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Abstract—The demand for knowledge extraction has been
increasing. With the growing amount of data being generated
by global data sources (e.g., social media and mobile apps) and
the popularization of context-specific data (e.g., the Internet of
Things), companies and researchers need to connect all these
data and extract valuable information. Machine learning has
been gaining much attention in data mining, leveraging the birth
of new solutions. This paper proposes an architecture to create
a flexible and scalable machine learning as a service. An open
source solution was implemented and presented. As a case study,
a forecast of electricity demand was generated using real-world
sensor and weather data by running different algorithms at the
same time.

Keywords—Machine Learning as a Service, Supervised Learn-
ing, Regression, Prediction, Service Oriented Architecture, Ser-
vice Component Architecture, Platform as a Service

I. INTRODUCTION

The amount of data generated has been continuously grow-

ing from global data sources like Web sites, social media,

mobile applications, news networks, weather, political insti-

tutes, society and the economy. No matter how big the data

are, they may be useless without proper preparation and

processing. Many different machine learning algorithms have

been used to extract valuable knowledge from data, e.g., for

scientific modeling, consumer behavior, energy consumption

forecasting, related article recommendation and user trends.

At the same time, with the popularization of sensors and

mobile devices able to connect to a network (e.g., the Internet

of Things), it is becoming viable to collect more data from

specific contexts at higher levels of detail. By connecting

global and context specific data, it is possible to extract even

more detailed information and build richer knowledge using

machine learning algorithms.

Large companies have enough resources to invest in their

own machine learning solutions. However, small companies,

developers and researchers in general have difficulties when

facing the steep learning curve of how machine learning works

and when building their own solutions or integrating with

third-party ones. In addition, machine learning can require

computational resources with impracticable costs. How could

these users have access to affordable machine learning ser-

vices?

One way to meet this demand is by creating a functional

and ready-to-use Machine Learning as a Service (MLaaS)

platform. Because multiple users will be using the same

platform, computational resources can be shared or allocated

on demand, reducing overall costs. By specifying a well

defined interface, users can have access to machine learning

process efficiently from anywhere, at any time. Users must not

be concerned with implementation and computing resources,

focusing mainly on the data itself.

This paper proposes a novel approach for machine learning,

providing a scalable, flexible, and non-blocking platform as

a service based on the service component architecture. This

platform facilitates the creation, validation and execution of

machine learning models. By taking advantage from service

oriented architecture, the proposed approach becomes easily

scalable and easy to adapt by adding, removing, changing and

linking any component. This also makes the system more flex-

ible for handling multiple data sources and different machine

learning algorithms at the same time. In addition, a graphical

user interface is presented to facilitate the comparison between

different models.

The proposed framework source code is available1 as an

open-source project to facilitate its use for various prediction

modeling tasks and to enable it to be adapted for other

purposes.

The following sections of this paper are organized as

follows: Section II gives an overview of machine learning,

service component architecture and the main related works

on machine learning as a service; Section III describes the

proposed architecture for MLaaS; Section IV explains the

MLaaS process; Section V presents the case study; and finally,

Section VI concludes the paper.

II. RELATED WORKS

A. Machine Learning

Machine Learning is one of the fastest growing fields in

computer science [1]. It is a collection of statistical techniques

for building mathematical models that can make inferences

from data samples (known as a training set). Machine learning

is a part of artificial intelligence: it must adapt itself to a

changing environment.

Figure 1 roughly illustrates how to choose between the main

categories of machine learning. There are three main types of

learning [1]: (a) Supervised Learning, when the training set is

labeled (i.e., it contains the attribute that the model is trying

to estimate); (b) Unsupervised Learning, when the training set

is not labeled, and (c) Reinforced Learning, when the learned

results lead to actions that change the environment.

1https://github.com/mauro0x52/mlaas
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The labels in supervised learning can be discrete or con-

tinuous, which are handled by classification and regression

algorithms respectively. Classification is used mostly for pre-

diction, pattern recognition and outlier detection, whereas

regression is used for prediction and ranking. Unsupervised

learning is known as density estimation in statistics and is

represented mainly by clustering algorithms. Classification,

regression and clustering are widely used in data mining

(applications of machine learning to large databases), whereas

reinforced learning is mostly used in decision-making prob-

lems (e.g., a computer playing chess).

Independently of the applications just described, machine

learning techniques work in a similar way: the model learns

from a training set and then becomes able to make inferences

for a new data set. This abstraction inspires the creation

of a generic architecture to support any machine learning

algorithm. This paper will focus on regression predictive

modeling, although the approach can be adapted for other

algorithms.

