
MLDA: A TCP-friendly Congestion Control
Framework for Heterogeneous Multicast

Environments
Dorgham Sisalem Adam Wolisz�

GMD FOKUS GMD Fokus/TU Berlin
Berlin, Germany Berlin, Germany

sisalem@fokus.gmd.de wolisz@ee.tu-berlin.de

Abstract— To avoid overloading the Internet and starv-
ing TCP connections, multimedia flows using non-congestion
controlled UDP need to be enhanced with congestion control
mechanisms. In this paper, we present a general framework
for achieving TCP-friendly congestion control called MLDA.
Using MLDA, multimedia senders adjust their transmission
rate in accordance with the network congestion state. For
taking the heterogeneity of the Internet and the end sys-
tems into account, MLDA supports layered data transmis-
sion where the shape and number of the layers is determined
dynamically based on feedback information generated by the
receivers. Further, we discuss a measurement approach that
allows receivers in large multicast sessions to estimate the
round trip delay estimation to the sender in a scalable way.
For exchanging control information between the sender and
receivers we investigate the possibility of using the real time
transport protocol (RTP) and discuss the required changes
in order for RTP to support a more scalable and timely flow
of feedback information from the receivers to the sender.
Results obtained through simulations and measurements as
well as comparisons to other congestion control schemes sug-
gest that MLDA achieves TCP-friendly congestion control
on the one hand and its ability to accommodate the needs of
heterogeneous receivers on the other.

I. INTRODUCTION

While congestion controlled TCP connections carrying
time insensitive FTP or WWW traffic still constitute the
major share of the Internet traffic today [1], recently pro-
posed real-time multimedia services such as IP-telephony
and group communication will be based on the UDP pro-
tocol. While UDP does not offer any reliability or con-
gestion control mechanisms, it has the advantage of not
adding delays to the carried data due to retransmissions as
is the case with TCP. Additionally, as UDP does not re-
quire the receivers to send acknowledgments for received
data it is well suited for multicast communication. How-
ever, deploying UDP in the Internet on a large scale might

* The work was partially done during the author’s stay in ICSI
Berkeley

result in extreme unfairness towards competing TCP traf-
fic. In response to losses in the network, TCP connections
sharing the same congested links with UDP flows reduce
their transmission rates. However, without any rate reduc-
tion on behalf of the non-congestion-controlled traffic, the
TCP connections would starve and receive a much smaller
bandwidth share than the competing UDP flows [2]. There-
fore, UDP flows need to be enhanced with control mecha-
nisms that not only aim at avoiding network overload but
are also fair towards competing TCP connections, i.e, be
TCP-friendly. TCP-friendliness indicates here, that if a
TCP connection and an adaptive flow with similar trans-
mission behaviors have similar round trip delays and losses
both connections should receive similar bandwidth shares.
As an oscillative perceived QoS is rather annoying to the
user, multimedia flows require stable bandwidth shares that
do not change on the scale of a round trip time as is the
case of TCP connections. It is, thus, expected that a TCP-
friendly flow would acquire the same bandwidth share as a
TCP connection only averaged over time intervals of sev-
eral seconds or even only over the entire life time of the
flow and not at every time point [2].

Several aspects need to be considered when designing
congestion control mechanisms for multicast communica-
tion:
� Rate Adaptation: Similar to the case of unicast conges-
tion control, multicast congestion control should be TCP-
friendly. Here, TCP-friendliness indicates that the band-
width share consumed by the multicast flow on any tra-
versed path resembles the bandwidth share of a TCP con-
nection traversing the same path.
As the bandwidth share of a TCP connection depends on
its round trip delay and losses, calculating a TCP-friendly
bandwidth share involves determining losses and round
trip times on all paths traversed by the multicast session.
Hence, multicast congestion control schemes need to sup-
port scalable and accurate loss and delay measurement ap-
proaches.

1

� Scalability: The performance of the control scheme
should not deteriorate with increasing numbers of re-
ceivers. Additionally, the amount of data gathered at the
end systems or transmitted between the end systems should
be sustainable within the available resources.
� Heterogeneity: Internet links as well as the end systems
connected to the Internet vary greatly in their capabilities
and resources. Multicast congestion control schemes need
to take this heterogeneity into account and aim at satisfy-
ing the requirements of a large part if not all possible re-
ceivers. So, for the case of n receivers one might actually
determine a set of [r1; r2; :::; rn] rates the sender needs to
adjust its transmission rate simultaneously to, to satisfy the
needs of all receivers. This might be achieved by simul-
casting the same content at the different rates [3] or refer-
ring to hierarchical data transmission [4], [5] by dividing
a data stream into a base layer representing the transmit-
ted data content in a basic quality and several enhancement
layers that combined with the base layer improve the over-
all perceived quality of the data stream. Each layer is then
sent on a different multicast group. As multicast routers
only forward data requested by the receivers, the receivers
can determine how many sessions to join and thereby ad-
just their QoS in respect to their own requirements and ca-
pacities. For the case of n receivers with [r1; r2; :::; rn] pos-
sible rates with ri as an increasing value, the sender might
set the rate of the lower layer to r1, the first enhancement
layer to r2�r1 and so on. Each receiver would then join up
to n layers based on its capacity. Such approaches are par-
ticularly suitable for video communication using layered
compression [6].

In this paper, we describe a general TCP-friendly con-
gestion control approach for handling the case of hetero-
geneous multicast groups called multicast enhanced loss-
delay based adaptation algorithm (MLDA). With MLDA
the receivers collect information about the losses, delays
and bottleneck bandwidths on the paths connecting them
to the sender and determine a bandwidth share that would
be utilized by a competing TCP connection traversing the
same path under the same loss and delay conditions. To sat-
isfy the needs and capabilities of heterogeneous receivers,
MLDA incorporates the concept of layered data transmis-
sion in its architecture. Adaptive schemes using layered
data transmission usually assume statically set layer sizes.
However, to better accommodate the actual heterogeneity
of the receivers, MLDA senders periodically collect the in-
formation about the determined bandwidth shares at the
receivers, adjust the sizes of the different layers they are
transmitting based on these information and inform the re-
ceivers about the sizes and addresses of the different layers.
The receivers can then determine the number of layers to

join based on the information announced by the sender and
their own estimation of the TCP-friendly rate they could be
using.

MLDA is a hybrid sender and receiver-based adaptation
scheme that combines on the one hand various well known
concepts for multicast congestion control such as receiver-
based rate calculation presented by Handley et al. [7], lay-
ered transmission [4] and dynamic layering presented by
Sisalem et al. [8] into a unified congestion control archi-
tecture. On the other hand, MLDA provides novel solu-
tions for round trip delay measurements, scalable feedback
collection and a general framework for the cooperation be-
tween the sender and receivers that enables a seamless in-
tegration of these different concepts.

To allow for scalable feedback and yet provide the
sender with enough information about the actual hetero-
geneity of the receivers we introduce a novel feedback
approach called “partial suppression” that allows the ex-
change of control messages in a timely manner and to sup-
press the transmission of receiver information of similar
content. Additionally, to get an estimation of the round
trip delay between the sender and receivers we propose
a simple measurement approach based on a combination
of one-way delay estimation using timestamps of non-
synchronized hosts connected by possibly asymmetrical
links and end-to-end measurement of the delay.

For determining the TCP-friendly bandwidth share at the
receivers we use in this work an algorithm we presented
previously called the enhanced loss-delay based adaptation
algorithm (LDA+) [9].

In Sec. II we present a brief overview of some re-
lated work in the area of TCP-friendly congestion con-
trol. Sec. III describes MLDA and the methods for esti-
mating the network characteristics to be used for determin-
ing the TCP-friendly bandwidth share. In Sec. IV we dis-
cuss the issue of realizing MLDA using the real time trans-
port protocol (RTP) [10] widely used for multimedia com-
munication in the Internet. In Sec. IV-A, we investigate
through simulations and measurements the performance of
MLDA in a variety of settings and its ability to accommo-
date the needs of heterogeneous multicast receivers in a
TCP-friendly manner.

II. BACKGROUND AND RELATED WORK

Recently, there has been several proposals for TCP-
friendly adaptation schemes that vary in their complexity,
efficiency and goals.

Various congestion control schemes for UDP-based
communication deploy an analytical model [11] of TCP for
estimating the TCP-friendly bandwidth share of the UDP
flow. With this model, the average bandwidth share of a

2

TCP connection (rTCP) is determined as

rTCP =
M

tRTT

q
2Dl
3 + tout min

�
1; 3
q

3Dl
8

�
l (1 + 32l2)

(1)

with M as the packet size, l as the loss fraction, tout as the
TCP retransmission timeout value, tRTT as the round trip
delay and D as the number of acknowledged TCP packets
by each acknowledgment packet. Using Eqn. 1 for estimat-
ing the bandwidth share, requires exact knowledge of the
round trip delay between the sender and receivers as well
as the loss values on the paths connecting the sender to the
receivers.

As an example for such an approach, Handley et al.
present in [7] a scheme in which the receivers estimate us-
ing Eqn. 1 the rate the sender should be using and inform
the sender about this value. As this approach relies solely
on the TCP-model, the receivers always need to estimate
a loss value to be able to use Eqn. 1. This is achieved by
making loss measurements over long time intervals. The
scheme does not currently provide for a scalable and ac-
curate approach for measuring the round trip delay at the
receivers and does not consider the case of heterogeneous
receivers.

Bolot et al. [12] and Tan et al. [13] present schemes in
which the sender transmits data in layers and the receivers
calculate the rate appropriate for them using an analytical
TCP model [14]. Based on this calculation they join the
appropriate number of layers. Similar to [7], the issue of
determining the round trip delay at the receivers is not ad-
dressed here. Additionally, in contrast to MLDA, these
schemes only support layered transmission with the sizes
and number of layers statically set by the sender.

In a different approach, MTCP [15] and RMTP [16] use
a congestion window similar to that of TCP with the main
difference that the window is only increased if all receivers
acknowledge the reception of some packet. The increase
and decrease actions of those protocols are similar to that
of TCP. Such an approach adapts the transmission rate of
the sender down to the capacity of the worst receiver of the
multicast session and does not accommodate the needs of
heterogeneous receivers. Additionally, MTCP and RMTP
use a complex architecture for aggregating the receiver re-
ports which introduces significant management overhead.

