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Abstract

In this paper, we address the 3D object detection task by

capturing multi-level contextual information with the self-

attention mechanism and multi-scale feature fusion. Most

existing 3D object detection methods recognize objects in-

dividually, without giving any consideration on contextual

information between these objects. Comparatively, we pro-

pose Multi-Level Context VoteNet (MLCVNet) to recognize

3D objects correlatively, building on the state-of-the-art

VoteNet. We introduce three context modules into the voting

and classifying stages of VoteNet to encode contextual in-

formation at different levels. Specifically, a Patch-to-Patch

Context (PPC) module is employed to capture contextual

information between the point patches, before voting for

their corresponding object centroid points. Subsequently,

an Object-to-Object Context (OOC) module is incorporated

before the proposal and classification stage, to capture the

contextual information between object candidates. Finally,

a Global Scene Context (GSC) module is designed to learn

the global scene context. We demonstrate these by captur-

ing contextual information at patch, object and scene lev-

els. Our method is an effective way to promote detection

accuracy, achieving new state-of-the-art detection perfor-

mance on challenging 3D object detection datasets, i.e.,

SUN RGBD and ScanNet. We also release our code at

https://github.com/NUAAXQ/MLCVNet.

1. Introduction

3D object detection is becoming an active research topic

in both computer vision and computer graphics. Com-

pared to 2D object detection in RGB images, predicting

3D bounding boxes in real world environments captured by

point clouds is more essential for many tasks [1] such as in-

door robot navigation [2], robot grasping [3], etc. However,
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Figure 1. Illustration of the importance of multi-level contextual

information for 3D object detection from point cloud data. (a) It is

hard to recognize the object when the point cloud is shown inde-

pendently. (b)-(d) When the surrounding environment information

is given, we can then recognize the chair easily. In fact, unlike gen-

eral object detection in open scenes, indoor scenes usually contain

strong context constraints, which can be utilized in indoor scene

understanding tasks such as 3D object detection.

the unstructured data in point clouds makes the detection

more challenging than in 2D. In particular, the popular con-

volutional neural networks (CNNs), which are highly suc-

cessful in 2D object detection, are difficult to be applied to

point clouds directly.

Growing interests have been attracted to tackle this chal-

lenge. With the emergence of deep 3D points processing

networks, such as [4, 5], several deep learning based 3D

object detection works have been proposed recently to de-

tect objects directly from 3D point clouds [6, 7]. The most

recent work VoteNet [7] proposed an end-to-end 3D object

detection network on the basis of Hough voting. VoteNet

transfers the traditional Hough voting procedure into a re-
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Figure 2. Comparison of architectures between VoteNet [7] and

the proposed MLCVNet. Three sub-modules are integrated to cap-

ture the multi-level contextual information in point cloud data. (a)

patch level context module; (b) object level context module; (c)

global scene context module.

gression problem implemented by a deep network, and sam-

ples a number of seed points from the input point cloud to

generate patches voting for potential object centers. The

voted centers are then used to estimate the 3D bounding

boxes. The voting strategy enables VoteNet to significantly

reduce the searching space and achieve the state-of-the-art

results in several benchmark datasets. However, treating ev-

ery point patch and object individually, VoteNet lacks the

consideration of the relationships between different objects

and between objects and the scene they belong to, which

limits its detection accuracy.

An example can be seen in Fig. 1. Point clouds, cap-

tured by e.g. depth cameras, often contain noisy and miss-

ing data. This together with indoor occlusions makes it dif-

ficult even for humans to recognize what and where an ob-

ject is in Fig. 1(a). Nevertheless, considering the surround-

ing contextual information in Figs. 1(b-d), it is much easier

to recognize it is a chair given the surrounding chairs and

the table in the dining room scene. Actually, the represen-

tation of a scanned point set could be ambiguous when it

is presented individually, due to lack of color appearance

and data missing problems. Therefore, we argue that in-

door depth scans are often so occluded that contexts could

even play a more important role in recognizing objects than

the point data itself. This contextual information has been

demonstrated to be helpful in a variety of computer vision

tasks, including object detection [8, 9], image semantic seg-

mentation [10, 11] and 3D scene understanding [12, 13]. In

this paper, we show how to leverage the contextual infor-

mation in 3D scenes to boost the performance of 3D object

detection from point clouds.