In predictive modeling, once rules have been extracted from

past data (the training set), the model can make accurate

prediction for new instances of data (the predictor set) if

the future is similar to the past. Spam filtering, investment

risk and energy consumption forecasting are some examples

of predictive modeling. Predictive modeling approaches in-

clude: Artificial Neural Networks for energy consumption [2],

Support Vector Machines for energy consumption [2] and K-

Nearest Neighbors for wind power [3].

Validation for predictive models has a twofold importance:

(a) choosing the most accurate algorithm and parameters; and

(b) estimating the expected error for new predictions [1]. Ac-

curacy can be related with errors, which can be calculated by

comparing the estimated results from the model with the real

measured results. A popular and reliable validation technique

for predictive models is the K-Fold Cross-Validation. The data

set is split randomly into K parts of the same size. One of

the K folds is used to calculate the errors using the other K-

1 folds to train the algorithm. The same process is repeated

K times each time using different fold for validation. This

method guarantees that the entire data set is validated with

statistical significance.

Different models can perform better or worse, depending on

the used algorithms, parameters and data set. However, there

is no such a thing as the best learning algorithm [1]. For any

algorithm, there are data sets that perform very accurately and

others that perform very poorly. For the same data set, different

algorithms can perform differently because of their own nature.

MLaaS helps the user to run multiple algorithms and compare

their performances, so the most suitable algorithm can be

chosen.

B. Service Component Architecture

A service component architecture (SCA) [4] is a modeling

specification for composing systems according to the princi-

ples of Service-Oriented Architecture (SOA).

SCA separates implementation concerns into three artifacts:

(a) components implement its business function; (b) compos-

ites assemble various components together to create business

solutions, and (c) services create an interface for remote

access to component and composite functions. In a system,

composites, services, and their relations with components are

defined in a dynamic XML descriptor file.

Because SCA is built on top of SOA, it inherits all SOA’s

advantages — for example, intrinsic interoperability, inherent

reuse, simplified architecture and solutions, and organizational

agility [5]. In addition, whereas SOA focuses on building an

architecture to design individual components, SCA focuses

on assembling multiple components into a composite and

facilitating design, implementation, and deployment. SCA sys-

tems have been successfully used, for example, in geographic

information systems [6] and smart home systems [7] [8].

This research aims to build a platform which is capable

of providing various machine learning algorithms to build

different predictive models which will run at the same time.

Adding a new algorithm must be simple. The system must

provide well-defined APIs which can be remotely accessed

over the Web by any external system. SCA provides enough

artifacts to meet these requirements.

C. Machine Learning as a Service (MLaaS)

The increasing demand for machine learning is leveraging

the emergence of new solutions. In this section, various

machine learning platforms are reviewed.

PredictionIO [9] was launched in 2013. It is an open-source

platform with an architecture that integrates multiple machine

learning processes into a distributed and horizontally scalable



system based on Hadoop. In addition, PredictionIO provides

access through web APIs and graphical user interface (GUI).

Baldominos et al. [10] also proposed a platform built on top

of Hadoop. Its implementation was capable of handling up to

30 requests at one time while maintaining a response time of

less than one second.

OpenCPU [11] is another open-source platform, launched

in 2014, that creates a Web API for R [12], a popular

statistical analysis software environment. However, because it

is practically a middleware for accessing R functions, it does

not take into account many non-functional requirements like

scalability and performance.

In the industry context, Google, Microsoft, and Amazon

have been releasing their own proprietary platforms. Google

released its Prediction API2 in 2014. Also in 2014, Microsoft

launched Azure Machine Learning3. Most recently in 2015,

Amazon released AWS Machine Learning4. Their sales can

prove that the demand exists. Unfortunately, the designs and

implementation specifications of these products are not pub-

licly available.

PredictionIO, OpenCPU, and Baldominos’ platforms are

built on top of a specific analytical tools and suffer from its

restrictions. This means less flexibility for adding new machine

learning algorithms, for data storage, and for deployment.

Although Hadoop and R are open-source projects, it is not

a trivial challenge to adapt them to a new approach. The

same happens with the industry players and their proprietary

solutions when external developers cannot have access to the

code to add new algorithms.

The MLaaS proposed in this paper focuses on predictive

modeling. As an architecture based on SCA specifications,

the architecture facilitates the addition of new algorithms, its

improvement, and its adaptation to other machine learning

applications. Even the revised platforms mentioned above

can be attached to proposed architecture to build prediction

models.