Vicisano et al. [5] present a control scheme support-
ing layered streams. Here, the receivers join or leave a
layer based on their measured loss value. Using specially
flagged packets the sender indicates synchronization points
at which receivers might join or leave a specific layer. The
scheme does not consider the round trip delay in its adap-
tation behavior and only supports statical layering of data.

The packet pair receiver-driven layered multicast (PLM)
[17] is based on layered transmission and on the use of the
packet pair approach to infer the bandwidth available at
the bottleneck to decide which are the appropriate layers to
join. To apply the packet pair approach for reliably estimat-
ing a flow’s bandwidth share, the authors of PLM assume
that all routers in the network deploy some kind of a fair
queuing mechanisms that allocate each flow a fair band-
width share.

Sisalem et al. present in [8] a first approach for incorpo-
rating sender-based rate adaptation with dynamic shaping
of data layers.

Jiang et al. [18] present a scheme in which the sender
transmits its data in a fixed base layer and a variable en-
hancement layer. Based on their measured losses, the re-
ceivers estimate their bandwidth share and report this to the
sender. The transmission rate of the variable layer is then
determined as to increase the satisfaction of most of the re-
ceivers.

Albuquerque et al. [19] describe an approach called
source adaptive multi-layered multicast (SAMM), in which
the receivers inform the sender about their desired trans-
mission rate. To avoid feedback implosion, the feedback
messages are not sent directly to the sender but to a repre-
sentative that aggregates the information before forward-
ing it to the sender. In addition to the overhead introduced
by having to maintain a list of representatives, SAMM re-
quires substantial support from the network routers in or-
der to drop data of higher layers during congestion periods
as well as isolating the SAMM traffic from TCP traffic in
order to achieve fair distribution.

III. MULTICAST ENHANCED LOSS-DELAY

ADAPTATION ALGORITHM (MLDA)

MLDA provides for a general framework for realizing
congestion control in heterogeneous environments. The
functionality of MLDA is realized on an end-to-end basis
without requiring any support from the network routers be-
yond their capability of forwarding and routing multicast
traffic.

The basic message exchange of MLDA is as follows:
1. The sender periodically transmits reports containing in-
formation about the sent layers.
2. After receiving a sender report each receiver (j : j =
0; 1; � � � ; n) measures the loss and delay of the incoming
data for a period of time and determines a TCP-friendly
bandwidth share (rj) the sender could utilize on the path
connecting the sender and receiver.
3. Based on the calculated share and the rates of the layers
as reported in the sender reports the receivers decide to join
a higher layer, stay at or leave the current one.

3

4. Further, the receivers schedule the transmission of re-
ports indicating their calculated bandwidth share after a
random period of Twait. Finally, if a report form another
receiver with rate indication similar to rj was seen before
Twait expires the receiver suppresses the transmission of its
report.
5. Based on the receiver reports, the sender adjusts the
sizes of the different layers.

In the following subsections, see Sec. III-A and Sec. III-
B, we first present the behavior of the sender and receivers
and then describe in Sec. III-D different mechanisms for
estimating the loss, delay and capacity characteristics of
Internet links and an algorithm that uses this information
for estimating the TCP-friendly bandwidth share of a flow.
Note, that while the sender and receiver behavior descrip-
tion constitutes an integral part of the MLDA framework,
the algorithms for estimating the network characteristics
and the TCP-friendly bandwidth share are more generic in
nature and can be easily replaced by other algorithms with-
out altering the functionality of MLDA.

A. Sender Behavior

With MLDA the sender is responsible for adjusting its
transmission behavior in accordance with the bandwidth
available for the multicast session as estimated and re-
ported by the receivers. The sender periodically polls feed-
back information from the receivers by sending a sender re-
port at intervals of (Tcontrol+p). p is a uniformly distributed
random variable that assures that the reports from senders
that start at the same time do not get synchronized. The
sender includes in its reports information about the num-
ber of layers (y) it is transmitting, the rate (RLk : k =
1; 2; � � � ; y) of each layer (Lk) and the address on which
each layer can be received on.

The receiver reports indicate the TCP-friendly band-
width share estimated by the receivers to be available on
the paths connecting the sender to them. The collected
reports in between the sending of two sender reports are
then used to adapt the sizes of the transmitted layers before
sending the next sender report. To allow for fast reactions
to changes in the network conditions the sender reduces the
rate of the base layer whenever it receives a feedback mes-
sage indicating a rate request lower than that used for the
base layer.

A.1 Data Layering

Ideally, the sender would partition its data stream into a
number of layers that satisfies the needs of all receivers. In
a communication scenario with n receivers reporting trans-
mission rates of (r1; � � � ; rn : ri-1 < ri < ri+1) the sender
would then need to partition its data stream into substreams

of (r2 � r1; r3 � r2; � � � ; rn-1 � rn). Each receiver deter-
mining rj as its available bandwidth share would then join
x layers with (rj =

Px
i=1RLi) for (RL1 = r1 and RLi =

ri � ri-1).
However, using a large number of layers might result in

drift problems [20], increased delays due to the need to syn-
chronize the different layers and higher complexity at the
receivers. As an approximation usually only a few layers
are used.

An example for an approach for determining the appro-
priate number and sizes of the layers would be to use data
mining and clustering techniques [21] that allow the sender
to summarize the receiver reports into a smaller set of rep-
resentative values.

Note, that any approach for dividing the data in dif-
ferent layers could be used instead. The layers could be
chosen based on the coding used or the number of re-
ceivers requesting a certain rate if such information are
available [19]. the only precondition for using such a dy-
namic layering approach is the availability of coders that
can dynamically shape the number and sizes of layers [22].

When dividing data into layers, each layer should use its
own ranges of sequence numbers. That is, while packets
belonging to the same layer should have consecutive se-
quence numbers, this is not needed among packets belong-
ing to different layers. This would allow the receivers to
determine the loss rates of each layer. However, the re-
ceivers still need some means for resynchronizing the dif-
ferent layers into one data stream.

B. Receiver Behavior

Within the MLDA architecture, the receivers measure
the characteristics of the paths connecting the sender to
them, estimate the TCP-friendly bandwidth share they
could consume, join the appropriate number of layers in ac-
cordance with their estimated bandwidth share and inform
the sender about their estimated shares. In this section,
the rules governing the join and leave actions of MLDA
receivers are presented. Proposals for solving the issues
of bandwidth estimation, path measurements and scalable
feedback are presented in the next sections.

The join and leave actions of the receivers are triggered
by the sender reports which are generated periodically in
intervals of Tcontrol by the sender.

After receiving a sender report the receivers measure the
losses of the incoming data stream for a period of (To � x)
with To as the minimum measurement time needed to ob-
tain usable loss information. x indicates the number of lay-
ers the receiver is already tuned to. After the measurement
period each receiver (j) calculates the rate (rj) that would
be appropriate to use on the link connecting the sender to

4

him.
With RLk as the transmission rate on layer Lk the re-

ceiver can now take one of the following actions:
� rj �

Px+1
k=0RLk: The determined TCP-friendly rate is

higher than the rate of the incoming data stream in addi-
tion to the rate of the next higher layer. The receiver joins
the next higher layer and starts an observation time of To

to measure the loss values of the now increased incoming
stream. After the measurement period a new transmission
rate is determined and the receiver can again join a higher
layer, leave the just joined layer or stay at the higher layer.
� rj <

Px
k=0RLk: In this case, the rate of the incoming

data stream is higher than the theoretically TCP-friendly
share determined by some adaptation algorithm. The re-
ceiver must, thus, leave the highest layers it is currently re-
ceiving until the inequality (rj �

Px
k=0RLk) is satisfied.

�

Px
k=0RLk < rj <

Px+1
k=0RLk: The receiver stays at the

current level.
Finally, the receiver schedules the transmission of a re-

port carrying the value of ri.
The time passing between issuing a join request for a

multicast layer and receiving the data for that layer is usu-
ally only the time needed for extending the multicast distri-
bution tree towards the receiver. Hence, joining a multicast
session can be thought of as increasing the bandwidth con-
sumed by the receiver instantously through the addition of
a new layer. However, leaving a session only results in a re-
duction in the rate as measured at a receiver after a period of
time. After receiving a leave request, the network routers
that forward the multicast data to the receiver that has is-
sued the leave request need to make sure that the session is
no longer requested by any other receiver before stopping
forwarding the data on the links towards that receiver.

MLDA receivers directly determine the number of lay-
ers they can listen to. Hence, there is no need for observing
the network situation after dropping a layer and taking the
leave latency into account. Note also, that losses caused
by a failed join operation by a receiver do not have any ef-
fects on the loss estimation of other receivers. That is, if
some receivers are listening to x layers and share a part of
the multicast tree they would have an observation period
of (To � x). Only after the period of (To � x) would the
receivers be allowed to join a higher layer. In case one of
the receivers tried to join the next higher layer (x+1) and
failed, the losses caused by the failed operation would not
be included in the loss estimations of the other receivers
who have already completed their observation period.

C. Scalable Feedback

In order to take the heterogeneity of the network and re-
ceivers into account in its adaptation decision the sender

needs to collect feedback information representing all re-
ceivers.

Therefore, we propose a mechanism we call partial
suppression with which all possible rates a receiver can
calculate are divided into S intervals. That is, if the
possible rates a receiver could calculate might vary be-
tween Rmin and Rmax we divide this range into subinter-
vals [Rmin; R1); [R1; R2); � � � ; [RS-1; Rmax) with Rmin and
Rmax as pre-defined constants. After finishing the observa-
tion period each receiver (j) calculates a theoretically TCP-
friendly rate (rj) and determines in which subinterval this
rate is found in. The receiver schedules now the transmis-
sion of the receiver report after some time period (Twait). If
a report form another receiver indicating a rate in the same
subinterval was seen during this period the receiver sup-
presses the transmission of its own report.

For realizing efficient suppression, Nonnenmacher et
al. [23] suggest using a truncated exponentially distributed
timer in the interval [0; Trand] with the density of

Twait =

8<
:

1
exp��1

� �
Trand

exp
�

Trand
z

0 � z < Trand

0 otherwise
(2)

For (� = 10) and (Trand = 5c) with c as the delay be-
tween two receivers [23] shows analytically that for 10000
receivers less then 10 feedback messages are generated for
each event the receivers are reporting on.

