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Abstract—An efficient hybrid MPI/OpenMP parallel implementation
of an innovative approach that combines the Fast Fourier Transform
(FFT) and Multilevel Fast Multipole Algorithm (MLFMA) has been
successfully used to solve an electromagnetic problem involving 620
millions of unknowns. The MLFMA-FFT method can deal with
extremely large problems due to its high scalability and its reduced
computational complexity. The former is provided by the use of the
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FFT in distributed calculations and the latter by the application of
the MLFMA in shared computation.

1. INTRODUCTION

The constant development of the computer technology sets objectives
more and more ambitious for the electromagnetic solvers. The
methods not only must be fast, efficient and with low complexity
but also must benefit from the present computational capabilities.
The new supercomputers give the chance of solving large problems
that were unattainable in the past or only tractable using inaccurate
techniques. Consequently, as the capacity for solving large problems of
hundreds of millions of unknowns grows, the electromagnetic numerical
solvers and industrial necessities get closer. For all these reasons,
in last years the well-known Method of Moments [1] made way for
acceleration techniques as the Fast Multipole Method (FMM) [2]
and its multilevel version, the MLFMA [3, 4]. In fact, the attention
of many recent studies is concentrated on the improvement of the
MLFMA parallelization over shared, distributed and mixed memory
computers [5–15].

Another numerical technique that has gained interest is the
FMM-Fast Fourier Transform (FMM-FFT) [16, 17]. The FMM-FFT
preserves the natural parallel scaling propensity of the single-level
FMM in the spectral (k-space) domain [18, 19]. Moreover, it requires
less time than the FMM for computing the matrix-vector product
(MVP) due to the translation stage acceleration given by the FFT.
This method has demonstrated to be a good alternative to benefit
from massively parallel distributed computers [19]. Recently, a hybrid
Message Passing Interface (MPI)/OpenMP parallel implementation
of a nested scheme of the FMM-FFT was proposed by the authors
in [20–22]. In contrast with the conventional FMM-FFT, it shows a
slightly worse parallel performance but in exchange for lower memory
consumption.

Looking for the combination of the best characteristics of these
previous works, a hybrid MPI/OpenMP parallel implementation
approach is presented in this paper. The method uses the FFT
for the distributed computation and MLFMA for the shared one,
both implemented in an efficient hybrid MPI/OpenMP scheme. It
will be shown that the proposed method, MLFMA-FFT, achieves an
optimal performance in mixed memory supercomputers. A challenging
numerical result with 620 millions of unknowns with useful applications
in the automotive industry has been solved, which constitutes the
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largest problem solved up to now.
The paper is organized as follows: Section 2 reviews the main

aspects of the FMM-FFT, the Nested FMM-FFT and their parallel
implementation. Section 3 outlines the MLFMA-FFT algorithm, some
details about its parallelization and an assessment of the computational
complexity. Section 4 presents the numerical examples, including
a comparison between the method presented here and the parallel
implementations developed by the authors in previous works, as well
as the challenging problem mentioned above. Finally, the summary
and conclusions are given in Section 5.

2. BACKGROUND: PARALLEL FMM-FFT AND
NESTED FMM-FFT

According to present research interest, our recent efforts are headed
for solving large scale problems taking advantage of massively parallel
distributed computers that are available nowadays. The work was first
focused on the FMM-FFT mainly due to its natural parallel scaling
propensity in the spectral domain. Additionally, the use of the FFT to
accelerate the translation stage provides a great reduction of the MVP
CPU time with respect to the conventional FMM. An electromagnetic
problem of more than 150 million unknowns has been solved in [19]
using a hybrid parallel implementation of the method. We have
used the MPI library for communications between distributed nodes
and OpenMP standard for threads inside each shared-memory node.
Regarding the parallelization strategy, it has been shown that the work-
load for the far interactions of the MVP can be optimally distributed by
splitting the independent k-space samples among processors. For the
near-field interactions the distribution is based on the spatial oct-tree
partition established in the initial stage of the method application.
A distribution by unknowns is used for the parallel iterative solver.
Further details of this FMM-FFT implementation can be found in [19].