In our view, contextual information for 3D object detec-

tion consists of multiple levels. At the lowest is the patch

level where the data missing problem is mitigated with a

weighted sum over similar point patches to assist more ac-

curate voting of object centers. At the object level, coexis-

tence of objects provides strong hints on detection of certain

objects. For example, as shown in Fig. 1(d), the detected

table can give a tendency for chairs to be detected at sur-

rounding points. At the scene level, global scene clues can

also prevent an object from being detected in an improper

scene. For example, we will not expect to detect a bed in a

kitchen. The contexts at different levels complement each

other and are utilized together to assist the correct inference

of objects in noisy and cluttered environments.

We thus propose a novel 3D object detection framework,

called Multi-Level Context VoteNet (MLCVNet), to incor-

porate into VoteNet multi-level contextual information for

3D object detection. Specifically, we propose a unified net-

work to model the multi-level contexts, from local point

patches to global scenes. The difference between VoteNet

and the proposed network is highlighted in Fig. 2. To model

the contextual information, three sub-modules are proposed

in the framework, i.e., patch-to-patch context (PPC) mod-

ule, object-to-object context (OOC) module and the global

scene context (GSC) module. In particular, similar to [14],

we use the self-attention mechanism to model the relation-

ships between elements in both PPC and OOC modules.

These two sub-modules aim at adaptively encoding contex-

tual information at the patch and object levels, respectively.

For the scene-level, we design a new branch as shown in

Fig. 2(c) to fuse multi-scale features to equip the network

with the ability of learning global scene context. In sum-

mary, the contributions of this paper include:

• We propose the first 3D object detection network that

exploits multi-level contextual information at patch,

object and global scene levels.

• We design three sub-modules, including two self-

attention modules and a multi-scale feature fusion

module, to capture the contextual information at mul-

tiple levels in 3D object detection. The new modules

nicely fit in the state-of-the-art VoteNet framework.

Ablation study demonstrates the effectiveness of these

modules in improving detection accuracy.

• Extensive experiments demonstrate the benefits of

multi-level contextual information. The proposed net-

work outperforms state-of-the-art methods on both

SUN RGB-D and ScanNetV2 datasets.

2. Related Work

2.1. 3D Object Detection From Point Clouds

Object detection from 2D images has been studied for

decades. Since the development of deep convolutional neu-

ral networks (DCNNs) [15], both the accuracy and effi-

ciency of 2D object detection have been significantly im-

proved by deep learning techniques [16, 17]. Compared to
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Figure 3. Architecture of the proposed MLCVNet for 3D object detection in point cloud data. Three new sub-modules are proposed to

capture the multi-level contextual information in 3D indoor scene object detection.

2D, 3D object detection was dominated by non-deep learn-

ing based methods [18, 19, 20] until the recent couple of

years. With the development of deep learning on 3D point

clouds [21, 22, 23], many deep learning based 3D object

detection architectures have emerged [24, 25, 26]. How-

ever, most of these methods depend on using 2D detectors

as an intermediate step, which restricts their generalization

to situations where 2D detectors do not work well [27]. To

address this issue, several deep learning based 3D detectors

which directly take raw point clouds as input have been pro-

posed recently [28, 29, 6]. In [30], the authors introduced

a two-stage 3D object detector, PointRCNN. Their method

first generates several 3D bounding box proposals, and then

refines these proposals to obtain the final detection results.

Instead of directly treating 3D object proposal generation as

a bounding box regression problem, in [31], a novel 3D ob-

ject proposal approach was proposed by taking an analysis-

by-synthesis strategy and reconstructing 3D shapes from

point clouds. Inspired by the Hough voting strategy for 2D

object detection in [32], the work in [7] presents an end-to-

end trainable 3D object detection network, which directly

deals with 3D point clouds, by virtue of the huge success

in PointNet/PointNet++ [4, 5]. Although a lot of methods

have been proposed recently, there is still large room for im-

provement especially for real-world challenging cases. Pre-

vious works largely ignored contextual information, i.e., re-

lationships within and between objects and scenes. In this

work, we show how to leverage the contextual information

to improve the accuracy of 3D object detection.

