is precisely to enable the functionality to non-experts. The number

of significant improvements (1 for 1 h, 2 for 1 day) and degradations are evenly balanced

for the datasets for which results could be obtained from TPOT. Due to this, we conclude

ML-Plan to be at least competitive with TPOT.

Comparing ML-Plan to auto-sklearn, ML-Plan appears to be slightly superior. Yet, auto-

sklearn with warm-start and ensembles outperforms ML-Plan in some cases. The latter

comparison is not unproblematic, however, since additional features such as warm-starting

and ensembling are not (yet) incorporated in ML-Plan. Indeed, our focus is on the comparison

of search strategies, i.e., the algorithmic core, and less on complete AutoML systems/tools.

In this sense, our primary comparison is between ML-Plan and auto-sklearn vanilla, while the

performance of auto-sklearn with warm-start and ensembles is merely presented as an addi-

tional reference. Adopting this perspective, our interpretation is that ML-Plan does have an

advantage over the core technique used in auto-sklearn (SMAC). Nevertheless, the improved

performance of auto-sklearn under warm-start and ensembles provides an incentive to add

these techniques to ML-Plan as well.

Unfortunately, for the datasets Abalone and Credit- g, auto-sklearn did not return any

results for the 1 day evaluations within the resource limitations, although there have been

results already for the 1 h runs. According to the logs, we assume that this might be due to a

bug in the auto-sklearn implementation.

The reader may have noticed significant differences between the results we report for

Auto-WEKA and auto-sklearn in the 1 day run compared to the results reported in Thornton

et al. (2013) and Feurer et al. (2015) for some of the datasets. For most of these (including,

e.g., Amazon), the authors of Auto-WEKA have confirmed the correctness of our results.

For the others, such as Convex, there are two possible explanations. First, we only granted

24 h compared to 30 h as in previous studies. Second, the experiments in these studies were

conducted on only a single train/test-split, which implies a high variance.

All in all, we notice that the more time is available for search, the closer the gap between the

different AutoML tools. This comes at no surprise as, asymptotically, most of the algorithms

return the same (best) solution—excepting TPOT, which is able to construct more complex

pipelines (with multiple preprocessors). Furthermore, our results show that, for some datasets,

scikit-learn-based approaches perform substantially better than the ones based on WEKA and

vice versa. One possible reason for this might be a different portfolio of preprocessing and

classification algorithms. Another reason might simply be the fact that the evaluation of

candidate solutions in scikit-learn is much faster than in WEKA for most of the algorithms.

For example, compared to WEKA, ML-Plan is able to do twice as many evaluations with

scikit-learn.

6.3 Detailed analysis of ML-Plan

To better understand how HTN, Monte Carlo cross-validation, and the selection phase influ-

ence the performance of ML-Plan, we examined different configurations of ML-Plan. Since

the techniques used by ML-Plan are essentially the same for both its WEKA and scikit-learn

version, we conducted the experiments only for one of these versions; we chose the WEKA

implementation, because the gap to Auto-WEKA is the largest one.

The results of these experiments are summarized in Table 3. The table shows the mean

0/1-loss and the standard deviation per configuration and dataset for a timeout of 1 h. The

