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Abstract
In the field of diagnosis and treatment planning of Coronavirus disease 2019 (COVID-19), accurate infected area segmentation
is challenging due to the significant variations in the COVID-19 lesion size, shape, and position, boundary ambiguity, as well
as complex structure. To bridge these gaps, this study presents a robust deep learning model based on a novel multi-scale
contextual information fusion strategy, called Multi-Level Context Attentional Feature Fusion (MLCA2F), which consists of
the Multi-Scale Context-Attention Network (MSCA-Net) blocks for segmenting COVID-19 lesions from Computed Tomog-
raphy (CT) images. Unlike the previous classical deep learning models, the MSCA-Net integrates Multi-Scale Contextual
Feature Fusion (MC2F) and Multi-Context Attentional Feature (MCAF) to learn more lesion details and guide the model to
estimate the position of the boundary of infected regions, respectively. Practically, extensive experiments are performed on
the Kaggle CT dataset to explore the optimal structure of MLCA2F. In comparison with the current state-of-the-art meth-
ods, the experiments show that the proposed methodology provides efficient results. Therefore, we can conclude that the
MLCA2F framework has the potential to dramatically improve the conventional segmentation methods for assisting clinical
decision-making.

Keywords COVID-19 pneumonia · Segmentation ·Context attentional features ·Multi-level fusion ·Contextual information ·
Multi-scale features

1 Introduction

According to the recent survey [1], COVID-19 is ranked
among the largest global public health crisis. Due to the
influence of the virus, in the past few months, a high num-
ber of mortalities have been triggered over the world [2].
Currently, many recent clinical studies have reported that
COVID-19 lesion segmentation fromCT images is an impor-
tant step in the clinical treatment assessment [3,4] and can be
beneficial in this context due to the presence of some promi-
nent features [5]. However, finding an accurate method for
COVID-19 lesion segmentation from CT images is a very
challenging task due to the large variations in the COVID-19
lesion size, shape, and position, boundary ambiguity, as well
as complex structure [6,7].
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More recently, convolutional neural network (CNN) archi-
tectures have also been extended for medical image segmen-
tation [8,9]. They have shown remarkable performance in
segmentation tasks of medical images due to high represen-
tation power, filter sharing properties, and fast interference.
However, research on COVID-19 lesion segmentation using
CNN is still relatively scarce and often suffers from false
positives. Following the above discussion, the main inten-
tion of this paper is to implement a segmentation algorithm
for clinical decision-making based on CNN architectures to
copewith this pandemic issue. Themain contributions of this
study can be summarized as follows:

(1) It introduces a new framework, called MLCA2F, that
integrates three fused MSCA-Net units for an effective
COVID-19 lesion segmentation with a high focus on
small and crucial lesion boundaries.

(2) It proposes an effective MC2F paradigm to capture more
specific and effective contextual information.

(3) It designs a novel MCAF module that contributes to
improving the performance of our segmentation system
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by forcing the MSCA-Net model to focus on COVID-19
lesions in CT images.

(4) It presents a series of comparative experiments to validate
the effectiveness of MLCA2F.

The remainder of this paper is organized as follows: In
Sect. 2, we describe the novel methods applied for COVID-
19 lesion segmentation. In Sect. 3, we detail the proposed
approach. Then, we present the results of experiments real-
ized on the Kaggle CT dataset in Sect. 4 and we discuss in
detail the results of our proposed method in Sect. 5. Finally,
we conclude this paper in Sect. 6.

2 Related works

Currently, deep learning models have been applied in var-
ious image processing tasks including medical imaging
fields and showed promising performance [10]. For instance,
pixel-wise classification-based CNNmethods have achieved
state-of-the-art performances in COVID-19 image segmen-
tation [8]. In most cases, this is done by the U-Net algorithm
which has been extensively studied over the past few years
[11]. Khalifa et al. [12] proposed a standard U-Net archi-
tecture for COVID-19 lesions detection in chest CT scans.
The same idea has been explored in [13], by introducing
a U-Net architecture to realize accurate COVID-19 region
localization in CT images. Chen et al. [5] proposed an vari-
ant of U-Net, called U-Net++ [14]. Unlike U-Net, U-Net++
consists of an encoder and decoder connecting through a
series of nested dense convolutional blocks for detecting
COVID-19 lesions on CT scans. Inspired by the success
of attention-based CNN approaches in computer vision [8],
researchers have proposed various methods to extend the use
of the attentionmechanism to automatically identifyCOVID-
19-infected areas from chest CT images. Kuchana et al. [6]
proposed the attention gates integrated into standard U-Net
architecture for semantic segmentation ofCOVID-19 anoma-
lies present in the CT scans of patients. Additionally, Zhou
et al. [7] modeled the spatial and channel attention mod-
ules for automatic COVID-19 CT segmentation using U-Net
to capture rich contextual relationships. Moreover, COVID-
19 lesion segmentation from CT images has been also
approached byFan et al. [3]where the parallel partial decoder
combined with a reverse attention module was adopted to
establish the relationship between areas and boundary cues.
Recently, region-based CNN methods have gained a lot of
interest in medical imaging [9]. Mask R-CNN [15], which is
considered as an instance of region-based CNNs, represents
a significant potential in COVID-19 structure delineation.
Ter-Sarkisov [2] performed COVID-19 lesion segmentation
in CT images using Mask R-CNN to preserve the true region
within the bounding box. Lately, multi-scale CNN-based