2.2. Contextual Information

The work in [33] has demonstrated that contextual in-

formation has significant positive effect on 2D semantic

segmentation and object detection. Since then, contex-

tual information has been successfully employed to im-

prove performance on many tasks such as 2D object de-

tection [9, 8, 34], 3D point matching [35], point cloud se-

mantic segmentation [36, 37], and 3D scene understand-

ing [12, 13]. The work in [38] achieves reasonable results

on instance segmentation of 3D point clouds via analyzing

point patch context. In [39], a recursive auto-encoder based

approach is proposed to predict 3D object detection via ex-

ploring hierarchical context priors in 3D object layout. In-

spired by the self-attention idea in natural language process-

ing [40], recent works connect the self-attention mechanism

with contextual information mining to improve scene un-

derstanding tasks such as image recognition [41], seman-

tic segmentation [11] and point cloud recognition [42]. As

to 3D point data processing, the work in [14] proposes to

utilize the attention network to capture the contextual infor-

mation in 3D points. Specifically, it presents a point contex-

tual attention network to encode local features into a global

descriptor for point cloud based retrieval. In [43], an at-

tentional PointNet is proposed to search regions of inter-

est instead of processing the whole input point cloud, when

detecting 3D objects in large-scale point clouds. Different

from previous works, we are interested in exploiting the

combination of multi-level contextual information for 3D

object detection from point clouds. In particular, we inte-

grate two self-attention modules and one multi-scale fea-

ture fusion module into a deep Hough voting network to

learn multi-level contextual relationships between patches,

objects and the global scene.

3. Approach

As shown in Fig. 3, our MLCVNet contains four main

components: a fundamental 3D object detection framework

based on VoteNet which follows the architecture in [7], and

three context encoding modules. The PPC (patch-patch

context) module combines the point groups to encode the

patch correlation information, which helps to vote for more

accurate object centers. The OOC (object-object context)

module is for capturing the contextual information between
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object candidates. This module helps to improve the re-

sults of 3D bounding box regression and classification. The

GSC (global scene context) module is to integrate the global

scene contextual information. In brief, the proposed three

sub-modules are designed to capture complementary con-

textual information in 3D object detection at multiple lev-

els, with the aim to improve the detection performance in

3D point clouds.

3.1. VoteNet

VoteNet [7] is the baseline of our work. As illustrated

in Fig. 2, it is an end-to-end trainable 3D object detection

network consisting of three main blocks: point feature ex-

traction, voting, and object proposal and classification.

To extract point features, PointNet++ is used as the back-

bone network for seed sampling and extracting high dimen-

sional features for the seed points from the raw input point

cloud. The features of each seed point contain information

from its surrounding points within a radius as illustrated in

Fig. 4(a). Analogous to regional patches in 2D, we thus call

these seed points point patches in the remaining of this pa-

per. The voting block takes the point patches with extracted

features as input and regresses object centers. This cen-

ter point prediction is performed by a multi-layer percep-

tron (MLP) which simulates the Hough voting procedure.

Clusters are then generated by grouping the predicted cen-

ters, and form object candidates, from which the 3D bound-

ing boxes are then proposed and classified through another

MLP layer.

Note that in VoteNet, both the point patches and the ob-

ject candidates are processed independently, ignoring the

surrounding patches or objects. However, we argue that

relationships between these elements (i.e., point patches

and object candidates) are useful information for object

detection. Thus, we introduce our MLCVNet to encode

these relationships. Our detection network follows the gen-

eral framework of VoteNet, but integrates three new sub-

modules to capture multi-level contextual information.

3.2. PPC Module

We consider relationships between point patches as the

first level of context, i.e., patch-patch context (PPC), as

shown in Fig. 4(a). At this level, contextual information be-

tween point patches, on the one hand, helps relieve the data

missing problem via gathering supplementary information

from similar patches. On the other hand, it considers inter-

relationships between patches for voting [45] by aggregat-

ing voting information from both the current point patch and

all the other patches. We thus propose a sub-network, PPC

module, to capture the relationships between point patches.