Later on, we have proposed the Nested FMM-FFT [22] to further
reduce the memory consumption. From one or more refinement steps
of the hierarchical oct-tree decomposition, the nested scheme is applied
to the near field interactions in the MVP, which are obtained at
the finest oct-tree level by using one or more local shared-memory
FMM-FFT algorithms inside each computing node. The far-field
interactions are still obtained at the coarsest level of the geometry
partition using a distributed FMM-FFT algorithm. A problem with
more than a half billion unknowns has been solved using the Nested
FMM-FFT algorithm. The main aspects of the parallelization strategy
considered for the algorithm in [22] are recalled here: (i) A mixed
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distribution for the far-field interactions is applied, by groups at the
finest level and by k-space samples at the coarsest one. (ii) A well-
balanced load distribution by groups is considered for the near-field
interactions at the finest level. (iii) A distributed scheme by equal
number of unknowns per processor is used for the iterative solver (we
have used GMRES [23]). The required communications between nodes
do not involve latency periods or explicit synchronization because of
the efficient management provided by the MPI library.

These computational challenges have been awarded with two
prizes, namely the PRACE Award 2009 and the Itanium Innovation
Alliance Award 2009 in computationally intensive applications.

3. THE PROPOSED METHOD: PARALLEL MLFMA-FFT

Because of its low computational cost, the MLFMA is a reference
algorithm for the rigorous solution of large problems in computational
electromagnetics. However, it is known that it suffers from bad
parallel scaling on distributed memory computers. The difficulties
faced in successfully parallelizing it in computer clusters have been
widely discussed by many research groups [8, 10, 14, 15]. Considering
the favorable MLFMA features in shared-memory computers, and
taking into account the high scalability behavior of the FMM-FFT in
distributed computers while maintaining a low numerical complexity, a
proper combination of both techniques seems to be a good alternative
to take a step further after the works of [19] and [22]. The MLFMA-
FFT presented here combines both methods to get an optimal scheme
from the point of view of modern mixed-memory supercomputers. The
computational requirements of the resulting algorithm are significantly
lower than the requirements of the previous approaches, as it will be
shown in Section 4.

The proposed MLFMA-FFT method initially requires a multilevel
refinement of the hierarchical oct-tree decomposition. The far-
field interactions are still obtained at the coarsest level of the
geometry partition using a global distributed FMM-FFT algorithm
to accomplish them. The same parallelization strategy of the
previous works based on the distribution by k-space samples has been
considered. Regarding the near-field contributions, they are obtained
at the finer levels of the oct-tree by using one or more local MLFMA
algorithms inside each shared-memory computing node. Since in the
MLFMA-FFT method the MLFMA is not applied among distributed
nodes, it does not suffer from poor parallel scaling. This new approach
provides a significant reduction of the computational complexity in
the solution of extremely large problems with hundreds of millions of
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unknowns. A practical example of the MLFMA-FFT applicability for
this kind of large problems is detailed next in Section 4.

3.1. Parallelization Issues

For the parallel implementation of the MLFMA-FFT, we have selected
a hybrid parallel programming combining MPI with the OpenMP
standard, which fits perfectly with mixed-memory computer systems.
Regarding the treatment of the far-field interactions at the coarsest
level of the oct-tree, an optimal parallel performance is achieved
applying a distribution of the work by k-space samples and then
obtaining the far coupling by means of a distributed FMM-FFT
algorithm. This is a common issue with the parallel implementations
adopted in [19] for the FMM-FFT and in [22] for the nested version.
The main differences between the methods are given by the procedure
used for dealing with the near couplings. In the MLFMA-FFT method,
this task is accomplished by the MLFMA. The partition of the work
is based on a distribution by oct-tree groups at the coarsest level
whose partial contributions to the MVP are then computed by several
MLFMA algorithms operating strictly inside each shared-memory
computing node.

A simplified 2D problem is depicted in Figure 1 in order to
illustrate the work-load balancing distribution in the MLFMA-FFT
algorithm. Figure 1(a) represents the complete problem at the coarsest

(a) (b)