approaches are broadly used formedical image segmentation
[16] which can capture complementary contextual informa-
tion [17]. In the COVID-19 lesion segmentation context,
multi-scale CNN schemes have currently been addressed
by only a few research works. Zheng et al. [4] presented
a newmulti-scale discriminative approach, called MSD-Net.
In theMSD-Net, the authors proposed a pyramid convolution
block, channel attention block, and residual refinement block
for the accurate segmentation of COVID-19 lesions from CT
images into three categories.

As a matter of fact, multi-scale contextual information
learning is a crucial factor in effectively recovering accurate
boundaries, extracting complex regions, and fulfilling better
semantic segmentation performance. However, in the liter-
ature, only a restricted number of researches are available
using multi-scale CNN for COVID-19 lesion segmentation
fromCT images. In view of the scarce existing studies on this
domain, a detailed plan will be described in a fair amount of
detail to capture fine details without losing any spatial infor-
mation.

3 Proposed approach

As illustrated in Fig. 1, in this section, we first introduce the
whole network architecture and thenpresent the detail of each
block. The proposed MLCA2F is developed in three levels
each containing oneMSCA-Net fused with the original input
to improve the segmentation performance. EveryMSCA-Net
block is built upon the six modules of MC2F and MCAF to
better delineate the COVID-19 regions. The specific ideas of
the proposed framework are described as follows.

3.1 Data pre-processing

Pre-processing of the digital CT data is performed in two
stages, including data size normalization and intensity cor-
rection to facilitate the application of MLCA2F for COVID-
19 lesion segmentation. The resolution of CT images varies
from 401 × 630 to 630 × 630, which requires a high cost
of computation. To overcome this limitation, it is neces-
sary to rescale the CT images. We first cropped the center
area of the lung region and then adopt the pyramidal down-
sampling process as indicated in [18] to resize all images to
256 × 256 pixels. The second pre-processing technique is
based on adaptive bi-histogram equalization [19] algorithm
to boost image brightness.

3.2 Multi-scale context-attention network
(MSCA-Net)

The main component of our proposed framework is the
MSCA-Net block that localizes the area ofCOVID-19 lesions
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Fig. 1 The overview of the proposed MLCA2F framework

in CT images. One of the key advantages of MSCA-Net
is that it can be trained to directly focus on the target
regions, resolve object ambiguities, and capture contextual
information. It adopts the encoder Ei and decoder Di struc-
tures, where i ∈ {1,2,3,4,5,6}, for semantic segmentation,
equipped with MC2F and MCAF modules. The encoder and
decoder components consist of six convolution blocks, Ci ,
each containing two 3 × 3 convolution layers followed by a
ReLU activation function, group normalization [20], while
the seventh convolution block is a transitional block between
encoder and decoder. The output shape of each convolutional
group is shown in Table 1. To progressively reduce the reso-
lution of feature maps, the group normalization output of the
encoder component is fed into the 2 × 2 max-pooling layer.
Broadly, the encoder is the process of capturing the latent fea-
ture representation from input images, whereas the decoder
path is designed in a way to upsample the feature maps and
force the model to focus on infected areas in CT images
through the cross-connections [21]. For accurate COVID-19
lesion segmentation, our frameworkmainly has three innova-
tivemechanisms, the first is integrating theMC2Fcomponent
to learn more COVID-19 lesion details and capture contex-

Table 1 Output shape of each
convolutional group

Layers Output shape

Input 256 × 256 × 1

C1 256 × 256 × 8

C2 128 × 128 × 16

C3 64 × 64 × 24

C4 32 × 32 × 32

C5 16 × 16 × 128

C6 8 × 8 × 256

C7 4 × 4 × 512

tual information, the second is using the MCAF module to
highlight the salient features, while the third is applying the
fused MSCA-Net blocks through the element-wise maxi-
mum layer to significantly boost the performance.