For each point patch, the basic idea is to employ a self-

attention module to aggregate information from all the other

patches before sending it to the voting stage.

(a)

(b)

with PPC without PPC

patch-patch context (PPC) module
M patches

D

Self-
attention

M patches

point patch i

point patch j

D

Figure 4. (a) Architecture details of the PPC module. CGNL [44]

is adopted as the self-attention module in our paper. (b) Compari-

son of center voting results with (green) and without (red) the PPC

module. Pink points denote annotated ground-truth centers.

As shown in Fig. 4(a), after feature extraction using

PointNet++, we get a feature map A ∈ R
1024×D, where

1024 is the number of point patches sampled from the raw

point cloud, and D is the dimension of the feature vector.

We intend to generate a new feature map A
′ that encodes

the correlation between any two point patches, and it can be

formulated as the non-local operation:

A
′ = f(θ(A), φ(A))g(A) (1)

where θ(·), φ(·), g(·) are three different transform func-

tions, and f(·, ·) encodes the similarities between any two

positions of the input feature. Moreover, as shown in [41],

channel correlations in the feature map also contribute to the

contextual information modeling in object detection tasks,

we thus make use of the compact generalized non-local net-

work (CGNL) [44] as the attention module to explicitly

model rich correlations between any pair of point patches

and of any channels in the feature space. CGNL requires

light computation and little additional parameters, making

it more practically applicable. After the attention module,

each row in the new feature map still corresponds to a point

patch, but contains not only its own local features, but also

the information associated with all the other point patches.

The effectiveness of the PPC module is visualized in

Fig. 4(b). As shown, with the PPC module, the voted cen-

ters are more meaningful with more of them appearing on

objects rather than on non-object regions. Moreover, the

voted centers are more closely clustered compared to those

without the module. The results demonstrate that our self-

attention based weighted fusion over local point patches can

enhance the performance of voting for object centers.
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Figure 5. (a) Architecture details of the OOC module. CGNL [44]

is adopted as the self-attention module. (b) Comparison of results

with and without the OOC module.

3.3. OOC Module

Most existing object detection frameworks detect each

object individually. VoteNet is no exception, where each

cluster is independently fed into the MLP layer to regress

its object class and bounding box. However, combining fea-

tures from other objects gives more information on the ob-

ject relationships, which has been demonstrated to be help-

ful in image object detection [46]. Intuitively, objects will

get weighted messages from those highly correlated objects.

In such a way, the final predicted object result is not only

determined by its own individual feature vector but also af-

fected by object relationships. We thus regard the relation-

ships between objects as the second level contextual infor-

mation, i.e., object-object context (OOC).

We get a set of vote clusters C = {C1, C2, . . . , CK} after

grouping the voted centers. K is the number of generated

clusters in this work. Each cluster C = {v1, v2, . . . , vn} is

fed into an MLP followed by a max pooling to form a single

vector representing the cluster. Here vi represents the i-th

vote in C, and n is the number of votes in C. Then comes the

difference from VoteNet. Instead of processing each clus-

ter vector independently to generate a proposal and clas-

sification, we consider the relationships between objects.

Specifically, we introduce a self-attention module before

the proposal and classification step, as shown in Fig. 3 (the

blue module). Fig. 5(a) shows the details inside the OOC

module. Specifically, after max pooling, the cluster vectors

C ∈ R
K×D′

are fed into the CGNL attention module to

generate a new feature map to record the affinity between

all clusters. The encoding of object relationships can be

summarized as:

COOC = Attention( max
i=1,...,n

{MLP (vi)}) (2)

where COOC is the enhanced feature vector in the new fea-

ture map COOC ∈ R
K×D′

, and Attention(·) is the CGNL

attention mapping. By doing so, the contextual relation-

Kx128
OOC

Kx128

1x128

max pool

mlp(128,128)

global feature

1x128

Kx128

Global scene context (GSC) module

Kx128
expand

Mx256

K clustersM patches

PPC

1x256 1x384

Without GSC With GSC Groundtruth

(a)

(b)

Figure 6. (a) Architecture details of the proposed GSC module

with multi-scale feature fusion. (b) Comparison of results with

and without the GSC module.

ships between these clusters (objects) are encoded into the

new feature map.