For dividing the possible rates into S subintervals we
suggest using the following equation:

R1 = Rmin � (1 + �) (3)

Rs = Rs-1 � (1 + �) (4)

with � as the difference in percentage between two subse-
quent subintervals and (s = 1; 2; � � � ; S).

The total number of subintervals (S) can then be deter-
mined as follows:

Rmax = Rmin � (1 + �)S (5)

For a possible rate range from 1 kb/s to 100 Mb/s, (� = 0:1)
and the additional restriction that the difference between
two subsequent subintervals should at least be 5 kb/s the
number of subintervals is 90. For the case of partial sup-
pression we would then expect around (n�10) receiver re-
ports as a reaction to each sender report. Thus, if for each
subinterval [Rs; Rs+1) there were a few thousand receivers
that determine a rate (r : Rs � r < Rs+1) we would theo-
retically have around 900 feedback messages every Tcontrol

for (� = 10) and (Trand = 5c).
Finally, while the sender reports are important for all

receivers, the receiver reports are only of meaning to the

5

sender and receivers of similar capacities, i.e., receivers
that determine similar theoretical rates. Hence, the sender
reports are sent on the base layer only. The receivers, how-
ever, should send their reports only on the highest layer
they are currently listening to. This avoids overloading re-
ceivers listening to the lower layers with the reports of the
receivers listening also to higher layers.

D. Receiver-Based Measurement of Path Characteristics

From Eqn. 1 we can see that for determining a TCP-
friendly bandwidth share we need to take losses as well as
delays on the links between the sender and receiver into
account. Additionally, the receiver should never ask for a
bandwidth share higher than the bottleneck rate, i.e., the
capacity of the smallest router, on the path connecting the
sender to the receiver.

In this part of the work, we present how the loss can be
determined for the case of layered transmission as well as
a novel approach for measuring the round trip delay.

D.1 Loss Estimation

By requesting that data packets carry sequence numbers
the loss of packets can be recognized at the receivers by
gaps in those numbers. Hence, the receivers can estimate
the loss as the percentage of data packets to the number of
packets sent by the sender during an observation period.
The number of actually sent packets can be approximately
indicated by the packet with the highest sequence number
seen during the observation period.

To estimate an overall loss value (l) over all received lay-
ers the receiver measures the losses over each layer. For the
case of listening to x layers l is determined as follows:

l =
lL1 �RL1 + � � �+ lLx �RLxPx

k=1RLk

(6)

with lLk as the loss measured over layer k and RLk as the
rate of layer k as indicated in the latest sender report.

D.2 Bottleneck Bandwidth Measurement

To estimate the maximum possible bandwidth share a
flow can utilize one can refer to the packet pair approach
first used by Bolot [24] for estimating the characteristics of
Internet link. The essential idea behind this approach is: If
two packets can be caused to travel together such that they
are queued as a pair at the bottleneck, with no packets inter-
vening between them, then the inter-packet spacing will be
proportional to the time required for the bottleneck router
to process the second packet of the pair.

Hence, by sending probe packets at the access speed of
the sender, the receiver can determine the bottleneck band-

width (R) as follows:

R =
probe packet size

gap between 2 probe packets
(7)

The probe packets can be ordinary data packets sent in a
row which would reduce the amount of required bandwidth
for the bottleneck probing compared to the case when spe-
cial packets are used. The choice of how often to run the
measurement of the bottleneck bandwidth should be left to
the application.

Due to losses of probe packets, network congestion or
interference of other traffic Eqn. 7 might result in wrong
estimations of the bottleneck bandwidth. Hence, the re-
ceivers need to deploy mechanisms such as [25], [26], [27]
to filter out wrong estimates. Which filtering mechanism
to use in the framework of MLDA is irrelevant, whereas
schemes resulting in accurate estimations after short tran-
sient periods are to be favored.

D.3 Round Trip delay Estimation

The simplest approach for estimating the round trip de-
lay between two systems is by sending a request message
from one system to the other and having the other system
acknowledging the request right away. The round trip de-
lay can then be estimated as the time difference between
sending the request and receiving the acknowledgment for
it. While this end-to-end approach works fine for unicast
communication, it does not scale for the case of multi-
cast communication. For the case of multicast with a large
number of receivers, having each receiver sending a re-
quest would overload the sender and the acknowledgments
would also increase the load in the network. We therefore
present in this section a novel approach that combines end-
to-end measurements with one-way measurements.

With this approach the sender transmits in periods of
Tcontrol control messages containing timestamps (Tsender)
indicating when these messages were sent. To avoid over-
loading the network and the sender with receiver control
messages, the receivers might use suppression or some
other approach for reducing the number of control mes-
sages. Hence, each receiver sends on the average a con-
trol message every (T� : Tcontrol � T�). The combi-
nation of receiver control messages and sender messages
can then be used by the receivers to accurately estimate the
round trip delay. In addition to this end-to-end measure-
ment approach the receivers can update their estimation of
the round trip delay (�) every Tcontrol using the sender’s
timestamps (Tsender). With this one-way measurement ap-
proach the receivers estimate the round trip delay to the
sender as twice the difference between the timestamp of
an incoming sender report (Tsender) and the time the report

6

arrived at the receiver as indicated by the receiver’s local
clock (Treceiver).

�

2
= Treceiver � Tsender (8)

A smoothed round trip delay (tRTT) can then be estimated
similar to the approach used with TCP [28]

tRTT = tRTT + 0:125 � (� � tRTT) (9)

However, for this one-way measurement approach to de-
liver accurate delay estimations some kind of synchroniza-
tion of the clocks among the receivers and sender is re-
quired. Additionally, Paxon [26] shows through extensive
measurements in the Internet, that the delay between two
points might differ greatly in both directions. Thus, Eqn.8
should be reformulated as

�

2
+ � = Treceiver � Tsender + � (10)

with � as the difference between �
2 and the actual one-way

delay between the sender and receiver and is in the range
of (��

2 < � < �
2). � is the offset between the clocks of the

sender and receiver due to their asynchronous behavior.
For the end-to-end measurements the receivers include

in their control messages timestamps (_Treceiver) indicating
when those messages were sent and the sender includes in
its reports its timestamp (Tsender). Additionally, the sender
reports include for each seen receiver message an entry
indicating the identity of the reporting receiver, the time
passed in between receiving the report and sending the
sender report (TDLSR) as well as the timestamp included in
the receiver report (_Treceiver). The receivers indicated in the
receiver list of the sender message can get an accurate value
of � and an estimation (� : � = � � �) of the link asym-
metry and of the offset between the clocks. � can then be
determined from the following equations:

� = Treceiver � _Treceiver � TDLSR (11)

� = Treceiver � Tsender �
�

2
(12)

� is then updated with each end-to-end measurement. In
between two end-to-end measurements, the receiver up-
dates its estimation of � using � and the timestamps of the
periodically arriving sender reports as in Eqn. 10.

We have tested the accuracy of this delay measurement
approach by running several measurement between Berlin
and Berkeley. The results depicted in Fig. III-D.3 show the
estimated smoothed round trip delay (tRTT) when using an
end-to-end round trip delay measurement every one second

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

0 200 400 600 800 1000 1200 1400

t

R
T

T
(s

ec
)

Time (ses)

T� = 1
Unfiltered: T� = 60, Tcontrol = 5

Filtered: T� = 60, Tcontrol = 5

Fig. 1. Delay measurement with MLDA

(T� = 1) and for the case of running an end-to-end mea-
surement every 60 seconds (T� = 60) and updating tRTT

using one-way measurements every 5 seconds (Tcontrol =
5). The initial round trip delay was set to 0.5 seconds. In
general using our estimation mechanism resulted in values
very close to those determined by running an end-to-end
measurement every second. However, in Fig. III-D.3 we
could identify three sources of problems:

1. As the system clocks of different hosts run at different
speeds, a skew in the one-way delay measurement exists
that leads to an error in the calculation.
2. Due to some irregularities in the network or the end sys-
tems the end-to-end measurement might be wrong which
would lead to wrong estimates of � followed by wrong esti-
mates of tRTT. For example, the measurement done at time
660 seconds resulted in a high round trip delay. As this
value was used for updating � this lead to negative one-way
delay estimations and negative values of tRTT.
3. Due to their inaccuracy, system clocks of computers are
usually adjusted using a more accurate clock that is other-
wise not directly accessible by the user1. This resulted in
large jumps on the order of 1 second in the measured one-
way delay and in false � values. This effect can be seen in
the sudden increase in tRTT at the 120th. second.

To filter out such irregularities we used the following ap-
proach:

� End-to-end measurement: For the case that an end-to-

1This adjustment occurs on the tested Solaris systems, when the sys-
tem clock differs by more than 1 second from the more accurate one.

7

end measurement resulted in a � with

j� � tRTTj > tRTT � �

then we save the value of the last calculated � to �old and
determine a new � as in Eqn 12. Additionally, we save the
previous value of � to �old.
If using the newly calculated �with the nextN one-way de-
lay measurements delivers estimations of � that are in the
range of [�old � (1 �)] then the newly calculated value
of � is used until the next end-to-end measurement. Other-
wise, the receiver uses �old until the next measurement after
which a new � is determined.
� one-way measurement: For each one-way measure-
ment a value � is calculated as

� = Treceiver � Tsender (13)

For the case that the determined � after a one-way delay
measurement fulfills the following inequality

j� � tRTTj > tRTT � � (14)

we save the newly determined � to �tmp and determine a
value � as the difference between the value of � calculated
during the last one-way delay measurement that did not ful-
fill Eqn. 13 and the � determined for the first measurement
that fulfilled Eqn. 13.
If the next N one-way delay measurements deliver estima-
tions of � in the range of [�tmp�(1�)] then � is increased
by � otherwise the measurement that has delivered �tmp is
assumed to be wrong and is ignored.

Applying these filtering rules to the measurement results
in Fig. III-D.3 with N set to 3, � set to 0.5 and set to 0.5,
leads to a smoothed round trip estimation with an error of
maximally 20% from the one achieved with an end-to-end
measurement every second.

Finally, note that the skew of the clocks plays a minor
role here as its effects are offset by the end-to-end measure-
ments. However, when increasing the interval between two
end-to-end measurements, i.e., using larger values of T� ,
an approach for estimating the skew such as in [29] should
additionally be used.