3.3 Multi-scale contextual feature fusion (MC2F)

Considering that a single-scale feature model cannot high-
light the contextual information and learn more COVID-19
lesion details, due to the large variations in the COVID-19
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Fig. 2 The overview of the proposed MC2F architecture

lesion size and shape, boundary ambiguity, as well as com-
plex structure, we design a Multi-Scale Contextual Feature
Fusion (MC2F). Taking advantage of the fact that the multi-
scale features provide semantically different information,
MC2F captures the detailed features from different receptive
fields that are useful for locating boundaries. Specifically, in
eachMC2Fblock, four scales of convolutional layerswith the
size of [3×3], [5×5], [7×7], and [9×9] are involved.Within
each scale structure, we integrate three convolutional layers
such that the output of each layer is passed to theScaledExpo-
nential Linear Unit (SELU) activation function [22]. After
that, each feature is fed to a Local Response Normalization
(LRN) [23]. The output of the three LRN layers is later fused
through the element-wise multiplication layer [24]. The four

parallel scale paths are connected via a global element-wise
multiplication layer. Finally, the output of the element-wise
multiplication layer is fed into a 1×1 convolution layer to get
the same MC2F input depth. The arrangement and descrip-
tion of the MC2F block are shown in Fig. 2. The constructed
scale blocks are implemented in a similar structure and built
by the same number of kernels (n) and stride (S), and they
differ essentially from the kernel shape [width×height]×n,
padding (P), LRN and SELU parameters. Table 2 shows the
parameters specification of MC2F block.

3.4 Multi-context attentional feature (MCAF)

Since the current COVID-19 lesion segmentation methods
are facing challenges posed by varying shapes, sizes, and
positions of the infected area [6,7], we propose a multi-
context attentional feature mechanism, called MCAF, which
guides the MLCA2F model to learn more discriminative
features for separating the COVID-19 and non-COVID-19
pixels, and then, to estimate the position of the more com-
plex regions in the whole CT image. As shown in Fig. 3, the
proposed MCAF adopts three typical fusion layers, namely
L2 normalization fusion approach [25], and element-wise
multiplication and addition layers [24]. Specifically, in the
first, the output of Ei is fed to the first convolutional layer.
To generate the layers with the same Ei depth, the Di+1 goes
through 1×1 convolution layer.Moreover, a bilinear interpo-
lation [26] is introduced to upsample the decoded features,
Di+1, and obtain the same size resolution as the output of
Ei . The output of the bilinear interpolation layer is passed to
the second convolutional layer. The fused Ei and upsampled
Di+1 features fed into the third convolutional layer. Note
that, to keep the same predefined depth, the convolutional
layers are used with the same kernel shape as Ci . After that,
the obtained features are directly passed through an element-
wise sigmoid function to generate multi-contextual attentive

Table 2 Structure parameters of
MC2F block

Scale Layer Kernel shape Specifications

Conv [3 × 3] × 512 (P = 1, S = 1)

Scale-1 SELU – (λ = 1.04, α = 1.58)

LRN – (k = 1, α = 10−2, β = 0.62)

Conv [5 × 5] × 512 (P = 2, S = 1)

Scale-2 SELU – (λ = 1.02, α = 1.63)

LRN – (k = 3, α = 10−5, β = 0.95)

Conv [7 × 7] × 512 (P = 3, S = 1)

Scale-3 SELU – (λ = 1.09, α = 1.72)

LRN – (k = 2, α = 10−4, β = 0.84)

Conv [9 × 9] × 512 (P = 4, S = 1)

Scale-4 SELU – (λ = 1.08, α = 1.35)

LRN – (k = 2, α = 10−5, β = 0.73)
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Fig. 3 The overview of the proposed MCAF architecture

feature maps. At the end ofMCAF, the second L2 normaliza-
tion fusion concatenates the output of the multi-contextual
attentive features with the feature maps extracted from the
upsampled decoding path to recover the COVID-19 lesion
details.

4 Experimental results

In this section, we validate the proposedmethod on a publicly
available CT dataset. First, we introduce the CT images used
to assess the segmentation performance and the implementa-
tion details. Then, we highlight the details of the findings and
report the performance comparison with the state-of-the-art
methods.