123

Machine Learning (2018) 107:1495–1515 1511

T
a
b
le
3

M
ea

n
0
/1

-l
o
ss

es
(i

n
%

)
±

S
D

fo
r

1
h

ti
m

eo
u

t

D
at

a
se

t
M

L
-P

la
n

A
u

to
-W

E
K

A
1

0
-C

V
S

D
1

0
-C

V
S

E
5

-M
C

C
V

S
D

5
-M

C
C

V
S

E

A
b
a

l
o

n
e

7
3
.4

6
±

1
.0

8
7

3
.2

6
±

1
.7

7
7

2
.5

4
±

0
.4

6
•

7
2

.3
4

±
0

.2
5
•

7
3
.7

2
±

1
.2

3

A
m

a
z
o

n
5

1
.7

2
±

2
.6

9
2

7
.8

6
±

1
.6

8
•

2
9
.0

0
±

0
.0

0
•

2
9
.0

0
±

0
.0

0
•

2
5

.5
5

±
1

.8
0
•

C
a

r
0
.6

6
±

0
.3

8
0
.9

7
±

0
.5

5
◦

0
.5

8
±

0
.0

0
0

.4
8

±
0

.3
0

1
.2

7
±

0
.5

6
◦

C
if

a
r
1
0
s
m

a
l
l

7
0
.2

3
±

0
.0

0
7

0
.5

1
±

0
.5

7
◦

5
7

.7
9

±
0

.0
6
•

5
7

.7
9

±
0

.0
6
•

5
8
.2

5
±

0
.6

2
•

C
if

a
r
1
0

–
7

0
.6

2
±

0
.3

0
7

0
.4

0
±

0
.1

1
7

0
.4

0
±

0
.1

1
6

8
.9

0
±

2
.5

4

C
o

n
v

e
x

4
6
.8

3
±

0
.3

9
2

7
.4

8
±

0
.4

0
•

2
7
.4

5
±

0
.2

8
•

2
7
.7

6
±

0
.7

6
•

1
5

.6
0

±
0

.2
3
•

C
r
e
d

it
-

g
2

6
.5

0
±

2
.3

2
2

5
.7

3
±

1
.6

1
2

3
.8

3
±

0
.0

0
•

2
5
.6

7
±

0
.5

0
2

5
.5

4
±

1
.2

8

D
e
x

t
e
r

1
1
.4

4
±

2
.6

8
8

.3
4

±
2

.0
0
•

8
.9

9
±

2
.8

1
•

9
.2

7
±

0
.2

8
•

8
.7

3
±

2
.6

7
•

D
o

r
o

t
h

e
a

–
7
.3

2
±

1
.5

6
6
.8

8
±

0
.1

4
7
.7

5
±

0
.7

3
6

.4
9

±
1

.2
3

G
is

e
t
t
e

3
.9

0
±

0
.4

0
3
.3

0
±

0
.5

4
•

2
.3

1
±

0
.1

7
•

2
.1

2
±

0
.3

6
•

2
.9

2
±

0
.2

7
•

K
r
v

s
k

p
2
.6

1
±

2
.6

8
0
.5

8
±

0
.2

2
•

0
.7

8
±

0
.2

7
•

0
.6

2
±

0
.1

1
•

0
.5

4
±

0
.2

0
•

M
a

d
e
l
o

n
2

5
.5

2
±

3
.8

0
1

9
.3

2
±

2
.1

7
•

2
3
.0

1
±

0
.7

7
•

2
1
.0

2
±

0
.0

7
•

1
9

.2
8

±
2

.2
6
•

M
n

is
t
r
o

t
a

t
io

7
8
.5

6
±

0
.4

3
6

8
.7

8
±

0
.5

6
•

6
8
.3

7
±

0
.4

2
•

6
6
.5

6
±

2
.2

2
•

5
5

.8
8

±
5

.9
4
•

M
n

is
t

7
.2

3
±

0
.2

0
1

6
.9

8
±

0
.6

8
◦

3
.5

4
±

0
.0

1
•

3
.5

4
±

0
.0

1
•

3
.4

8
±

0
.1

1
•

S
e
c
o

m
6
.5

5
±

0
.3

9
6

.4
1

±
0

.2
1

6
.8

6
±

0
.2

1
◦

7
.0

7
±

0
.0

0
◦

6
.4

7
±

0
.1

6

S
e
m

e
io

n
1

2
.5

9
±

3
.9

3
6
.9

8
±

1
.0

0
•

7
.1

3
±

0
.0

0
•

6
.6

9
±

0
.2

1
•

6
.7

8
±

0
.8

4
•

S
h

u
t
t
l
e

0
.1

2
±

0
.0

6
0

.0
1

±
0

.0
1
•

0
.0

1
±

0
.0

0
•

0
.0

2
±

0
.0

0
•

0
.0

1
±

0
.0

1
•

W
a

v
e
f
o

r
m

1
3
.3

5
±

0
.8

1
1

3
.0

4
±

0
.6

5
1

2
.6

5
±

0
.1

3
•

1
2
.8

4
±

0
.0

6
•

1
3
.2

4
±

0
.6

4

W
in

e
q

u
a

l
it

y
3

3
.6

9
±

1
.9

0
3

2
.8

0
±

1
.1

6
3

2
.3

1
±

0
.0

0
•

3
1

.6
9

±
0

.4
8
•

3
2
.6

2
±

0
.9

1
•

Y
e
a

s
t

3
9
.7

2
±

2
.2

9
3

8
.5

1
±

2
.4

6
3

6
.5

7
±

0
.0

0
•

4
1
.2

0
±

1
.6

2
◦

3
9
.3

7
±

2
.5

4

t
te

st
im

p
/d

eg
v
er

su
s

W
E

K
A

–
9

/3
1
7
/1

1
4
/2

1
2
/1

B
es

t/
n

o
n

–
si

g
w

o
rs

e/
w

o
rs

e
0

/2
/1

8
3

/4
/1

3
5

/4
/1

1
6

/2
/1

2
9

/3
/8

123

1512 Machine Learning (2018) 107:1495–1515

Fig. 3 Relative frequency of WEKA preprocessor-classifier combinations as returned by ML-Plan after 1 h

resp. 1 day

best average results per dataset are highlighted in bold; additionally, those results that are not

significantly (p = 0.05 using a t test) worse than the best result are underlined. Moreover,

a • denotes a significant improvement of the respective ML-Plan configuration over Auto-