Having each receiver sending a report every T� would
result in scalability problems even for the case of large val-
ues of T� on the order of a few minutes. On the other
hand, using a suppression mechanism might cause some re-
ceivers to never send a report and thus not be able to do an
end-to-end measurement. Therefore we extend the scheme
with the notion of local representatives. That is, receivers
that send a report and make an end-to-end measurement
announce to their neighboring receivers the determined �.

This is done by sending a special packet to the basic multi-
cast layer with the time to live set to a small value to ensure
that the packet will only reach geographically close mem-
bers of the session. While we can assume that all neighbor-
ing receivers suffer from the same asymmetry to the sender,
their clock offsets from the sender still differ. Thus, in the
announced � only the � term is valid for the neighboring
receivers. To get an estimation of the synchronization term
(�) of each receiver to the sender, the receivers start an end-
to-end measurement of the round trip delay and a local �
(�local) to the announcing receiver. This is done similarly
to the end-to-end measurement to the sender and calcula-
tion in Eqn. 12 but with the announcing receiver taking the
role of the sender. Adding �local to the � announced by that
receiver all receivers get a valid estimation of their own �

with the sender.

E. Synchronous Join and Leave Actions

For the case of multicast, a data stream traverses a net-
work node as long as at least one receiver behind this node
is listening to this layer. Thus, the action of leaving a layer
results in an overall rate reduction at this node only if all
receivers behind this node leave this layer as well. Addi-
tionally, if two receivers joined different layers at the same
time, the receiver joining the lower layer might observe
losses that were not caused by the rate increase due to his
join action but by the other receiver joining a higher layer.

To coordinate the actions of the different receivers we
use the end of the observation periods as implicit synchro-
nization points. That is, receivers can try to join the first
enhancement layer after the end of the observation period
of the basic layer (To0). Receivers listening to the first en-
hancement layer as well can join the second one leave the
first enhancement layer at the end of the observation period
for the first enhancement layer, i.e., (To0+To1) after receiv-
ing the sender report.

Using synchronization points in itself is not novel. Vi-
cisano et al.[5] already use this approach based on spe-
cially flagged packets. Note, however, that due to the het-
erogeneity of the network the sender reports (or the spe-
cially flagged packets) arrive at the receivers at different
time points depending on the delay between the sender and
receiver. To reduce the effects of this delay variation we ex-
tend the observation period for the basic layer by (Tsync =
�max��i

2) with �max as the maximum seen round trip delay
between the sender and the receivers in the multicast ses-
sion and �i as the estimated round trip delay at receiver i.
For estimating �max the receivers include their estimation
of the round trip delay (tRTT) to the sender in the receiver
reports. The sender determines then based on the receiver
reports the maximum round trip delay (�max) and includes

8

this value in its reports. Note that as not all receivers send
reports, the �max estimation at the sender might not be com-
pletely correct. Additionally, as the tRTT of the receivers
are only estimations and the round trip delay tends to vary
on short time scales this approach does not guarantee a per-
fect synchronization among the receivers but still manages
to improve it compared to simply relying on the sender in-
dications.

F. Reliability Issues

The dependency on the sender reports for initiating the
adaptation actions of the receivers might lead to a deadlock
situation. During overload periods the sender reports might
get lost. However, without these reports the receivers do
not start the observation periods and then leave the higher
layers in case the losses. Hence, in this case the congestion
situation prevails and more sender reports might get lost.
To avoid this situation, the receivers schedule a new obser-
vation period after a timeout of (� � Tcontrol : � > 1) with
Tcontrol as the time period between sending two reports at
the sender. Thus, if the sender report was lost, the receiver
would start an observation period maximally (Tcontrol � �)
seconds after receiving the last sender report. After the ob-
servation period, the receiver can join or leave a layer and
schedule a receiver report as was described above. In case
a sender report was received before the timeout expires the
scheduled actions are cancelled and new ones are sched-
uled.

G. Parameter Settings

In the description of MLDA we have used several pa-
rameters that control the temporal behavior of the algo-
rithm. The sender transmits a report every (Tcontrol+p), the
receivers measure the behavior of a layer for To and sched-
ule the transmission of a report in a period of [0; Trand].

Here we need to consider observation periods for differ-
ent layers and accommodate possible delays in the leave
actions. We therefore set Tcontrol to 10 seconds and p ar-
bitrarily to 0.5 seconds. To allow for a good degree of sup-
pression we set Trand to 1.5 seconds which is 5 times a typ-
ical half of the round trip delay between Europe and the
States as measured between Berlin and Berkeley. Finally,
note that for taking the adaptation decision based on the
rates determined by all receivers, the receiver reports trig-
gered by a sender report need to arrive at the sender before
sending the next report. Therefore, the time left for the ob-
servation periods for all layers (Toall) can be determined as:

Toall = Tcontrol � p� Trand � Treturn � Tsync

with Treturn as the time it takes the receiver reports to ar-
rive at the sender and should be set at least to half the max-

imum round trip delay. With Treturn and Tsync set arbitrarily
to 0.5 seconds Toall has a value of 7 seconds. After several
simulations we decided to use an observation period of at
least 1.5 seconds. Using smaller values resulted in inaccu-
rate loss values and a highly oscillative adaptation behav-
ior. This means that the scheme supports only up to around
5 layers. While this naturally presents a limitation, using a
larger number of layers would, however, increase the com-
plexity of the receivers as they need to resynchronize the
data from different layers. As the different layers might ac-
tually take different routes to the receiver, they might suf-
fer from different delays. To reconstruct a data segment
consisting of data packets sent over different layers the re-
ceiver would need to wait until all the different parts are re-
ceived. This incurs additional delay and thus might reduce
the overall perceived quality.

IV. INTEGRATION OF RTP AND MLDA

To allow for the cooperation of the sender and receivers
in the MLDA framework different control information
need to be exchanged. The sender periodically transmits a
report with a description of the transmitted layers and some
timing information. The receivers need also to send feed-
back information to the sender with timing and bandwidth
information. The data packets themselves need to have se-
quence numbers in order for the receivers to detect losses
as well some information that allow the receivers to resyn-
chronize data of different layers into one data flow.

A protocol that already supports a large part of those re-
quirements is the real time transport protocol (RTP) [10]
widely used for multimedia communication in the Internet
for carrying control information between the senders and
receivers. RTP [10] defines a data and a control part. For
the data part RTP specifies an additional header to be added
to the data stream to identify the sender and type of data.
With the control part (RTCP), each member of a multicast
session periodically sends control reports to all other mem-
bers containing information about sent and received data.
Additionally, the end systems might include in their reports
an application specific part (APP) intended for experimen-
tal use.

RTP already includes sequence numbers in the data
packet headers allowing the receivers to detect losses. Ad-
ditionally, RTP includes timestamps in the data packets that
enable the receivers to reestablish a timely sequence of the
received data from different layers and hence resynchro-
nizing different layers into one data stream.

However, to accommodate the different needs of MLDA
some further additions are required for the integration of
MLDA and RTP:
Time measurements: For the time measurements, the ses-

9

sion members already include timestamps indicating the
report generation time in the RTCP reports. Additionally,
each receiver indicates in its reports the timestamps of all
sender reports seen since sending the last report, the iden-
tities of the senders and the time passed between receiv-
ing those reports and sending the receiver report. This al-
lows the senders to estimate their round trip delay to the
receivers.
As for the case of MLDA the receivers need to estimate
their round trip delay to the sender as well. Hence, in this
case, the senders need to include in their reports the times-
tamps of the received receiver reports since sending the last
sender report, the identities of the reporting receivers and
the time passed between receiving each report and gener-
ating the sender report.
Bottleneck measurement: To inform the receivers which
data packets should be considered as probe packets, the
RTCP sender can add to its reports an application defined
part (APP) including the source sequence number, the se-
quence number (SEQ) of a data packet that will start a
stream of probe packets and the number (n) of probe pack-
ets that will be sent. Then, n data packets starting with the
packet numbered SEQ are sent at the access speed of the
end system. The receiver can then use the time gaps be-
tween those packets for estimating the bottleneck.
Control information: The MLDA sender needs to inform
the receivers about the sizes, addresses and number of
transmitted layers as well as the maximum seen round trip
delay. This information can be included in the sender
RTCP reports as an application specific part. To allow
the sender to dynamically change the adaptation param-
eters the timing information such as To and Trand should
be included in the sender reports as well. Similarly, the
receivers can include their RTCP reports on their esti-
mated bandwidth shares as application specific parts in
their RTCP reports.
Control periods: As already mentioned in Sec. III the
sender transmits its reports in fixed periods. After receiv-
ing a sender report the receivers schedule a feedback report
and use the partial suppression approach for reducing the
total number of reports.
The RTCP traffic is, however, scaled with the data traffic so
that it makes up a certain percentage of the data rate (usu-
ally 5%) with a minimum interval of 5 seconds between
sending two RTCP messages. For large sessions this might
result in very scarce reports not enough for achieving effi-
cient adjustment of the sender behavior. Hence, this part
of the RTCP specification needs to be adjusted to allow for
a more scalable and timely flow of feedback information
from the receivers to the sender.

If some receivers of the multicast data do not support

MLDA, the APP parts can be ignored. These receivers can
still join the multicast session and receive the data of the ba-
sic layer. A receiver driven adaptation scheme such as [4]
can be used to join higher layers.

A. Simulative Performance Investigation of MLDA

In this part of the work, we study the behavior of MLDA
using simulations and measurements in the Internet. Here,
we mainly concentrate on the TCP-friendliness of MLDA
and its ability to accommodate the needs of heterogeneous
receivers.

B. Estimation of a TCP-Friendly Bandwidth share

As an example for an algorithm for calculating the TCP-
friendly bandwidth share to utilize by non-TCP-controlled
flows we use here an algorithm called the enhanced loss-
delay based adaptation algorithm (LDA+) [9].

In contrast to previous work in [30] and [9], with MLDA
the bandwidth share a flow can obtain between the sender
and a receiver is estimated at the receiver instead of the
sender.

LDA+ is an additive increase and multiplicative de-
crease algorithm with the addition and reduction values de-
termined dynamically based on the current network situ-
ation and the bandwidth share a flow is already utilizing.
During loss situations LDA+ estimates a flow’s bandwidth
share to be minimally the bandwidth share determined with
Eqn. 1, i.e., the theoretical TCP-friendly bandwidth share
determined using the TCP model. For the case of no losses,
the flow’s share can be increased by a value that does not
exceed the increase of the bandwidth share of a TCP con-
nection with the same round trip delay and packet size.