4.1 CT image acquisition

In this study, the chest axial CT dataset is collected fromKag-
gle [27]which is a combinationof [28,29] and [30]. It consists
of 20 full-chest 3D CT scans from different patients diag-
nosedwithCOVID-19.We extracted 3520 2DCT axial slices
from the 3D volumes. All CT slices came with a correspond-
ing ground truth defined by the radiologists and physicians.
The CT dataset was divided into 60% for training, 20% for
validation, and 20% for testing.

4.2 Implementation details

The proposed MLCA2F system was trained using Adaptive
Moment Estimation (Adam) algorithm [31] with learning
rate α = 10−5, first moment-decay β1 = 0.9 and second
moment-decay β2 = 0.999 using he_normal algorithm [32]
for weight initialization. The optimization ran for 200 epochs
with a batch size of 64. All experiments were conducted on
a desktop with an Intel Xeon E5-1603 v4 Quad-Core, 2.80
GHz processor base frequency, 10 MB cache, 16 GB RAM,
and a single NVIDIA GTX Titan X GPU with 12 GB of
installed memory. Our network was implemented using the
TensorFlow framework and Keras as backend with Python 3
programming language. The training took 21 h and 46 min.
For testing, on average, it took 6 h and 33 min.

4.3 Segmentation results

In this section, a series of comparative experiments are con-
ducted to select the optimal network structure. To evaluate
the segmentation results, we follow previous works [33,34].
Then, we validated the MLCA2F framework through the
following metrics: Accuracy (Acc), Sensitivity (Sen), Speci-
ficity (Spe), Dice Coefficient (DC), also called F1-measure,
and Jaccard score (JC) compared with the corresponding
ground truths. The experiments are mainly divided into two
parts. The first part determines the best quality segmentation
network by the absence of the MC2F module, indicated by
the sign “-”, while the second part is evaluating the proposed
approach by integrating the MC2F block, which is denoted
by the sign “+”. Each part is evaluated as a function of the
Leveln , where n ∈ {1,2,3}. During this process, the use of
the MC2F blocks improves the segmentation performance,
as shown in Table 3. The gain of the MLCA2F at Level3
with MC2F blocks compared to the segmentation results of
the model without the MC2F modules at Level1 is 8.20%,
3.70%, 12.70%, 7.72%, and 14.04% in terms of Acc, Sen,
Spe, DC, and JC, respectively. Thus, the MC2F block makes
an important contribution to the proposedmethod.Moreover,
we also notice that the segmentation results of the MLCA2F
at Level3 are more precise than the MLCA2F at Level1 and
Level2. To evaluate the visual results, we displayed in Fig. 4

Table 3 Quantitative results of
the different MLCA2F
components

−/+ MC2F Leveln Acc (%) Sen (%) Spe (%) DC (%) JC (%)

Level1 90.63 96.06 85.21 91.12 83.68

− Level2 90.80 88.96 92.65 90.63 82.87

Level3 91.45 92.27 90.64 91.52 84.38

Level1 95.71 94.47 96.96 95.66 91.69

+ Level2 96.58 99.71 93.46 96.69 93.59

Level3 98.83 99.76 97.91 98.84 97.72

The bold values signify the results obtained by the proposed approach
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a b c

Fig. 4 Examples of proposed COVID-19 lesion segmentation on three
representative images. a Input images. b Ground truth images, c Pro-
posed method

the COVID-19 lesion segmentation results of our approach
on three representative CT images. It is remarkable that the
network learned the detailed features fromdifferent receptive
fields in the MLCA2F framework. Hence, we can conclude
that these three cooperative MSCA-Net models are perform-
ing better in segmenting COVID-19 lesions.

4.4 Comparison with the state-of-the-art

Since the research on the Kaggle CT dataset is still rela-
tively scarce,we have implemented the recent state-of-the-art
image segmentation methods to demonstrate the effective-
ness of our solution. Therefore, we compare our method
against six segmentation approaches, namely U-Net [11], U-
Net++ [14], Attention U-Net (AU-Net) [8], Mask R-CNN
[15], Multi-Scale Discriminative Network (MSD-Net)[4],
and Multi-scale Context-attention Network (MC-Net) [16].

In Table 4, we provide the quantitative results with respect to
the five evaluation metrics. We observe from the results that
MLCA2F outperforms the recent state-of-the-art methods by
a largemargin over all fivemetrics. Figure 5 showsvisual seg-
mentation results on the lung dataset obtained by MLCA2F
and the other state-of-the-art methods. We can see from the
figure that the proposedMLCA2F framework ismore precise
than the other methods, which can capture detailed boundary
information.