III. ARCHITECTURAL DESIGN

This section describes the proposed MLaaS architecture,

which is designed to support machine learning by gathering

data from multiple sources and building multiple models

using different algorithms. The approach focuses on predictive

modeling, but it is adaptable to other applications.

The scope of this architecture deals with the machine

learning itself, ignoring the front-end aspects such as the user

interface. In a Model-View-Controller (MVC) perspective, this

architecture focus on the model layer while the controller and

view layers are only implemented as part of the case study.

The SCA diagram in Figure 2 depicts a high level overview

of the architecture.

The Modeler composite is responsible for building new

predictive models. A predictive model is an instance of Model-

µ composite, running a specific algorithm. The cardinality 0..N

2https://cloud.google.com/predictio
3http://azure.microsoft.com/en-us/services/machine-learning
4http://aws.amazon.com/pt/machine-learning

shows that MLaaS can run multiples instances of Model-µ

composite at the same time, through the Build, Train, Test and

Predict services. The model property shows that each instance

can run with different settings.

The architecture works as follows: the Machine Learning

as a Service composite receives raw data from data sources

through its Send Training Set service. First, data are received

and prepared by the Data Gatherer composite. The Modeler

composite then receives the prepared data to train a Model-

µ instance. When receiving a predictor set from the Send

Predictor Set service, the Model-µ instance calculates the

prediction and serves it to external modules through the Get

Prediction service.

The specified services provide well defined interfaces that

increase the architecture’s flexibility to new inputs and outputs:

the Send Training Set and Send Predictor Set services enable

the inclusion of various data sources that will be merged by

Data Gatherer; the Build, Train, Test and Predict consumers

enable the architecture to be pluggable with different Model-

µ instances; and the Get Report, Get Test and Get Prediction

services enable different user interfaces and external systems

to consume the data.

The following subsections describe each of the composites

shown in Figures 2 and 3.

A. Data Gatherer Composite

The Data Gatherer composite is responsible for receiving

data, pre-processing it, and feeding it to the model. One

instance is created for each Send Training Set, Send Test Set

or Send Predictor Set services, so that they can run in parallel

and independently. The Data Gatherer composite is made up

of three components arranged in a pipeline as illustrated in

Figure 3; they can be described as follows:

• The Merger component merges all received data (single

data points or batches) from different data sources (e.g.,

sensors or databases). Data sets with different schema are

joined into a single multicolumn schema by related at-

tributes (e.g., time-stamp for time-series data, categories,

identifiers, etc). When finished, it forwards the data to

the Outliers Remover component.

• The Outliers Remover component removes outliers (e.g.,

missing values, zeros, extremely high values, etc.). Once

finished, it forwards the cleaned data to the Pre-Processor

component.

• The Pre-Processor component modifies the data set by

re-sampling, creating columns, getting the maximum,

minimum, or average values, etc. When it is finished, it

sends the pre-processed data to the destination component

in the Modeler composite.

B. Modeler Composite

This is the core composite in the architecture, because

it is responsible for building, training, testing, and running

the Model-µ instances. It is made up of five components as

illustrated in Figure 2, which can be described as follows:
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• The Builder component receives from Build Model the

parameters (e.g., algorithm and property values) to build

and deploy a new model (a Model-µ instance) for the

Build consumer. When the instance is created, Builder

sends the model identifier back to the consumer and

forwards it to the Learner and Predictor components.

• The Learner component receives the pre-processed data

from the Train service and forwards them to the destined

Model-µ instance. When it receives the training report

from the Model-µ instance through the Train consumer

callback, it forwards it to Reports Storage.

• The Reports Storage component receives the report from

the Learner component through the Store Report service

and serves it to external consumers through the Get

Report service.

• The Predictor component receives the predictor set from

the Predict service and forwards it to the Model through

the Predict consumer, which will return the prediction

through a callback. The prediction will be returned to

the Predict requester and also forwarded to Predictions

Storage. Predictor is also responsible for forwarding the

testing set.

• The Predictions Storage component receives and stores

the predictions and tests from the Store Prediction and

Store Test services and provides them to external con-

sumers through the Get Prediction and Get Test services.

C. Model-µ Composite

The Model-µ composite is an architecture for building

different models. It holds all the implemented algorithms

source codes (e.g., Multilayer Perceptron), but only one must

be loaded. The algorithm to be loaded and its parameters

should be specified when calling the Build service. In other

words, for each Build Model service request, a new instance

of a Model-µ composite is created.