In the detail, after receiving the mth. sender report
(SRm) the receivers start measuring the losses of the in-
coming data stream for a period of (To � x) with To as the
minimum measurement time needed to obtain usable loss
information. x indicates the number of layers the receiver
is already tuned to. After the measurement period each re-
ceiver (i) calculates the rate (rim) that would be appropriate
to use on the link connecting the sender to him. This cal-
culation is done as follows:
� No loss situation: In this case, the receiver (i) can in-
crease its estimation of its TCP-friendly bandwidth share
by an additive increase rate (Ai). To allow for a smooth in-
crease ofAi and to allow flows of smaller bandwidth shares
to faster increase their transmission rates than competing
flows with higher shares, Ai is determined in dependence
of the bandwidth share (ri) the receiver is currently mea-
suring relative to the bottleneck bandwidth (Ri) of the path
connecting the sender to this receiver. Thus with an initial
transmission rate of (ri0), an initial additive increase value

10

of _Ai, Ai would evolve as follows:

Ai1 = _Ai + (1�
ri0

Ri
)� _Ai (15)

Aim = Aim-1 + (1�
rim-1

Ri
)�Aim-1 (16)

Both ri0 and _Ai are set by the user but should be kept small
relative to the bottleneck bandwidth.
Finally, an adaptive flow should not increase its bandwidth
share faster than a TCP connection sharing the same link
and having a similar round trip time. With the sender ad-
justing its transmission rate just before sending a sender re-
port, i.e., every TSR seconds and a round trip delay of (�)
a TCP connection would increase its transmission window
by P packets with P set to

P =

TSR=�X
q=0

q =
(
TSR
� + 1)�

TSR
�

2
(17)

with the window size being increased by one packet each
round trip delay. With M as the packet size and averaged
over TSR, the receiver should maximally increase its esti-
mation of its bandwidth share by

Aim = M �
P

TSR
!

TSR
� + 1

2� �
(18)

Finally, the receiver determines rim as

rim = rim-1 +Aim (19)

� Loss situation: In this case the receiver reduces its esti-
mation of the transmission rate the sender should be using
on the path to him. rim is determined in this case as follows:

rim = max(rim-1 � (1�
q
lioverall); riTCP) (20)

with rim-1 as the rate determined at receiver i after receiv-
ing the previous sender report (SRm-1), riTCP determined
using the TCP-model of Eqn. 1. Additionally, the increase
factor (A) is reset to _A.
lioverall indicates here the average loss measured over all the
layers receiver (i) is listening to as described in Sec. III-
D.1.

B.1 Simulation Model of MLDA

For the rate estimation part of MLDA we use in this
study the loss-delay adaptation algorithm (LDA+) [9] as
described in Sec. IV-B. While one could use some other
scheme, we had already investigated LDA+ in various
other studies and achieved good results in terms of stability
and TCP-friendliness [9].

For dividing the data into K layers we refer here to
a simple approach. The sender determines the minimum
(rmin) and maximum (rmax) reported rates and sets the rate
for the basic layer to rmin. The enhancement layers are then

set to ((��rmax)�rmin
K�1). (� : � � 1) is a dampening factor

that reduces the effects of a possible overestimation of the
available resources by the receiver reporting rmax. To avoid
establishing layers with a negligible content, the minimum
size of a layer is set to Lmin. In the simulations presented
here, we set � to 0.9 ad K to 3. Note that while the chosen
layering approach might have some impact on the fairness
and stability of MLDA, the actual performance of MLDA
does not depend on using a particular layering scheme.

The exchange of signaling information was realized in
the simulation model using a model of RTP with the ex-
tensions described in Sec. IV. As a simplification, an ac-
curate estimation of the bottleneck bandwidth is available
at the receivers right after the start of the simulation. We
additionally assume that the clocks of the sender and re-
ceivers are synchronized and that the round trip delay is
measured accurately. This allows us to better investigate
the aspects of TCP-friendliness and stability of the scheme
without having to consider possible side effects of mea-
surements errors.

Finally, we assume that the time passing between send-
ing a leave request and this leave action actually taking ef-
fect is constant and is set to one second.

B.2 Performance of MLDA in Heterogeneous Multicast
Environments

To test the performance of MLDA in heterogeneous
multicast environments we use the topology depicted in
Fig. 2 with a multicast session consisting of a sender and
6 receivers connected to the sender over routers with dif-
ferent capacities. Each router is shared between an MLDA
stream and m TCP connections that have the same end-to-
end propagation delay as that of the MLDA sender/receiver
pair. The TCP connections are modeled as FTP flows that
always have data to send and last for the entire simulation
time. A TCP-Reno [28] model was used for simulating the
congestion control behavior of TCP. The sender transmits
packets of 1 kbytes and each router is a random early drop
(RED) [31] router. A RED gateway detects incipient con-
gestion by computing the average queue size. When the av-
erage queue size exceeds a preset minimum threshold the
router drops each incoming packet with some probability.
Exceeding a second maximum threshold leads to dropping
all arriving packets. This approach not only keeps the av-
erage queue length low but ensures that all flows receive
the same loss ratio and avoids synchronization among the
flows. Actually, the measurements in Sec. V and other sim-

11

ulation studies [32] suggest that the performance of MLDA
is not affected by the used buffer management scheme.
Here we use a maximum queuing delay of 0.15 seconds and
set the maximum and minimum thresholds to 0.8 and 0.3 of
the maximum buffer size. The router R0 works only as a
distributer of data and incurs no losses or delays to the data.
In our simulations we set the round trip propagation delay
between the sender and the receivers to 200 msec.

m

m

m

m

m

m

RTP end system

FTP end system

Router

R1

R0

R2

R3 R4

R5

R6

 n

 n n

 n

 n n1

2

3 4

5

6

0.8 Mb/s

sender

10 Mb/s

2.4 Mb/s

3.2 Mb/s 4 Mb/s

4.8 Mb/s

5.6 Mb/s

Fig. 2. Multicast testing topology

Fig. 3 shows the distribution of bandwidth among the
different layers for the case when each router is shared be-
tween an MLDA flow and a TCP connection. We can ob-
serve that the rate of the basic layer, see Fig. 3(a), is ad-
justed in accordance with the capacity of receiver n0.

0

200

400

600

800

1000

0 200 400 600 800

R
at

e
(k

b/
s)

Time

Layer 0

(a) Layer 0

0

500

1000

1500

2000

0 200 400 600 800

R
at

e
(k

b/
s)

Time

Layer 1

(b) Layer 1, 2

Fig. 3. Bandwidth distribution of the layers

Fig. 4 displays the bandwidth distribution between the
competing MLDA and TCP flows at the different routers.

For the case of different numbers of competing TCP
connections (m) Tab. I indicates that the ratio of the av-
erage bandwidth share of the MLDA receivers to the av-
erage bandwidth share of the competing TCP connections
at each router (Rn) varies around one. Both the results in
Fig. 4 and Tab. I indicate that MLDA is in general fair to-
wards the competing TCP connections and manages to sat-
isfy the capabilities of the heterogeneous receivers. While

0

200

400

600

800

1000

1200

0 200 400 600 800

R
at

e
(k

b/
s)

Time

MLDA
TCP

(a) Router 1

0

500

1000

1500

2000

2500

3000

0 200 400 600 800

R
at

e
(k

b/
s)

Time

MLDA
TCP

(b) Router 2

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800

R
at

e
(k

b/
s)

Time

MLDA
TCP

(c) Router 3

0
500

1000
1500
2000
2500
3000
3500
4000

0 200 400 600 800

R
at

e
(k

b/
s)

Time

MLDA
TCP

(d) Router 4

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 200 400 600 800

R
at

e
(k

b/
s)

Time

MLDA
TCP

(e) Router 5

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 200 400 600 800

R
at

e
(k

b/
s)

Time

MLDA
TCP

(f) Router 6

Fig. 4. Bandwidth distribution between TCP and MLDA at the
different routers

the bandwidth shares of the receivers with the lower band-
width (n1 and n2) is restricted by the adaptation scheme,
receivers that have a TCP-friendly bandwidth share that is
larger than the sum of the first x layers but below the sum
of the x+1 layers will oscillate between layer x and x+1.
Depending on the chosen layering approach and number of
layers this might result in temporary unfair bandwidth dis-
tribution. Improved fairness and smaller oscillations can
only be reached using a larger number of layers [33] which,
however, increases the complexity of the scheme as the end
systems need to manage and resynchronize a larger number
of layers.

B.3 Performance of MLDA in Dynamical Environments

In this section, we investigate the behavior of MLDA
in a dynamical receiver setting, i.e., a setting with the re-
ceivers joining and leaving the multicast session during the
simulation time. For this purpose, we repeat the simula-

12

Flows (m) R1 R2 R3 R4 R5 R6
1 0.66 0.70 1.03 1.04 1.5 0.95
8 0.50 0.90 0.85 1.09 0.92 1.02

TABLE I
RATIO OF AVERAGE BANDWIDTH SHARE OF THE MLDA

FLOW TO THE AVERAGE SHARE OF COMPETING TCP
CONNECTIONS

tions of Sec. IV-B.2 but with receiver (n1) joining the mul-
ticast session at time 300 seconds and leaving it at time 600
seconds. Each router is shared between the MLDA flow
and uncorrelated background traffic which consumes max-
imally half of the router’s capacity. The background traffic
is modulated as the aggregate of 100 on-off processes with
the on period lasting for the time needed to carry a number
of packets drawn from a Pareto distribution with the factor
of 1.1 and a mean of 20 packets and the off period lasting
for a time drawn from a Pareto distribution with a factor of
1.8 and a mean of 0.5 seconds [34].