WEKA, and ◦ a significant degradation. At the bottom of the table, we summarize how

many times a configuration of ML-Plan yielded a statistically significant improvement or

degradation with respect to the performance of Auto-WEKA. Furthermore, we count how

many times each variant performs best, not statistically significantly worse, and significantly

worse than the best.

Having eliminated the essential confounding factors in the 10-CV-SD variant of ML-

Plan, we conclude from these experiments that solving the AutoML problem with HTN

planning already gives significantly better results than using Auto-WEKA. Note that we do

not claim that ML-Plan is generally superior to applying sequential parameter optimization

in AutoML; instead, the results only apply to the implementation of parameter optimization

in Auto-WEKA.

Comparing the test performances of the different configurations of ML-Plan, there is no

single version that strictly dominates all others. Yet, all versions outperform Auto-WEKA,

which indicates that much of the performance improvement can be traced back to the use of

HTN planning.

However, counting the number of datasets where a configuration of ML-Plan achieves

a significant improvement, it can be seen that enabling the selection phase yields more

such improvements when 10-CV is used as the evaluation technique. Moreover, from this

perspective, 10-CV together with the selection phase enabled performs the best compared to

Auto-WEKA, yielding 17 significant improvements in 18 possible cases (Auto-WEKA did

not return any result on 2 of the 20 datasets). Surprisingly, this observation does not hold for

the case of 5-MCCV. In fact, switching on the selection phase while keeping the evaluation

function to be 5-MCCV leads to less significant improvements.

123

Machine Learning (2018) 107:1495–1515 1513

Fig. 4 Relative frequency of scikit-learn preprocessor-classifier combinations as returned by ML-Plan after

1 h resp. 1 day

Although the results are quite heterogeneous, we opt for using 5-MCCV-SE as a standard

parametrization. While 10-CV-SE and 5-MCCV-SD yield 5 resp. 2 more significant improve-

ments compared to Auto-WEKA, they do not ourperform the configuration with 5-MCCV

and selection phase enabled. In fact, 5-MCCV-SE yields the best observed performance on

nearly half of the evaluated datasets among the different configurations of ML-Plan. Counting

the number of wins of those configurations, on one hand we see that the selection phase proves

beneficial, and on the other hand 5-MCCV seems to be advantageous as compared to 10-CV.

Nevertheless, for some datasets it can also be seen that the test set performance worsens

when enabling the selection phase. As one possible reason, recall that a portion of the training

data is reserved to be used only in the selection phase, but in most of the cases, this effect does

not arise on the same datasets for the different evaluation techniques. Further investigation

of this observation poses interesting future work, which may help to automatically adapt the

configuration of ML-Plan to the properties of the problem at hand.

6.3.1 Selected classifiers and preprocessors

The plots in Figs. 3 and 4 show the frequency with which a combination of preprocessor

and classifier was selected by ML-Plan using WEKA and scikit-learn, respectively. They

summarize the frequency over all datasets for each timeout, i.e., 1 h and 1 day.