Figure 1. Work-load balancing among processors in the MLF-
MAFFT: (a) Complete problem at the coarsest level. (b) Intranode
problem (in node 1) comprising the finest level to one before the coars-
est level.
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level. The black boxes with labels from 0 to 3 identify the coarsest level
observation groups that are assigned exclusively to one node (e.g., the
first node), in order to obtain their near contribution to the MVP. This
contribution consists of the radiation incoming from their interaction
source groups (groups 0 to 3 plus their respective adjacent groups in
the example of Figure 1, as it is illustrated in Figure 1(b)). The white
boxes (4 to 7) are the observation groups assigned to the next node and
so on, taking into account that a work-load distribution algorithm is
used to look for a well-balanced scheme. At this point, the near partial
contribution of a given node to the MVP is computed strictly inside
the node by means of the MLFMA algorithm. The MLFMA is applied
at the finer levels of the oct-tree (from the finest to one level before the
coarsest) as it is shown in Figure 1(b). This partial contribution does
not overlap with any other, because of the exclusive distribution of
observation groups among nodes. To avoid internode communications
at the finer levels, the information relative to the source nearby groups
that are required by the MLFMA must be also kept in the node. This
is illustrated in Figure 1(b): apart from the observation groups 0 to 3
and their respective children at finer levels (represented in black color),
the computing node must also have the data relative to the adjacent
groups and their children at lower levels (represented here in light gray
color — yellow in the color version of the paper). The storage of these
border groups data causes a slight memory footprint replicating some
data among “nearby” nodes, but it is worth mentioning that it happens
in exchange for data locality and the elimination of communication
needs at the MLFMA stage. Besides, using the hierarchical oct-tree
ordering of [24] minimizes the number of border source groups that
must be stored in each node.

In order to make clear the MLFMA-FFT operation the Figure 2
has been included. Throughout this and the following sections, the
parameters K, N , M and n referring to the number of k-space
samples, the total number of unknowns of the problem, the number
of non-empty groups and the number of nodes, respectively, will be
used. The subscripts c and f are added to indicate coarsest and
finest levels, respectively. It can be observed in the figure that the
MLFMA algorithms work in levels comprised between the finest and
the preceding to the coarsest one. As it was detailed before, the near
coupling contributions to the MVP at the coarsest level are computed
by the MLFMA algorithm inside each node. Since the MLFMA is a
well-known algorithm, these calculations are not presented in detail
in the figure, which is focused on showing how the MLFMA-FFT
tackles the far-field interactions. After the required interpolation of
the outcoming fields to the coarsest level, we can see in Figure 2
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Figure 2. MLFMA-FFT graphic scheme.

that each node has the complete set of directions, Kc, for its assigned
Mc/n observation groups. At this point, an all to all communication is
performed in order to obtain the partial Kc/n samples assigned to each
node for all the Mc groups at the coarsest level (distribution by fields).
These inter-node communications are efficiently carried out during
the MVP in a single step by using the asymmetric MPI Alltoallw
operation. The Alltoallw high-level command makes possible to
accomplish all the required communications without latency periods or
explicit synchronization because of the efficient management provided
by the MPI library. With regard to the iterative solver, the work is
distributed by equal number of unknowns per processor.

Regarding the parallel efficiency of the method, given that the
way of carrying out the distributed computation in the MLFMA-FFT
and the Nested FMM-FFT algorithms is a common point, a similar
scalability performance of both methods is expected. The parallel
speed-up curve can be checked in [22].

3.2. Computational Complexity

To analyze the computational cost of the MLFMA-FFT method we
need to assess both the cost of the FFT translations carried out at the
coarsest level and the cost of the MLFMA algorithms applied intranode
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involving the rest of levels. The relations Kc ∝ N/Mc and Qc ≈ M
3/2
c

are taken into account, where Qc is the total number of groups at the
coarsest level (including non-empty and empty groups). Under these
conditions, the FFT-based translations cost at the coarsest level can
be written as O (KcQc log Qc) ≈ O(N

√
M c log Mc) [22].

Regarding the MLFMA, it is known that an efficient implementa-
tion achieves a O(N) computational cost at each level and requires ap-
proximately log(N) levels, then leading to a global cost of O(N log N).
In the method proposed in this work, O(Mc) MLFMA algorithms
of O(N/Mc) unknowns are applied to account for the near interac-
tions throughout the multilevel oct-tree. Given that the number of
required levels will be approximately log(Mf/Mc), a computational
cost O(N/Mc log(Mf/Mc)Mc) = O(N log(Mf/Mc)) is obtained. If
the condition Mf ∝ N of small finest level groups is respected in or-
der to guarantee the MLFMA efficiency, this cost can be expressed as
O(N log(N/Mc)).