0

500

1000

1500

2000

0 200 400 600 800 1000

R
at

e
(k

b/
s)

Time

Layer 0

(a) Layer 0

0

500

1000

1500

2000

0 200 400 600 800 1000

R
at

e
(k

b/
s)

Time

Layer 1

(b) Layer 1, 2

Fig. 5. Bandwidth distribution of the layers

As Fig. 5 depicts, during the first 300 seconds the band-
width share of the lowest layer is increased up to around
1.2 Mb/s which is the bandwidth share of receiver n2 which
constitute the worst receiver in this case. After receiver
n1 joins the session the size of the base layer is reduced
down to the appropriate level of the new worst receiver,
i.e., 400 kb/s. The sizes of the upper layers is increased to
compensate the reduction in the base layer. Thus the re-
ceivers listening to the higher layers are not affected by the
reduction in the base layer. The share of receiver (n6) as de-
picted in Fig. 6(f) is not changed due to the join and leave
actions and is comparable to the results achieved in Sec. IV-
B.2, see Fig. 4(f). After receiver n1 leaves the session at
600 seconds the size of the base layer is increased again
and, hence, improving the bandwidth share of the receivers
listening only to the lower layer.

0
200
400
600
800

1000
1200
1400

0 200 400 600 800 1000

R
at

e
(k

b/
s)

Time

MLDA

(a) Router 1

0

500

1000

1500

2000

0 200 400 600 800 1000

R
at

e
(k

b/
s)

Time

MLDA

(b) Router 2

0

500

1000

1500

2000

2500

0 200 400 600 800 1000

R
at

e
(k

b/
s)

Time

MLDA

(c) Router 3

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

R
at

e
(k

b/
s)

Time

MLDA

(d) Router 4

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000

R
at

e
(k

b/
s)

Time

MLDA

(e) Router 5

0
500

1000
1500
2000
2500
3000
3500
4000

0 200 400 600 800 1000

R
at

e
(k

b/
s)

Time

MLDA

(f) Router 6

Fig. 6. Bandwidth share of MLDA at the different routers

B.4 Performance of MLDA in Multicast Environments
with Shared Links

In the previous section, see Sec. IV-B.2 and Sec. IV-B.3,
we only considered multicast distribution trees without any
shared links among the receivers. This was beneficial for
investigating the TCP-friendliness of MLDA and its abil-
ity to accommodate heterogeneous receivers without hav-
ing to consider the effects of interactions between different
receivers, traversing multiple routers and different round
trip delays among the receivers.

Fig. 7 depicts another configuration of a multicast tree
that is shared among different receivers with each link of
the tree having a different capacity. Similar to Fig. 2, RED
routers are used. Each router is shared between the MLDA
flow and uncorrelated background traffic which consumes
maximally half of the router’s capacity.

The bandwidth distribution among the layers, see Fig. 8,
accommodates in this case the capacities of the receivers
such that receiver n5 manages to get a bandwidth share

13

R1R0 R2 R3

n0
n5

1.2 Mb/s 0.8 Mb/s 0.4 Mb/s

2 Mb/s 2 Mb/s 2 Mb/s

2 Mb/s

40 ms 50 ms 120 ms

30 ms

120 ms 120 ms80 ms

n4n2n1

n32 Mb/s
2 ms

2 Mb/s
30 ms

Fig. 7. Testing topology of shared multicast trees

of around 170 kb/s and the receivers connected to the first
router (R1) get a bandwidth share of 540 kb/s.

0

50

100

150

200

250

300

0 200 400 600 800

R
at

e
(k

b/
s)

Time

Layer 0

(a) Layer 0

0
50

100
150
200
250
300
350
400

0 200 400 600 800

R
at

e
(k

b/
s)

Time

Layer 1,2

(b) Layer 1,2

Fig. 8. Bandwidth distribution of the layers

As Fig. 9 suggests that receivers connected to the same
router over links with similar bandwidth capacities but
with different round trip delays receive identical bandwidth
shares and stay synchronized throughout the simulation
time. Also, notice that receiver (n4) oscillates between
the first two layers which might cause losses in the stream
forwarded further towards receiver n5. However, due to
the synchronization mechanisms of MLDA those losses are
ignored at receiver n5 which does not include the losses
caused of the failed join operations of receiver n4 into its
loss estimations.

0
200
400
600
800

1000
1200
1400

0 200 400 600 800

R
at

e
(k

b/
s)

Time

Receiver 0
Receiver 1
Receiver 2
Receiver 3
Receiver 4

Fig. 9. Bandwidth distribution among the receivers

V. MEASUREMENTS OF THE TCP-FRIENDLINESS OF

MLDA

We tested the TCP-friendliness of MLDA by conduct-
ing measurements over different parts of the Internet. Each
measurement consisted of a host sending 10000 packets of
1 kbyte each over a TCP connection to some destination
as fast as it can. Simultaneously, the same host sends the
same amount of UDP packets to that destination with the
transmission rate determined using LDA+. Each measure-
ment was done several times over different times of the
day. To estimate the average bottleneck bandwidth incor-
rect estimates are filtered out using a similar approach to
that deployed in the BPROBE tool [27]. That is, similar es-
timates are clustered into intervals and the average of the
interval with the highest number of estimates is the cho-
sen. As there was only one receiver in the test scenario, the
receiver was able to frequently send receiver reports and
measure the round trip delay on an end-to-end basis lead-
ing to rather accurate delay estimations.

Host name Domain Operating System
donald fokus.gmd.de SunOS 5.5
verba stu.neva.ru SunOS 5.6
systems seas.upenn.edu SunOS 5.5
ale icsi.berkeley.edu SunOS 5.6

TABLE II
HOSTS USED IN THE EXPERIMENTAL TESTS

The host names and domains as well as their operating
systems are listed in Tab. II. The initial additive increase
rate (_Rai) was set to 5 kb/s and the initial transmission rate
of the UDP flows to 80 kb/s. We additionally limited the
maximum transmission rate to 800 kb/sec. Similar to [35]
the friendliness (F) of LDA+ is determined here as the
goodput rate of the TCP connection divided by the good-
put of the MLDA stream.

The links between verba and donald as well as verba
and systems are rather lossy in both directions. Under these
conditions the measured friendliness index (F) varies be-
tween 0.6 and 1.4 with most of the measured values in the
range of 0.8 and 1.2 which are rather close to the optimal
value of 1. The results depicted in Fig. 10(d) are, how-
ever, contradictory. In the direction form donald to sys-
tems we have a friendliness factor of around 0.8 on the av-
erage which means that the LDA+ controlled flow actually
receives a smaller share of the bandwidth than the com-
peting TCP connection. The measurements on the oppo-
site direction indicate, however, that the LDA+ controlled
flow receives four times as much bandwidth as the compet-
ing TCP connection. Actually, the LDA+ controlled flow

14

0

0.5

1

1.5

2

1 1.5 2 2.5 3 3.5 4 4.5 5

Fa
ir

ne
ss

Measurement Number

verba->systems: F
systems->systems: F

(a) systems to verba

0

0.5

1

1.5

2

5 10 15 20 25 30

Fa
ir

ne
ss

Measurement Number

donald->ale: F
ale->donald: F

(b) donald to ale

0

0.5

1

1.5

2

2 4 6 8 10 12 14

Fa
ir

ne
ss

Measurement Number

donald->verba: F
verba->donald: F

(c) donald to verba

0

1

2

3

4

5

2 4 6 8 10 12 14

Fa
ir

ne
ss

Measurement Number

donald->systems: F
systems->donald: F

(d) donald to systems

Fig. 10. TCP friendliness (F) measured over the Internet

managed to achieve the maximum transmission rate and
to stay at this level. These contradictory values resulted
from the asymmetry of the Internet link between Europe
and the States. Fig. 11 shows a detailed snapshot of the
measurement labeled 2 in Fig. 10(d) and displays the trans-
mission rate of both the TCP connection and LDA+ con-
trolled flow and the losses measured over intervals of one
second in both directions on the link connecting donald and
systems. In Fig. 11(b) we notice that while in the direc-
tion from donald to systems no losses were observed during
the entire measurement period, the traffic from systems to
donald faced losses ranging from 5% up to 25% during the
same period. This asymmetry leads to the well known ack
compression problem [36]. For the case of a slower or lossy
back link, TCP acknowledgments might arrive in clusters
or might get lost. In the worst case, this might cause a
timeout at the TCP sender which leads to a severe reduc-
tion of the congestion window and the sender transmitting
packets that have already reached the receiver. In any case,
the clustering or loss of acknowledgments can result in idle
states at the TCP sender and thus a rate reduction.

So while the transmission rate of UDP flows is adapted
only to the losses on the way from the sender to the re-
ceiver, the transmission behavior of TCP connections or
any other control scheme based on acknowledgment pack-
ets from the receivers such as [37], [35] depends also on
the loss conditions on the direction from the receiver to the
sender as well. Thus, in this situation setting the transmis-
sion rate of the UDP senders exactly to the equivalent TCP

0

200

400

600

800

1000

1200

10 20 30 40 50 60 70 80 90 100

R
at

e
(k

b/
s)

Time (sec)

TCP rate
LDA+ rate

(a) Bandwidth distribution
from donald to systems

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

10 20 30 40 50 60 70 80 90 100

L
os

s

Time (sec)

donald->systems: l
systems->donald: l

(b) Measured loss on both
directions between donald
and systems

Fig. 11. Bandwidth distribution and losses measured between
donald and systems

rate would be ineffective and might lead to underutilizing
the network.

Fig. 12 shows the goodput, measured in intervals of 2
seconds, of the competing TCP and MLDA streams during
a period of 200 seconds of the measurement shown as point
18 in Fig. 10(b). LDA+ shows a less oscillatory behavior
than TCP and has in general a comparable rate to that of
TCP.

0

50

100

150

200

250

20 40 60 80 100120140160180200

R
at

e
(k

b/
s)

Time (sec)

TCP
RTP

Fig. 12. Temporal behavior of competing TCP and LDA streams

VI. COMPARISON OF THE PERFORMANCE OF MLDA
TO OTHER CONGESTION CONTROL SCHEMES

In this part of the work, we compare between the perfor-
mance of MLDA and a row of recent proposals for TCP-
friendly congestion control schemes for multicast commu-
nication. Due to the large number of such proposals we
restrict our comparisons to only a few that combine TCP-
friendly adaptation with layered data transmission. For
comparing the schemes, we picked out some representative
test cases as were described in the papers presenting the to
be compared algorithms. We re-simulated those cases in
our simulation environment and compared the achieved re-
sults using MLDA with the results achieved by the other
schemes as were reported by their authors. This approach

15

reduces possible errors in the comparisons due to misinter-
pretations or wrong implementations of the algorithms.