The model property describes how the model needs to be

built and executed. It is composed of four sub-properties:

modelId: is the model unique identifier, algorithm: specifies

which algorithm is going to be used by the model, parameters:

adjust the algorithm behavior, and k: the number of folds to

use in the K-Fold Cross-Validation.

The Train, Test, and Predict service specifications enable

the Modeler composite to interact with any Model-µ instance.

The Model-µ composite is made up of four components,

which can be described as follows:

• The Constructor component is responsible for loading the

right algorithm and setting the properties of the model in-



stance using the Build service request parameters. When

the instance is set up and running, it is ready to provide

Train, Test and Predict services.

• The Trainer component receives the training set from the

Train service and forwards it to Validator and Predictor

components through the Validate and Train services re-

spectively. When validation is finished, the Trainer com-

ponent receives the validation report from the Validate

service callback and returns it to the consumer through

Train service callback.

• The Validator component receives the training set from

the Validate service, feeds it to the model and validates

the model (e.g., K-Fold Cross-Validation), returning a

report.

• The Predictor component receives the training set from

the Train service to feed the model for future prediction

requests. When receiving predictor sets through the Pre-

dict service, it calculates and returns the predictions.

The implemented algorithms source code must be responsi-

ble only for training and predicting. Testing and validating

do not depend on the algorithm itself, but on the results,

which can be found by using the algorithm’s training and pre-

dicting functions. Therefore, testing and validating functions

are responsibilities of Validator and Predictor components,

increasing standardization and reducing the effort when adding

a new algorithm.

IV. MLAAS PROCESS

The diagram in Figure 4 illustrates the main interaction

flow between the Consumer, the Modeler and the Model-

µ composites. To simplify, the earlier stage related to the

Data Gatherer composite is ignored by assuming that data

have already been pre-processed. The term Consumer in the

following discussion refers to a generic consumer using the

Modeler component.

The main flow is divided into three stages:

• Building: it starts with the Consumer requesting the

Builder component to build a new model through the

Build Model service. The Builder component will then

create and configure a new Model-µ instance. When the

building operation is complete, the Builder component

sends the new model identifier to the Learner and Pre-

dictor components and to the Consumer.

• Training: the Consumer is now able to train the instan-

tiated model. It sends the already pre-processed training

set to the Learner component through the Train service,

which will forward the training set to the Trainer com-

ponent of the Model-µ instance. The Trainer component

will make two requests at the same time: one to the

Validator component to validate the model (e.g., K-Fold

Cross-Validation) and another to the Predictor compo-

nent to be trained for future prediction requests. When

validation is complete, the Validator component responds

to Trainer component with the validation report, which

contains information such as error measurements. The
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report will be stored into Reports Storage component for

future retrievals.

• Predicting: the model is ready to predict. The Consumer

sends the predictor set to the Modeler composite’s Pre-

dictor component, which will forward to the Model-µ

instance’s Predictor component, where the prediction is

calculated and returned to the Modeler. The predictions

are sent to the Predictions Storage to be stored and

served.

In Training and Predicting stages, the Consumer receives

the report and prediction identifiers as soon as the Learner

and Predictor components receive the request, so it is not

necessary to keep the connection while the entire request is

be processed. When the report or prediction is ready, it can

be accessed from Reports Storage and Predictions Storage

components, using the specific identifier.

A Training Stage can also be considered and works similarly

to the Predicting Stage. The main difference is the final result,

which contains testing information such as errors.



V. CASE STUDY

The goal of this case study is to forecast energy demand

based on past electricity demand data data for an office build-

ing, using different machine learning algorithms and finding

the best-performing one. This experiment focuses mainly on

the Modeler and Model-µ composites.

The proposed architecture was implemented using elec-

tricity demand data from Powersmiths’ office building, in

Brampton, ON, Canada. The data set were pre-processed

before feeding them to the system. This data set was made up

of 13 daily attributes: the energy demand peak, six weather

attributes and six time attributes. The six weather attributes

were: maximum temperature, minimum temperature, average

temperature, maximum humidity, minimum humidity and av-

erage humidity. The six time attributes were: year, month

(from 1 to 12), day of the month (from 1 to 31), day of the

year (from 0 to 365), weekDay (from 0 for Sunday to 6 for

Saturday) and dayType (0 for a business day, 1 for a weekend

and 2 for a holiday).

The system was built using Node.js because of its ease and

agility for coding and deploying Web services and handling

JSON. Because there are currently no SCA frameworks for

Node.js, one had to be implemented. JSON was used for

Web service communication, data storage and the SCA artifact

descriptor file. A simple user interface was developed to

generate effective illustrations of the results obtained.