123

1514 Machine Learning (2018) 107:1495–1515

While the purpose of the plots is to give an insight into the algorithm choices, they do

in no way reflect the true distribution of optimal solutions. In particular, the dominant role

of random forests does not support the idea that they are a dominant optimal choice (even

though they often are good models of course). The node evaluation enforces a strong bias

towards some models, including random forests, for a given timeout. In many of the datasets

for which random forests were selected (e.g., Cifar10Small, Convex, Mnist), ML-Plan

observed only around 10–50 solutions in total (timeout 1 h).

In fact, only focusing on random forests can lead to high regrets. For example, the loss of

random forests on Amazon is over 70%, which is more than 40% points away from the best

solution we report here.

This being said, our interpretation of the results resembles the one in Thornton et al. (2013).

Looking at the variety of preprocessors and classifiers chosen for the different problems, the

optimization effort is clearly justified. Even with a strong selection bias in favor of random

forests, SVM, and KNN (which in some cases were the only models considered at all), other

algorithms were better in more than 40% of the cases.

However, we also observe that, for some datasets, the current approach is simply not

adequate in terms of search space coverage. As described above, since the evaluation of

candidates is so costly for some problems, we only explored a very tiny part of the search

space. This problem calls for more sophisticated node evaluation techniques in order to

explore broader parts of the search space. One possibility is to reduce the amount of data

considered, i.e., only work on a (random) sub-sample of instances.

7 Conclusion

We proposed ML-Plan, a new AutoML framework based on hierarchical task networks. Dis-

tinguishing features of ML-Plan include a conveniently structured solution space amenable

to efficient search techniques, a reliable node evaluation based on random completions, and a

strategy to avoid over-fitting. We have shown that our implementation of ML-Plan is highly

competitive and often outperforms the state-of-the art tools Auto-WEKA, auto-sklearn, and

TPOT.

In follow-up work, we plan to elaborate on the expressiveness of the HTN formalism, and

to exploit its potential for creating more complex, variable-length pipelines. In particular,

we are already working on optimizing over pipelines with algorithms from both libraries

(WEKA and scikit-learn) simultaneously (Mohr et al. 2018). Moreover, the seed-strategy in

the upper part of the search graph should be adaptive to the dataset instead of implement-

ing a predefined preference on learning algorithms. Also, we expect the implementation of

parameter refinement to yield better fine tuning. Last but not least, the current emphasis on

exploitation can be balanced with more exploration, e.g., by occasionally choosing nodes for

expansion at random.

Acknowledgements This work was supported by the German Research Foundation (DFG) within the Col-

laborative Research Center “On-The-Fly Computing” (SFB 901).

References

Bjornsson, Y., & Finnsson, H. (2009). Cadiaplayer: A simulation-based general game player. IEEE Transac-

tions on Computational Intelligence and AI in Games, 1(1), 4–15.

123

Machine Learning (2018) 107:1495–1515 1515

Browne, C., Powley, E. J., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., et al. (2012). A

survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in

Games, 4(1), 1–43. https://doi.org/10.1109/TCIAIG.2012.2186810.

de Sá, A. G., Pinto, W. J. G., Oliveira, L. O. V., & Pappa, G. L. (2017). Recipe: A grammar-based framework

for automatically evolving classification pipelines. In European Conference on Genetic Programming

(pp. 246–261). Springer.

Erol, K., Hendler, J. A., & Nau, D. S. (1994). UMCP: A sound and complete procedure for hierarchical

task-network planning. In Proceedings of the Second International Conference on Artificial Intelligence

Planning Systems, University of Chicago, Chicago, Illinois, USA, June 13–15, 1994 (pp. 249–254). http://

www.aaai.org/Library/AIPS/1994/aips94-042.php.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., & Hutter, F. (2015). Efficient and robust

automated machine learning. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.),

Advances in neural information processing systems (pp. 2962–2970). Curran Associates, Inc.

Ghallab, M., Nau, D. S., & Traverso, P. (2004). Automated planning—Theory and practice. New York City:

Elsevier.

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential model-based optimization for general algorithm

configuration. LION, 5, 507–523.