A. Comparison of MLDA and PLM

The packet pair receiver-driven layered multicast (PLM) [17]
is based on layered transmission and on the use of the
packet pair approach to infer the bandwidth available at
the bottleneck to decide which are the appropriate layers
to join. PLM is receiver driven, i.e., congestion control
is achieved through the join and leave actions of the re-
ceivers. The packet pair approach is used usually to es-
timate the bandwidth of the bottleneck router on the path
between the sender and receiver and not in the bandwidth
share of the transmitted flow. To apply the packet pair ap-
proach for reliably estimating a flow’s bandwidth share, the
authors of PLM assume that all routers in the network de-
ploy some kind of a fair queuing mechanism that allocates
each flow a fair bandwidth share. Only under this assump-
tion, which is currently invalid in the Internet, is it possible
to use PLM for congestion control.

With PLM the sender periodically sends a pair of its data
packets as a burst to infer the bandwidth share of the flow.
The receivers use the gaps between the specially marked
packet pairs to estimate their bandwidth share. Based on
the estimated share they determine the number of data lay-
ers they can receive.

RouterRouter

m

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

��
��
��
��
��
��
��

��
��
��
��
��
��
��

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��
��
��
��
��
��

��
��
��
��
��
��

TCP

MLDA

MLDAn

TCP

0

0

MLDA

MLDA

TCP

TCP0

n

0

m

 τ
 R

Fig. 13. Testing topology

For comparing the TCP-friendliness of PLM and MLDA
we use the topology depicted in Fig. 13 with a bottleneck
link shared between two TCP (m = 2) connections and
an MLDA flow (n = 1). The bottleneck link has a band-
width of 300 kb/s and a delay of 0.02 seconds. For reducing
the effects of synchronization and ensuring a fair distribu-
tion of the losses we use a RED router with a maximum
buffering delay of 0.2 seconds and the maximum and min-
imum thresholds set to 0.3 and 0.8. The initial transmission
rate of the MLDA flow was set to 100 kb/s and the packet
size was set to 500 bytes. The first TCP connection starts
at time 0 seconds and the second one 60 seconds later. The
adaptive flow starts at time 20 seconds. For PLM, a packet
pair was sent each second and each flow had a queue size of

20 packets. Additionally, the sender transmitted 17 layers
each of 20 kb/s. This topology was taken from [17] Fig.[2]
whereas in [17] a router with fair queuing was used.

(a) PLM

0
50

100
150
200
250
300
350
400

0 200 400 600 800 1000

R
at

e
(k

b/
s)

Time

TCP 0
TCP 1

MLDA

(b) MLDA

Fig. 14. Bandwidth distribution with MLDA and PLM

The results presented in Fig. 14 describe the bandwidth
distribution between the TCP and MLDA flows when us-
ing PLM and MLDA. Measured over the entire simula-
tion time, both approaches achieve similar average band-
width distributions with the adaptive flow receiving around
80 kb/s and the TCP flows having a share of 110 kb/s.
However, looking at the temporal behavior of the flows in
Fig. 14 it can be observed that with PLM the flows show
hardly any oscillations and have rather constant bandwidth
shares. With MLDA on the contrary, the TCP flows os-
cillate between 0 kb/s and 250 kb/s. While the MLDA
flow itself shows a less oscillatory behavior than TCP it
still shows a variance of �50% of its average bandwidth
share. With PLM the receivers always know their exact
bandwidth share and as the number of flows in the network
is constant the bandwidth shares of the flows is constant as
well. Hence, this stable behavior of the flows with PLM
was to be expected.

Note that PLM not only assumes a fair queuing network
but also that the packet pair approach always results in cor-
rect estimations of the bandwidth share. However, even
in a fair queuing network, the packet pair approach might
result in under or overestimation of the bandwidth share.
That is, due to losses of probe packets, network congestion
or interference of other traffic this approach might result in
wrong estimations of the bandwidth. Hence, the receivers
need to deploy mechanisms such as [25], [26], [27] to filter
out wrong estimates. As such effects are difficult to simu-
late, the results presented in [17] for PLM are to be con-
sidered rather optimistic. Due to the effects of losses and
traffic interference a higher degree of oscillations can be
expected in a more realistic environment.

Finally, For the case of fair queuing networks deploying
the packet pair approach with MLDA for the bandwidth es-

16

timation part would improve the performance of MLDA in
terms of stability and maintain its flexibility in heteroge-
neous multicast environments.

B. Comparison of MLDA and RLC

Vicisano et al. present in [5] a receiver-driven layered
control scheme (RLC) for realizing TCP-friendly conges-
tion control. With RLC, the sender divides its data into lay-
ers and sends them on different multicast sessions. To test
the availability of resources, the sender periodically gen-
erates short bursts of packets followed by an equally long
relaxation period in which no packets are sent. For the du-
ration of the bursts the consumed bandwidth by the flow
is doubled. Hence, if the packets of the burst are not lost
then this indicates the availability of resources. After re-
ceiving a packet burst, the receivers can join a higher layer
if the burst was lossless otherwise they remain at their cur-
rent subscription level. The receivers might leave a layer
at any time if losses were measured.

In [5] a simulation topology is used similar to Fig. 13
but with the round trip delay (�) set to 0.42 seconds and
the bottleneck bandwidth (R) set to 1.5 Mb/s. The link is
shared between 8 TCP connections and 8 adaptive flows
and the packet size is set to 1024 bytes. Fig. 15(a) sug-
gests that RLC shows a very conservative behavior under
these conditions and the RLC flow receives only around
60% of the bandwidth share consumed by the TCP con-
nection. The behavior of MLDA in this case resembles the
behavior of TCP to a greater extent with the MLDA flow
receiving around 90% of the bandwidth consumed by the
TCP connection, see Fig. 15(b).

(a) RLC

0

500

1000

1500

2000

0 200 400 600 800 1000

R
at

e
(k

b/
s)

Time

TCP
MLDA

(b) MLDA

Fig. 15. Bandwidth distribution with RLC and MLDA

In a second test, we compare the behavior of RLC and
MLDA in a multicast tree with shared links, see Fig. 16.
This topology is similar to that described in Sec. IV-B.4
but with different delay and bandwidth parameters. Also in
this case, the routers are shared between the adaptive flow
and uncorrelated traffic.

As Fig. 17 describes, receivers connected to the same

R1R0 R2 R340 ms 50 ms

30 ms

120 ms 120 ms80 ms

nnn

n3

2 ms 30 ms

1.5 Mb/s 0.5 Mb/s

10 Mb/s
10 Mb/s

10 Mb/s 10 Mb/s 10 Mb/s

150 ms

0.128 Mb/s

10 Mb/s
n

4 2 1

0

S

Fig. 16. Testing topology of shared multicast trees

bottleneck receive identical shares and stay synchronized
throughout the simulation time with both RLC and MLDA.
However, with RLC the maximum bandwidth share of
the receivers (n2; n3; n4) is restricted by the static nature
of the transmitted layers. That is while the background
traffic only consumes half of the 1.5 Mb/s, the receivers
(n2; n3; n4) can only utilize up to 500 kb/s instead of
750 kb/s. With MLDA the sizes of the layers is shaped in
accordance with the available resources and the receivers
(n2; n3; n4) receive on the average a bandwidth share of
around 750 kb/s. Hence, while MLDA introduces a higher
complexity due to the exchange of control messages be-
tween the sender and receivers it is more capable of accom-
modating the needs of heterogeneous receivers than RLC.

(a) RLC

0

500

1000

1500

2000

0 200 400 600 800 1000

R
at

e
(k

b/
s)

Time

2
3
4
1
0

(b) MLDA

Fig. 17. Behavior of RLC and MLDA in a shared multicast tree

C. Comparison of MLDA and IRFMC

Jiang et al. [18] present a scheme called inter-receiver
fair multicast communication in which the sender transmits
its data in a fixed base layer and a variable enhancement
layer. Based on their measured losses, the receivers esti-
mate their bandwidth share and report this to the sender.
The transmission rate of the variable layer is then deter-
mined as to increase the satisfaction of most of the re-
ceivers.

Receivers determine their appropriate bandwidth share
by measuring the losses of the incoming flow. In case no
losses were observed the receivers increase their estima-

17

tions of their bandwidth share by (rcurrent
ltol

) with rcurrent as
the current transmission rate of the session and ltol as the
loss that can be tolerated by the receiver. In case of losses,
the receivers reduce their bandwidth estimation by a reduc-
tion factor intended to be similar to TCP’s rate reduction in
face of losses.

To compare the behavior of IRFMC with MLDA we
chose a test topology depicted in Fig. 18 as was described
in [18].

The type of the TCP connection is Tahoe-TCP [28] and it
starts at 80 seconds and stops transmitting data at 250 sec-
onds. The routers in the topology use the drop tail buffer
management and have a buffer of 20 packets. The multi-
cast flow starts transmitting data with a rate of 200 kb/s.

R2R1

TCP

S

nn

R0

0 26 n n n
27 28 29

TCP
10 ms 10 ms

1 Mb/s 0.7 Mb/s

Fig. 18. Testing topology for MLDA and IRFMC

As Fig. 19(b) depicts, with MLDA the sender starts
increasing the transmission rate of its base layer until it
reaches the capacity of router R2. To further utilize the
resources still available at router R1, the sender starts in-
creasing the transmission rate of the enhancement lay-
ers. When the TCP connection starts transmitting data, the
sender reduces the transmission rate of the base layer to al-
low for fair bandwidth distribution between the TCP con-
nection and the slow receivers with each of the TCP and
MLDA flows receiving a bandwidth share of 350 kb/s at
router R2. Receivers connected to the faster router get a
bandwidth share of around 600 kb/s during the active time
of the TCP connection.

With IRFMC, the TCP connection achieves an aver-
age bandwidth share of 220 kb/s [18]. However, from
Fig. 19(a) we can see that the TCP connection receives a
bandwidth share of around 400 kb/s in the first half of its
life time. In the second half its share is reduced consider-
ably and it only receives a share of the bandwidth when the
slower receivers temporarily leave the higher layer.