The effectiveness of the OOC module is visualized in

Fig. 5(b). As shown, with the OOC module, there are fewer

detected objects overlapping with each other, and the posi-

tions of the detected objects are more accurate.

3.4. GSC Module

The whole point cloud usually contains rich scene con-

textual information which can help enhance the object de-

tection accuracy. For example, it would be highly possible

that a chair rather than a toilet is identified when the whole

scene is a dining room rather than a bathroom. Therefore,

we regard the information about the whole scene as the third

level context, i.e., global scene context (GSC). Inspired by

the idea of scene context extraction in [34], we propose the

GSC module (the green module in Fig. 3) to leverage the

global scene context information to improve feature repre-

sentation for 3D bounding box proposal and object classifi-

cation, without explicit supervision of scenes.

The GSC module is designed to capture the global scene

contextual information by introducing a global scene fea-

ture extraction branch. Specifically, we create a new branch

with the input from the patch and object levels, concatenat-

ing the features at layers before applying self attention in

PPC and OOC. As shown in Fig. 6(a), at the two layers each

row represents a point patch P ∈ P = {P1,P2, . . . ,PM}
or an object candidate C ∈ C = {C1, C2, . . . , CK}, where

M and K are the numbers of the sampled point patches and

clusters, respectively. Max-pooling is first applied to get
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Input table sofa booksh chair desk dresser nightst bed bathtub toilet mAP@0.25

DSS [1] Geo+RGB 50.3 53.5 11.9 61.2 20.5 6.4 15.4 78.8 44.2 78.9 42.1

2D-driven [26] Geo+RGB 37.0 50.4 31.4 48.3 27.9 25.9 41.9 64.5 43.5 80.4 45.1

COG [47] Geo+RGB 51.3 51.0 31.8 62.2 45.2 15.5 27.4 63.7 58.3 70.1 47.6

F-PointNet [27] Geo+RGB 51.1 61.1 33.3 64.2 24.7 32.0 58.1 81.1 43.3 90.9 54.0

VoteNet [7] Geo-only 47.3 64.0 28.8 75.3 22.0 29.8 62.2 83.0 74.4 90.1 57.7

MLCVNet(ours) Geo only 50.4 66.3 31.9 75.8 26.5 31.3 61.5 85.8 79.2 89.1 59.8

Table 1. Performance comparison with state-of-the-art 3D object detection networks on SUN RGB-D V1 validation set.

Input mAP@0.25 mAP@0.5

DSS [1] Geo+RGB 15.2 6.8

MRCNN 2D-3D [48] Geo+RGB 17.3 10.5

F-PointNet [27] Geo+RGB 19.8 10.8

GSPN [31] Geo+RGB 30.6 17.7

3D-SIS [6] Geo+5views 40.2 22.5

3D-SIS [6] Geo only 25.4 14.6

VoteNet [7] Geo only 58.6 33.5

MLCVNet(ours) Geo only 64.5 41.4

Table 2. Performance comparison on ScanNetV2 validation set.

two vectors (i.e., the patch vector and the cluster vector),

combining information from all the point patches and object

candidates. Following the idea of multi-scale feature fusion

in the contextual modeling strategy of 2D detectors, these

two vectors are then concatenated to form a global feature

vector. An MLP layer is applied to further aggregate global

information, and the output is subsequently expanded and

combined with the output feature map of the OOC module.

This multi-scale feature fusion procedure can be summa-

rized as:

Cnew = MLP ([max(C);max(P)]) + COOC (3)

In this way, the inference of the final 3D bounding boxes

and the object classes will consider the compatibility with

the scene context, which makes the final prediction more re-

liable under the effect of global cues. As shown in Fig. 6(b),

the GSC module effectively reduces false detection in the

scene.

4. Results and Discussions

4.1. Dataset

We evaluate our approach on SUN RGB-D [49] and

ScanNet [50] datasets. SUN RGB-D is a well-known pub-

lic RGB-D image dataset of indoor scenes, consisting of

10,335 frames with 3D object bounding box annotations.

Over 64,000 3D bounding boxes are given in the entire

dataset. As described in [13], these scenes were mostly

taken from household environments with strong context.