The source code is available in a public repository 5.

A. Algorithms

To evaluate the architectural flexibility of running different

machine learning models at the same time, Model-µ composite

was implemented to support the following algorithms:

• Multi-Layer Perceptron (MLP): one of the most used

techniques when evaluating machine learning models, and

one of the most used for electrical consumption problems

[2]. It was implemented using the Synaptic package6.

• Support Vector Regression (SVR): also one of the most

used techniques for electrical consumption problems [2].

It was implemented using the Node-SVM package7.

• K-Nearest Neighbors (KNN): easy to understand, to code,

and to debug. This algorithm was coded for this experi-

ment.

A generic Algorithm class was coded under object-oriented

programming structure, defining the standard interface for

train and predict function calls. A new algorithm can be

implemented simply by inheriting the Algorithm class and

making minor adaptations. In this case study, the KNN Al-

gorithm class was implemented first to test and validate the

Model-µ composite. Later, using the same code structure,

MLP Algorithm and SVR Algorithm classes were coded and

imported into Model-µ composite.

5https://github.com/mauro0x52/mlaas
6http://synaptic.juancazala.com
7https://github.com/nicolaspanel/node-svm

When a Model-µ instance is built, the algorithm with the

parameters (both specified in the model property) is loaded.

The test and validate functions are performed by Predictor

and Validation components respectively, and not by the Algo-

rithm class. Both functions use the results from Algorithm’s

train and predict calls.

The Validator component implements de K-Fold Cross-

Validation method to validate the model, calculating the mean

absolute errors and the mean square errors. The number of

folds K can be defined to the model property when building

a new model.

The architectural design and the dynamic artifacts descriptor

file make it possible to create new Model-µ instances dynam-

ically. After the new Model-µ instance is deployed and the

artifacts descriptor file is updated, the new Model-µ instance

will be available without the need to recompile or restart the

system.

B. Results

Three different models were created by instantiating the

Model-µ composite. Table I shows the parameters used for

each model. The models were requested to predict using a

test set, which contains all the 13 attributes including the

real measured daily electricity demand peaks. For the K-

Fold Cross-Validation, K = 10 was fixed for all the models.

The models were also requested to run a prediction using a

different predictor set.

Figure 5 shows a screenshot of the MLaaS graphical user

interface (GUI). Through the navigation bar, the user can

access models (list, create and remove), train, test and predict

models and consult a graphical summary of the results. The

first row of charts shows the validation performance, with

three graphics showing the mean absolute errors, mean square

errors, and the execution time for each of the three models.

The second row shows the test performance, comparing the

mean absolute errors, mean square errors, and execution time

for the three models. The third row is a chart comparing

the three models’ test results with the real measured data

from the test set. Finally, the last row shows the results of a

prediction.

TABLE I: Model Parameters

Algorithm Parameter Value

KNN
k

max distance

10

2

MLP

nodes per layer

learning rate

max iterations

min error

12, 14, 1

0.1

1000

0.0001

SVR

gamma

c

epsilon

retained variance

0.125, 0.5, 1

8, 16, 32

0.001, 0.125, 0.5

0.995



Fig. 5: MLaaS screenshot comparing KNN, MLP, and SVR.

The SVR model showed better accuracy – it had the

lowest mean absolute errors and mean square errors – both

in validation and in testing. Although the KNN model had

better accuracy in validation than the MLP model, it had the

worse mean square error in testing.

The KNN model performed much faster during validation

and could finish executing even while the SVR and MLP mod-

els were still running. The SVR model finished the validation

last. On the other hand, during testing, MLP model finished

first and KNN model was the last. In other words, one model’s

processing did not block the CPU as it would have on a single-

threaded server.

VI. CONCLUSIONS

With the growing amount of data available, companies and

researchers are demanding feasible and affordable ways to

extract knowledge from all this data. This paper has presented

a novel architecture for a scalable, flexible, and non-blocking

machine learning as a service based on SCA and focusing on

predictive modeling. The proposed architecture can support

multiple data sources and create various models with different

algorithms, parameters, and training sets.

To prove the concept, the system was built to predict

electricity demand using real-world data. Once the main

architecture is working and at least one algorithm coded, it is

simple to implement other algorithms. It is possible to execute

multiple models concurrently.

For future research, MLaaS can be adapted to machine

learning applications other than predictive modeling, for ex-

ample, pattern recognition, outlier detection, ranking and clus-

tering.
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