Kietz, J., Serban, F., Bernstein, A., & Fischer, S. (2009). Towards cooperative planning of data mining work-

flows. In Proceedings of the Third Generation Data Mining Workshop at the 2009 European Conference

on Machine Learning (pp. 1–12). Citeseer.

Kietz, J. U., Serban, F., Bernstein, A., & Fischer, S. (2012). Designing KDD-workflows via HTN-planning

for intelligent discovery assistance. In 5th planning to learn workshop WS28 at ECAI 2012 (p. 10).

Kocsis, L., Szepesvári, C., & Willemson, J. (2006). Improved Monte-Carlo search. Technical report 1, Uni-

versity of Tartu, Estonia.

Komer, B., Bergstra, J., & Eliasmith, C. (2014). Hyperopt-sklearn: Automatic hyperparameter configuration

for scikit-learn. In ICML workshop on AutoML.

Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., & Leyton-Brown, K. (2017). Auto-WEKA 2.0: Automatic

model selection and hyperparameter optimization in WEKA. The Journal of Machine Learning Research,

18(1), 826–830.

Lloyd, J. R., Duvenaud, D. K., Grosse, R. B., Tenenbaum, J. B., & Ghahramani, Z. (2014). Automatic con-

struction and natural-language description of nonparametric regression models. In Proceedings of the

Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City, Québec, Canada (pp. 1242–

1250).

Mohr, F., Wever, M., Hüllermeier, E., & Faez, A. (2018). Towards the automated composition of machine

learning services. In Proceedings of the IEEE International Conference on Services Computing. SCC.

Nau, D. S., Au, T., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., et al. (2003). SHOP2: An HTN planning

system. Journal of Artificial Intelligence Research (JAIR), 20, 379–404. https://doi.org/10.1613/jair.

1141.

Nguyen, P., Hilario, M., & Kalousis, A. (2014). Using meta-mining to support data mining workflow planning

and optimization. Journal of Artificial Intelligence Research, 51, 605–644.

Nguyen, P., Kalousis, A., & Hilario, M. (2011). A meta-mining infrastructure to support KD workflow opti-

mization. In Proceedings of the PlanSoKD-11 Workshop at ECML/PKDD (pp. 1–10).

Nguyen, P., Kalousis, A., & Hilario, M. (2012). Experimental evaluation of the e-lico meta-miner. In 5th

planning to learn workshop WS28 at ECAI (pp. 18–19).

Olson, R. S., & Moore, J. H. (2016). Tpot: A tree-based pipeline optimization tool for automating machine

learning. In Workshop on automatic machine learning (pp. 66–74).

Schadd, M. P. D., Winands, M. H. M., van den Herik, H. J., Chaslot, G. M. J. B., & Uiterwijk, J. W. H.

M. (2008). Single-player Monte-Carlo tree search. In H. J. van den Herik, X. Xu, Z. Ma, & M. H. M.

Winands (Eds.), Computers and games. Berlin: Springer.

Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2013). Auto-WEKA: Combined selection and

hyperparameter optimization of classification algorithms. In The 19th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA (pp. 847–855).

Vanschoren, J., van Rijn, J. N., Bischl, B., & Torgo, L. (2013). OpenML: Networked science in machine

learning. SIGKDD explorations, 15(2), 49–60. https://doi.org/10.1145/2641190.2641198.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

123

https://doi.org/10.1109/TCIAIG.2012.2186810
http://www.aaai.org/Library/AIPS/1994/aips94-042.php
http://www.aaai.org/Library/AIPS/1994/aips94-042.php
https://doi.org/10.1613/jair.1141
https://doi.org/10.1613/jair.1141
https://doi.org/10.1145/2641190.2641198

	ML-Plan: Automated machine learning via hierarchical planning
	Abstract
	1 Introduction
	2 Problem definition
	3 Related work
	4 Planning with hierarchical task networks (HTN)
	5 ML-Plan
	5.1 AutoML through HTN planning
	5.2 The node evaluation function
	5.3 Mitigating oversearch: a two-phase model

	6 Experimental evaluation
	6.1 Experimental setup
	6.2 ML-Plan versus other AutoML tools
	6.3 Detailed analysis of ML-Plan
	6.3.1 Selected classifiers and preprocessors

	7 Conclusion
	Acknowledgements
	References