The occlusion problem is quite severe in SUN RGB-D

dataset. Sometimes, it is even difficult for humans to recog-

nize the objects in the scene when merely a 3D point cloud

is given without any color information. Thus, it is a chal-

lenging dataset for 3D object detection.

ScanNet dataset contains 1513 scanned 3D indoor scenes

with densely annotated meshes. The ground-truth 3D

bounding boxes of objects are also provided. The com-

pleteness of scenes in ScanNet makes it an ideal dataset for

training our network to learn the contextual information at

multiple levels.

4.2. Training details

Our network is trained end-to-end using an Adam opti-

mizer and batch size 8. The base learning rate is set to 0.01
for ScanNet dataset and 0.001 for SUN RGB-D dataset.

The network is trained for 220 epochs on both datasets.

The learning rate decay steps are set to {120, 160, 200} for

ScanNet, {100, 140, 180} for SUN RGB-D, and the decay

rates are {0.1, 0.1, 0.1}. Training the model until conver-

gence on one RTX 2080 ti GPU takes around 4 hours on

ScanNetV2 and 11 hours on SUN RGB-D. During training

we found the mAP result fluctuates within a small range.

Thus, the mAP results reported in the paper are the mean

results over three runs.

For parameter size, we check the file sizes of the stored

PyTorch models for both our method and VoteNet.. The

model size of our network is 13.9MB, while VoteNet is

11.2MB. For training time, VoteNet takes around 40s for 1

epoch with batch size of 8, while ours is around 42s. For in-

ference time, we infer detection for 1 batch and measure the

time. VoteNet takes around 0.13s, while ours is 0.14s. The

times reported here are all tested on ScanNet dataset. These

show that our method only slightly increases the complex-

ity.

4.3. Comparisons with the State-of-the-art Methods

We first evaluate our method on SUN RGB-D dataset

using the same 10 most common object categories as

in [7]. Table 1 gives a quantitative comparison of our

method with deep sliding shapes (DSS) [1], cloud of gra-

dients (COG) [47], 2D-driven [26], F-PointNet [27] and

VoteNet [7].

Remarkably, our method achieves better overall perfor-
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wind bed cntr sofa tabl showr ofurn sink pic chair desk curt fridge door toil bkshf bath cab mAP

3DSIS5views 10.88 69.71 10.00 71.81 36.06 35.96 16.2 42.98 0.00 66.15 46.93 14.06 53.76 30.64 87.6 27.34 84.3 19.76 40.23

3DSISGeo 2.79 63.14 6.92 46.33 26.91 12.17 7.05 22.87 0.00 65.98 33.34 2.47 10.42 7.95 74.51 2.3 58.66 12.75 25.36

VoteNet 38.1 87.92 56.13 89.62 58.77 57.13 37.2 54.7 7.83 88.71 71.69 47.23 45.37 47.32 94.94 44.62 92.11 36.27 58.65

MLCVNet(ours) 46.98 88.48 63.94 87.4 63.50 65.91 47.89 59.18 11.94 89.98 76.05 56.72 60.86 56.93 98.33 56.94 87.22 42.45 64.48

Table 3. Per-category evaluation on ScanNetV2, evaluated with mAP@0.25 IoU.

MLCVNet GroundtruthVoteNet

Figure 7. Qualitative comparison results of 3D object detection in ScanNetV2. Our multi-level contextual information analysis strategy

enables more reasonable and accurate detection. Color is for depiction, not used for detection.

Method PPC OOC GSC

mAP@0.25

SUN
ScanNet

RGB-D

Baseline 57.8 59.6

MLCVNet
√

58.6 62.2

MLCVNet
√ √

59.1 63.4

MLCVNet
√ √ √

59.8 64.5

Table 4. Ablation study on the test dataset. The baseline model is

trained by ourselves.

mance than all the other methods on SUN RGB-D dataset.

The overall mAP (mean average precision) of MLCVNet

reaches 59.8% on SUN RGB-D validation set, 2.1% higher

than the current state-of-the-art, VoteNet. The heavy occlu-

sion presented in SUN RGB-D dataset is a challenge for

methods (e.g., VoteNet) that consider point patches individ-

ually. However, the utilization of contextual information

in MLCVNet helps with the detection of occluded objects

with missing parts, which we believe is the reason for the

improved detection accuracy.