The adequate selection of Mc must be discussed at this point.
On the one hand, the number of coarsest groups must be large
enough (small-sized groups) to guarantee that the MLFMA algorithms
can be run independently inside each node avoiding internode
communications. Besides, this makes easier to obtain a well-balanced
work-load distribution (that must be obtained regarding the number
of unknowns contained in the groups assigned to each node), since this
distribution is performed at the coarsest level of the oct-tree. On the
other hand, the selection of a small Mc number maximizes the volume
of interactions that are computed by means of the MLFMA, and
thereby using the shared memory configuration, which constitutes the
most efficient alternative. Taking into account all these considerations,
the number of MLFMA algorithms must be chosen proportional to the
number of available nodes, n. Therefore, with Mc ∝ n and given that n
depends only on the available computational resources and not on the
problem size, the asymptotic relation Mc ≈ O(1) can be established.

Therefore, observing the two main terms involved in the
computational cost of the MLFMA-FFT detailed above, it can be
concluded that the global cost is dominated by the MLFMA cost and
it tends to O(N log N).

Regarding the memory consumption, the estimation correspond-
ing to the FFT coarsest level translations is O(Qc) ≈ O(Mc

√
M c).

For the MLFMA algorithms the memory requirements are given by a
O(N log(Mf/Mc)) term. According to the previous assumptions for
Mf and Mc, the prevailing memory requirements of the MLFMA-FFT
method also tend to O(N log N).

In order to illustrate the cost estimations detailed above, several
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Figure 3. MLFMA-FFT cpu time requirement for a sphere with
different number of unknowns.
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Figure 4. MLFMA-FFT memory consumption for a sphere with
different number of unknowns.
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executions of a sphere with different number of unknowns have been
carried out using the MLFMA-FFT algorithm. Figures 3 and 4 show
the computational cost and the memory consumption, respectively.
Both of them fit the curve O(N log N) according to the given
estimations.

4. NUMERICAL RESULTS

The examples of the following Sections 4.1 and 4.2 have been
addressed with an Electric Field Integral Equation (EFIE) based
Method of Moments formulation, in which the well-known Rao-Wilton-
Glisson (RWG) basis functions [25] have been applied both in the
discretization of the geometry and the Galerkin’s testing procedure.
No preconditioning was used in the simulations and the iterative solver
employed was GMRES.

4.1. Evolution of the Parallel Implementations

In order to make a comparison between the FMM-FFT, the Nested
FMM-FFT and the MLFMA-FFT parallel algorithms, the problem of
a sphere of 150 millions of unknowns has been solved by means of
the three methods using the same GMRES iterative solver parameters
(then obtaining an identical residual error below 10−2).

The calculations with the FMM-FFT were performed using the
HPC supercomputer Finis Terrae, installed in the Supercomputing
Center of Galicia (CESGA). Finis Terrae consists of 142 cc-NUMA HP
Integrity rx7640 with 8 dual core Intel Itanium 2 Montvale processors
at 1.6 GHz with 18MB L3 cache and 128 GB per node. The solution
for this sphere employed 64 nodes involving a total of 1, 024 processors.
The nodes are interconnected through a high efficiency Infiniband
network (4xDDR), and the operating system is Linux SLES 10. For
this result, we have used the Intel C++ Compiler version 10.1.012, Intel
MPI version 3.1.038 for communications and Intel Cluster MKL version
10.0.2.018 for matrix/vector linear algebra operations. The Nested
FMM-FFT and MLFMA-FFT simulations were carried out using the
LUSITANIA supercomputer, installed in the Centro Extremeño de
Investigación, Innovación Tecnológica y Supercomputación (CénitS).
Lusitania is made up of 2 HP Integrity SuperDome SX2000 nodes
with 64 dual core Itanium2 Montvale processors at 1.6GHz (18 MB
cache). Only 64 processors per node were used for the sphere
simulations. The operating system is Linux SLES 10 and we have
used the Intel C++ Compiler version 11.0.069, Intel MPI version
3.2.0.011 for communications and Intel Cluster MKL version 10.0.2.018



Progress In Electromagnetics Research, Vol. 105, 2010 25

for matrix/vector linear algebra operations.
The main configuration aspects of each method and their

corresponding time and memory requirements are detailed in Table 1.
It can be observed that a low amount of memory is required in
the nested and the MLFMA-FFT implementations in contrast with
the FMM-FFT consumption, more than 10 times higher. As it was
also expected, the MLFMA-FFT takes up a solution time almost 5
times lower than the time required by the Nested FMM-FFT with
a comparable configuration. It has been also included in Table 1
the total CPU time, which takes into account the total number of
processors employed. The results are in accordance with the expected
method behavior described in previous sections and point out that
the MLFMA-FFT is the most efficient alternative to take advantage
of the computational resources with mixed (shared/distributed)
architectures.