VII. SUMMARY AND FUTURE WORK

In this paper, we presented an adaptive rate control
mechanism for multicast communication called MLDA.
We have tested MLDA under various topologies with var-
ious parameters and compared the behavior of MLDA to a
range of recently proposed TCP-friendly congestion con-
trol schemes. Our simulations and measurements suggest

(a) RLC

0

200

400

600

800

1000

1200

0 200 400

R
at

e
(k

b/
s)

Time

Fast receiver
Slow receiver

TCP

(b) MLDA: Receivers

0

200

400

600

800

1000

1200

0 200 400

R
at

e
(k

b/
s)

Time

Level 0
Level 1
Level 2

(c) MLDA: Levels

Fig. 19. Bandwidth distribution with IRFMC and MLDA

the efficiency of the scheme and its friendliness towards
competing TCP traffic. In addition to the results presented
here, we have run in [32] a large number of other simula-
tions testing the adaptation behavior of LDA+ under vary-
ing conditions and different parameters that confirm the re-
sults presented here.

The results of comparing MLDA to other congestion
control schemes, suggest that while the bandwidth distri-
bution with MLDA is not as stable as that achieved with
network-supported scheme such as [17] it is nevertheless
still TCP-friendly. Compared to simple schemes that do
not require the exchange of control information or the mea-
surement of round trip delays, MLDA achieves a more
TCP-friendly bandwidth distribution and is better suited to
accommodate the needs of heterogeneous receivers.

While MLDA was presented as a complete scheme it
could be considered as a set of mechanisms that can be
easily combined with other approaches. For example, we
could replace the rate calculation at the receivers (LDA+)
with some other such as [7]. The layering approach can
be replaced by another one that might take better into ac-
count the heterogeneity of the network and the constraints
imposed by the used coder or content. The here proposed
mechanisms for providing the user with information about
the heterogeneity of the network (partial suppression) or
the delay measurement approach could also be used sep-
arately in some other congestion control approaches.

18

VIII. ACKNOWLEDGMENTS

The RTP/RTCP simulation models were mainly im-
plemented by Timur Friedman and improved by Frank
Emanuel. The comments of Henning Sanneck and Hen-
ning Schulzrinne are gratefully acknowledged and were
the basis for various aspects of this work. Special thanks
Matthias Kranz for realizing the delay measurements, An-
drey Vasilyev and Martin Reisslein for providing the mea-
surement end points.

REFERENCES

[1] K. Thompson, G. J. Miller, and R. Wilder, “Wide-area Internet
traffic patterns and characteristics,” IEEE Network, vol. 11, no. 6,
pp. –, November/December 1997.

[2] Sally Floyd and Kevin Fall, “Promoting the use of end-to-end con-
gestion control in the internet,” IEEE/ACM Transactions on Net-
working, Aug. 1999.

[3] Xue Li and Mostafa H. Ammar, “Bandwidth control for
replicated-stream multicast video,” in HPDC Focus Workshop on
Multimedia and Collaborative Environments (Fifth IEEE Interna-
tional Symposium on High Performance Distributed Computing),
Syracuse, New York, Aug. 1996, IEEE Computer Societey.

[4] Steven McCanne, Van Jacobson, and Martin Vetterli, “Receiver-
driven layered multicast,” in SIGCOMM Symposium on Commu-
nications Architectures and Protocols, Palo Alto, California, Aug.
1996.

[5] Lorenzo Vicisano, Luigi Rizzo, and Jon Crowcroft, “TCP-like
congestion control for layered multicast data transfer,” in Pro-
ceedings of the Conference on Computer Communications (IEEE
Infocom), San Francisco, USA, Mar. 1998.

[6] Steven McCanne, Martin Vetterli, and Van Jacobson, “Low-
complexity video coding for receiver-driven layered multicast,”
IEEE Journal on Selected Areas in Communications, vol. 16, no.
6, Aug. 1997.

[7] Mark Handely and Sally Floyd, “Strawman specification for TCP
friendly reliable multicast congestion control,” 1998, Note to the
Internet Reliable Multicast Group mailing list.

[8] Dorgham Sisalem and Frank Emanuel, “QoS control using adap-
tive layered data transmission,” in IEEE Multimedia Systems Con-
ference’98, Austin, TX, USA, June 1998.

[9] Dorgham Sisalem and Adam Wolisz, “Towards TCP-friendly
adaptive multimedia applications based on RTP,” in Fourth
IEEE Symposium on Computers and Communications (ISCC’99),
Egypt, July 1999.

[10] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP:
a transport protocol for real-time applications,” Tech. Rep. RFC
1889, Internet Engineering Task Force, Jan. 1996.

[11] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: A simple model and its empirical validation,” in ACM
SIGCOMM ’98, Vancouver, Oct 1998.

[12] Thierry Turletti, Sacha Fosse Prisis, and Jean-Chrysostome Bolot,
“Experiments with a layered transmission scheme over the Inter-
net,” Rapport de recherche 3296, INRIA, Nov. 1997.

[13] W. Tan and A. Zakhor, “Multicast transmission of scalable video
using receiver-driven hierarchical FEC,” in Packet Video Work-
shop 99, New York, Apr. 1999.

[14] Sally Floyd and Fall Kevin, “Router mechanisms to support end-
to-end congestion control,” Tech. Rep., LBL-Berkeley, Feb. 1997.

[15] Injong Rhee, Nallathambi Balaguru, and George N. Rouskas,
“MTCP: Scalable TCP-like congestion control for reliable multi-

cast,” in Proceedings of the Conference on Computer Communi-
cations (IEEE Infocom), New York, USA, Mar. 1999.

[16] S. Paul, K. Sabnani, J. C. Lin, and S. Bhattacharyya, “Reliable
Multicast Transport Protocol (RMTP),” IEEE Journal on Selected
Areas in Communications, April 1997.

[17] A. Legout and E. W. Biersack, “Fast convergence for cumulative
layered multicast transmission scheme,” Tech. Rep., Eurecom,
Sophia-Antipolis, France, Oct. 1999, under submission.

[18] Tianji Jiang, Ellen Zegura, and Mostafa Ammar, “Inter-receiver
fair multicast communication over the internet,” in Proc. Inter-
national Workshop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV), Basking Ridge, New Jersey,
June 1999.

[19] Celio Albuquerque, Brett Vickers, and Tatsuya Suda, “An end-to-
end source-adaptive multi-layered multicast (SAMM) algorithm,”
in 9th International Packet Video Workshop, New York, USA,
Apr. 1999.

[20] Uwe Horn and Bernd Girod, “Scalable video coding for the inter-
net,,” in 8th Joint European Networking Conference, Edinburgh,
England, May 1997.

[21] R. Agrawal and R. Srikant, “Fast algorithms for mining associa-
tion rules,” in Int. Conf. VLDB, Santiago, Chile, Sept. 1994.

[22] E. Miloslavsky and A. Zakhor, “Constant PSNR rate control for
layered video compressing using matching pursuits,” in Proceed-
ings of the International Conference on Image Processing, Kobe,
Japan, Oct. 1999.

[23] J. Nonnenmacher and Ernst W. Biersack, “Optimal multicast feed-
back,” in Proceedings of the Conference on Computer Communi-
cations (IEEE Infocom), San Francisco, USA, Mar. 1998.

[24] Jean-Chrysostome Bolot, “End-to-end packet delay and loss be-
havior in the Internet,” in SIGCOMM Symposium on Communi-
cations Architectures and Protocols, Deepinder P. Sidhu, Ed., San
Francisco, California, Sept. 1993, ACM, pp. 289–298, also in
Computer Communication Review 23 (4), Oct. 1992.

[25] Kevin Lai and Mary Baker, “Measuring bandwidth,” in Proceed-
ings of the Conference on Computer Communications (IEEE In-
focom), New York, USA, Mar. 1999.

[26] Vern Paxon, Measurements and Analysis of End-to-End Internet
Dynamics, Ph.D. thesis, Lawrence Berkeley National Laboratory,
University of California, Berkeley, California, Apr. 1997.

[27] Robert L. Carter and Mark E. Crovella, “Measuring bottleneck
link speed in packet-switched networks,” Tech. Rep. BU-CS-
96006, Computer Science Departement, Boston University, Mar.
1996.

[28] W. Richard Stevens, TCP/IP illustrated: the protocols, vol. 1,
Addison-Wesley, Reading, Massachusetts, 1994.

[29] Sue B. Moon, Paul Skelly, and Don Towsley, “Estimation and re-
moval of clock skew from network delay measurements,” in Pro-
ceedings of the Conference on Computer Communications (IEEE
Infocom), New York, Mar. 1999.

[30] Dorgham Sisalem and Henning Schulzrinne, “The loss-delay
based adjustment algorithm: A TCP-friendly adaptation scheme,”
in Proc. International Workshop on Network and Operating Sys-
tem Support for Digital Audio and Video (NOSSDAV), Cambridge,
England, July 1998.

[31] Sally Floyd and Van Jacobson, “Random early detection gateways
for congestion avoidance,” IEEE/ACM Transactions on Network-
ing, vol. 1, no. 4, pp. 397–413, Aug. 1993.

[32] Dorgham Sisalem, “A TCP-friendly adaptation scheme based on
RTP,” Technical report, GMD, Fokus, Germany, Apr. 1999.

[33] Dan Rubenstein, Jim Kurose, and Don Towsley, “The impact
of multicast layering on network fairness,” in Special Inter-

19

est Group on Data Communication (SIGCOMM’99), Cambridge,
USA, Aug. 1999.

[34] Kihong Park, Gitae Kim, and Mark Corvella, “On the relation-
ship between file sizes, transport protocols and self-similar net-
work traffic,” in International Conference on Network Protocols
(ICNP), Columbus, Ohio, Oct 1996.

[35] Reza Rejaie, Mark Handley, and Deborah Estrin, “An end-to-end
rate-based congestion control mechanism for realtime streams in
the Internet,” in Infocom’99, New York, March 1999, IEEE.

[36] Lixia Zhang, Scott Shenker, and David D. Clark, “Observations
on the dynamics of a congestion control algorithm: The effects
of two-way trffic,” in SIGCOMM Symposium on Communica-
tions Architectures and Protocols, Z rich, Switzerland, Sept. 1991,
ACM, pp. 133–147, also in Computer Communication Review 21
(4), Sep. 1991.

[37] J. Padhye, J. Kurose, D. Towsley, and R. Koodli, “A model based
TCP-friendly rate control protocol,” in Proc. International Work-
shop on Network and Operating System Support for Digital Audio
and Video (NOSSDAV), Basking Ridge, NJ, June 1999.

20