We also evaluate our MLCVNet against several more

competing approaches, MRCNN 2D-3D [48], GSPN [31]

and 3D-SIS [6], on ScanNet benchmark in Table 2.

We report the detection results on both mAP@0.25 and

mAP@0.5. The mAP@0.25 of MLCVNet on ScanNet

validation set reaches 64.5% making 5.9 absolute points

improvement over the best competitor VoteNet, and the

mAP@0.50 is even higher, making 7.9 points improvement.

The significant improvements confirm the effectiveness of

our integration of multi-level contextual information. Ta-

ble 3 shows the detailed results at mAP@0.25 for each

object category in ScanNetV2 dataset. As can be seen,

for some specific categories, such as shower curtain and

window, the improvements exceed 8 points. It is found

that plane-like objects, such as door, window, picture and

shower curtain, usually get higher improvements. The rea-

son could be that these objects contain more similar point

patches, which can be used by the attention module to com-

plement each other to a great extent.

4.4. Ablation Study

To quantitatively evaluate the effectiveness of the pro-

posed contextual sub-modules, we conduct experiments

with different combinations of these modules. The quan-

titative results are shown in Table 4. The baseline method

is the VoteNet. We then add the proposed sub-modules one

by one into the baseline model. Applying the PPC module

leads to improvements in mAP@0.25 of 0.8 and 2.6. The
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VoteNet MLCVNet Groundtruthimage

Figure 8. Qualitative results of 3D object detection on SUN RGB-D.

combination of PPC and OOC modules further improves

the evaluation scores to 59.1 and 63.4 respectively. As ex-

pected, when equipped with all the three sub-modules, the

mAP@0.25 of our MLCVNet is boosted up to the highest

scores on both datasets. It can be seen that contextual infor-

mation captured by the designed sub-modules indeed brings

notable improvements over the state-of-the-art method.

4.5. Qualitative Results

Fig. 7 shows qualitative comparison of the results using

MLCVNet and VoteNet for 3D bounding box prediction on

ScanNetV2 validation set. It is observed that the proposed

MLCVNet detects more reasonable objects (red arrows),

and predicts more precise boxes (blue arrows). The pink

box produced by VoteNet is classified as a window, which

is improper to overlap with a door, while our method en-

sures the compatibility between objects and scenes. The

qualitative comparison results on SUN RGB-D are shown

in Fig. 8. As shown, our model is still able to produce high-

quality boxes even though the scenes are much occluded

and less informative. As shown in the bedroom example

in Fig. 8, there are overlaps and missing detection (red ar-

rows) using VoteNet, while our model successfully detects

all the objects with good precision compared to the ground-

truth. For the second scene in Fig. 8, VoteNet misclassifies

the table, produces overlaps, and predicts inaccurate boxes

(red arrows), while our model produces much cleaner and

more accurate results. However, it is worth noting that our

method may still fail in some predictions, such as the over-

lapped windows in the red square in Fig. 7. Therefore, there

is still room for improvements on 3D bounding box predic-

tion when dealing with complicated scenes.

5. Conclusions

In this paper, we propose a novel network that integrates

contextual information at multiple levels into 3D object

detection. We make use of self-attention mechanism and

multi-scale feature fusion to model the multi-level contex-

tual information, and propose three sub-modules. The PPC

module encodes the relationships between point patches,

the OOC module captures the contextual information of ob-

ject candidates, and the GSC module aggregates the global

scene context. Ablation studies demonstrate the effective-

ness of the proposed contextual sub-modules to improve

the detection accuracy. Quantitative and qualitative experi-

ments further demonstrate that our architecture successfully

improves the performance of 3D object detection.

Future work. Contextual information analysis in 3D ob-

ject detection still offers huge space for exploration. For ex-

ample, to enhance the global scene context constraint, one

possible way is to use the global feature in the GSC module

to predict scene types as an auxiliary learning task, which

can explicitly supervise the global feature representation.

Another direction would be a more effective mechanism to

encode the contextual information as in [8].
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