Table 1. Evolution of methods: analysis of a 150, 039, 552 unknowns
sphere.

FMM-FFT
Nested

MLFMA-FFT
FMM-FFT

Groups dimensions:
2

 

nest/coarsest level
0.25 /8  

Multipole terms 20 5/62 5/7/12/20/35/62

Num. total/non-empty

groups:
8, 000, 000/185, 453

finest level
4, 065, 356, 736/10, 937, 250

coarsest level
125, 000/11, 637

Supercomputer Finis Terrae (CESGA) LUSITANIA ( CénitS)

num. nodes 64 2

processors per node 16 64

tota l p rocessors 1024 128

Min./max . peak mem .

(in node) 76.3/84.7 GB 227.4/228 .8 GB 243.7/245.3 GB

Total memory 5.4 T B 456.2 G B 489.0 G B

GMRES:

num. iter./restart 11/10

Setup / solution time 1.1 / 4 .98 h 1 .35 / 25 .22 h 1 .51 / 5 .25 h

Total CPU time:

setup/solution time

× total processors 1126 .4/5099.5 h 172.8/3228.2 h 193.3/672 .0 h

λ λλ
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4.2. Practical Numerical Example

The 79 GHz radar cross section (RCS) analysis of a car (CITROËN
C3) using the MLFMA-FFT has been carried out. The 77–81GHz
frequency band has been designed for the automotive collision warning
future Short Range Radars (SRR). For this reason, modeling the
electromagnetic behavior of a car at 79GHz is of great interest for
the automotive industry. The large size of the required analysis has
made difficult to obtain suitable results up to now. Instead of resorting
to asymptotic approaches with reduced accuracy, a reliable result can
be achieved by means of the MLFMA-FFT method.

This example has been performed employing the LUSITANIA
supercomputer described above. A total of 1.6TB of RAM and 2
HP Integrity SuperDome SX2000 nodes with 128 processors have been
used. The model of the car is made up of 620 million unknowns.
Both configuration and solution related data are gathered in Table 2.
The GMRES(50) residual error obtained after 5 iterations was below
5 · 10−2.

The 79 GHz bistatic RCS result is shown in Figure 5. A front
incidence (θ = 90◦, φ = 270◦) has been considered. Due to the rapid
fluctuation of the RCS pattern with changing aspect angle, a window
of 2◦ has been selected to calculate the median value of the RCS
in the backward direction, which results 0.34 dBsm [26]. This RCS
analysis is complemented by the surface current density distribution

Table 2. Technical data for the solution of a 620 millions of unknowns
problem.

Frequency 79 GHz

Number of unknowns 620, 739, 632

Groups dimensions

finest/coarsest level 0.2λ/12.8λ

Number of levels 7

Multipole terms 4/7/11/18/29/52/95

Number of total/non-empty groups

finest level 16, 841, 845, 020/31, 201, 960

coarsest level 66, 600/7, 848

Num. of nodes/processors per node 2/128

Total processors 256

Min./max. peak memory in node 816/821GB

Total memory 1.6TB

Num. of iterations/GMRES restart 5/50

Setup/solution time 3.65/43.2 h
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Figure 5. Bistatic RCS of a 620 million unknowns car at 79 GHz.
Elevation angle θ = 90◦.

Figure 6. Detail of the current density over the car surface at 24GHz.

corresponding to a frequency of 24 GHz shown enlarged in Figure 6.
This kind of analysis can provide useful information for the design
initial stages of the automotive short range radar systems which are
still under development.

5. CONCLUSION

The MLFMA-FFT algorithm presented in this work takes advantage
of the high scalability behavior of the FMM-FFT for the distributed
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computation and of the algorithmical efficiency of the MLFMA for
shared-memory computers. Interesting analysis can be carried out
by means of this technique due to its ability for profiting from
present supercomputing resources. In fact, the analysis of the largest
problem solved up to now with more than 620 million unknowns
presented in this work has demonstrated the potential of the MLFMA-
FFT algorithm for solving extremely large problems with practical or
industrial interest. The electromagnetic behavior of a car has been
studied at 79 GHz providing results with direct applications in the
future radar sensor design for the automotive industry.
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