5 Discussion

In this paper, we present an optimal data representation
framework for COVID-19 lesion segmentation from CT
images. Motivated by the outstanding performance of multi-
scale CNN-based methods, the MLCA2F architecture is
proposed to cope with the large variations in the COVID-19
lesion size and shape, differences in infected area position,
boundary ambiguity, and complex structure problem. To bet-
ter demonstrate the effectiveness of the proposed framework,
two main study axes are presented. In the first axis, we have
analyzed the performance results with the change in the num-
ber of MSCA-Net blocks, denoted by Laveln . The second
study axis is conducted to demonstrate the potentiality of the
MC2F module. As shown in Table 3, the MC2F approach
has demonstrated outstanding performance for the COVID-
19 lesion segmentation. In addition, by integrating theMC2F
module, as the number of MSCA-Net blocks increases, the
improvements of MLCA2F increment significantly.

To confirm the quality of the MLCA2F algorithm, the
experimental results are compared with six previous works.
These methods can be broadly categorized into four classes,
namely pixel-wise classification-based CNN methods [11,
14], attention-based CNNs [8], region-based CNN models
[15], and multi-scale CNNmethods [4,16]. As clearly shown
in Table 4, the proposed MLCA2F achieves the best over-
all performance and consistently outperforms all the other
approaches on the Kaggle CT dataset by a large margin.
Furthermore, as can be seen from Fig. 5, the COVID-19
lesions segmented by U-Net [11] and U-Net++ [14] have

Table 4 Comparison between
the proposed method and other
algorithms using the Kaggle CT
image dataset

Methods Acc (%) Sen (%) Spe (%) DC (%) JC (%)

U-Net [11] 86.90 88.19 85.62 87.07 77.10

U-Net++ [14] 87.45 86.05 88.85 87.28 77.43

AU-Net [8] 88.16 85.44 90.89 87.83 78.31

Mask R-CNN [15] 92.07 90.00 94.14 91.90 85.03

MSD-Net [4] 94.25 92.01 96.50 94.12 88.90

MC-Net [16] 95.10 94.68 95.53 95.08 90.63

MLCA2F (Ours) 98.83 99.76 97.91 98.84 97.72

The bold values signify the results obtained by the proposed approach

123



Signal, Image and Video Processing (2023) 17:1181–1188 1187

Original image U-Net U-Net++ AU-Net Mask R-CNN MSD-Net MC-Net MLCA2F Ground truth

Fig. 5 Visual segmentation comparisons of MLCA2F with six state-of-the-art methods on the Kaggle CT image dataset

a poor segmentation effect and the small regions are not
identified, while the CT images segmented by AU-Net [8]
possess an incomplete shape of the lesion. Moreover, it can
be observed that Mask R-CNN [15] completely fails to seg-
ment small tissues.MSD-Net [4] andMC-Net [16] can detect
most COVID-19 areas. However, the protruded parts in the
boundaries of the COVID-19 regions are not covered cor-
rectly and some fine details are missed. By contrast, our
approach successfully captures fine structures, extracts more
complex regions, and detects the complete shapes.

According to these experimental outcomes, we gain three
significant reports. Firstly, it is noticeable that the single
MSCA-Net stream without fusion is not sufficient for accu-
rate infected area segmentation. Secondly, these findings
reaffirm the superiority of the MC2F module which is more
appropriate to preserve information. Finally, the experiments
on the CT dataset reveal that using multi-level fusion com-
bined with multi-scale contextual features can automatically
focus on critical information, harvest discriminatory fea-
tures, and strengthen the discriminative representation for
COVID-19 lesion segmentation compared with the existing
conventional segmentation frameworks.

6 Conclusion

In this study, we propose a novel deep learning model,
called MLCA2F, which integrates three fused MSCA-Net
units for COVID-19 lesion segmentation from CT scans.
The MSCA-Net consists of two robust blocks: MC2F and
MCAF.TheMC2Fmodule is implemented to capture smooth
lesion details, while the MCAF block is modeled to force
the MSCA-Net model to focus on COVID-19 lesions in CT
images. Furthermore, the repetitive MSCA-Net blocks are
introduced to handle the complex structure of COVID-19
lesions and significantly boost the performance. To demon-
strate the effectiveness of the proposedMLCA2F framework,

several experiments are conducted on the Kaggle CT dataset.
The results of the MLCA2F segmentation experiment show
that our method has better semantically consistent segmen-
tation than the existing methods. In conclusion, the proposed
segmentationmethod is beneficial for the automatic COVID-
19 lesion segmentation study. In the future, we will further
collect more challenging images, improve the proposed
method by taking into consideration multi-modal analysis,
and evaluate our approach on more datasets.
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