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With the growth of networked computers and associated applications, intrusion detection has become
essential to keeping networks secure. A number of intrusion detection methods have been developed
for protecting computers and networks using conventional statistical methods as well as data mining
methods. Data mining methods for misuse and anomaly-based intrusion detection, usually encompass
supervised, unsupervised and outlier methods. It is necessary that the capabilities of intrusion
detection methods be updated with the creation of new attacks. This paper proposes a multi-level
hybrid intrusion detection method that uses a combination of supervised, unsupervised and outlier-
based methods for improving the efficiency of detection of new and old attacks. The method is
evaluated with a captured real-time flow and packet dataset called the Tezpur University intrusion
detection system (TUIDS) dataset, a distributed denial of service dataset, and the benchmark intrusion
dataset called the knowledge discovery and data mining Cup 1999 dataset and the new version of
KDD (NSL-KDD) dataset. Experimental results are compared with existing multi-level intrusion

detection methods and other classifiers. The performance of our method is very good.
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1. INTRODUCTION

With the enormous growth of network-based computer services
and the huge increase in the number of applications running
on networked systems, the adoption of appropriate security
measures to protect against computer and network intrusions
is a crucial issue in a computing environment. Intrusions into
or attacks on a computer or network system are activities
or attempts to destabilize it by compromising security in
confidentiality, availability or integrity of the system.As defined
in [1], an intrusion detection system (IDS) monitors events
occurring in a computer system or a network and analyzes
them for signs of intrusions.A network-based IDS (NIDS) often
consists of a set of single-purpose sensors or host computers
placed at various points in a network. These units monitor
network traffic, performing local analysis of that traffic and
reporting attacks to a central management console.

Network-based intrusion detection is generally implemented
using two approaches [2]: rule-based and anomaly-based. Rule-
based (also called misuse-based) detection searches for specific

patterns (or intrusion signatures given in terms of rules) in the
data to effectively detect previously known intrusions. Snort [3]
is a widely used rule-based NIDS that can detect intrusions
based on previously known intrusion signature patterns.

The rule-based approach usually does not generate a large
number of false alarms since it is based on rules that identify
known intrusions but it fails to detect new types of intrusions
as their signatures are not known. Anomaly detection consists
of analyzing and reporting unusual behavioral patterns in
computing systems. The anomaly-based detection approach
typically builds a model of normal system behavior from
the observed data and distinguishes any significant deviations
or exceptions from this model. Anomaly-based detection
implicitly assumes that any deviation from normal behavior is
anomalous. The anomaly detection approach has the ability to
examine new or unknown intrusions.

Based on the machine learning method used, anomaly
detection can be classified into two different categories [4]:
supervised and unsupervised. In supervised anomaly detection,
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the normal behavior model of systems or networks is established
by training with a labeled or purely normal dataset. These
normal behavior models are used to classify new network
connections. The system generates an alert if a connection is
classified to be malign or abnormal behavior. In practice, to
train a supervised anomaly-based approach, labeled or purely
normal data are not easily available. It is time-consuming to
acquire and error-prone to manually classify and label a large
number of data instances as benign or malign.

Unsupervised anomaly detection approaches work without
any training data or these models may be trained on unlabeled
or unclassified data and they attempt to find intrusions lurking
inside the data. The most prevalent advantage of the anomaly
detection approach is the detection of unknown intrusions
without any previous knowledge. However, the false detection
rate tends to be higher if the behavior of some of the intru-
sions is not significantly different from the considered normal
behavior model.

Two types of unsupervised approaches have been used to
detect network anomalies: clustering and outlier-based.

Clustering is a method of grouping objects based on the
similarity among them. The similarity within a cluster is high
and the dissimilarity among distinct clusters is high as well.
Clustering is a unsupervised method of analysis carried out
on unlabeled data [5]. It results in inclusion of similar data in
the same class and dissimilar data in different classes. Unsu-
pervised anomaly-based detection usually clusters [6] the test
dataset into groups of similar instances, some of which may be
intrusion and others normal data. The stability of these clusters
and how to label them are difficult issues. To label clusters, an
unsupervised anomaly-based detection approach models nor-
mal behavior by using two assumptions [4]: (i) the number of
normal instances vastly outnumbers the number of anomalies
and (ii) anomalies themselves are qualitatively different from
normal instances. If these assumptions hold, intrusions can be
detected based on cluster size. Larger clusters correspond to
normal data, and smaller clusters correspond to intrusions. But
this method is likely to produce a high false detection rate as
the assumptions are not always true in practice. For example, in
the denial of service (DoS) category of intrusions, a large num-
ber of very similar instances are generated resulting in larger
clusters than clusters corresponding to normal behavior. On
the other hand, in remote to local (R2L) and user to root (U2R)
categories of intrusions, legitimate and illegitimate users are
difficult to distinguish and their numbers of occurrences may
not be significantly different. These intrusions (U2R and R2L)
may be included in normal behavior model. Consequently,
these can raise the false detection rate.

The second unsupervised approach that is popular in network
intrusion detection is outlier-based. Outliers refer to data points
that are very different from the rest of the data based on
appropriate measures. Such data points often contain useful
information regarding unusual behavior of a system described
by the data. These anomalous data points are usually called

outliers. Outlier detection is widely used in the finding of
anomalous activity in telecommunication, credit card fraud
detection, detection of symptoms of new diseases and novel
network attack detection. The major challenge for outlier
detection in intrusion detection is to handle the huge volume
of mixed-type, i.e. numerical and categorical, data. So, outlier
detection schemes need to be computationally efficient in
handling these large-sized inputs. An outlier can be an
observation that is distinctly different or is at a position of
abnormal distance from other values in the dataset. Detection of
abnormal behavior can be based on relevant features extracted
from network traces, packet or flow data. An intrusion can be
detected by finding an outlier whose features are distinctly
different from the rest of the data. Outliers can often be
individuals or groups of objects exhibiting behavior outside
the range of what is considered normal. A review of anomaly
identification using outlier detection is available in [7].

In network-based intrusion detection, the threat may arise
from new or previously unknown intrusions. The preferred
detection approach for novel intrusions is anomaly-based
instead of rule-based. In supervised anomaly-based detection,
obtaining labeled or purely normal data is a critical issue.
Unsupervised anomaly-based detection can address this issue of
novel intrusion detection without prior knowledge of intrusions
or purely normal data. In practice, it may be better to use a
combination of supervised and unsupervised learning to achieve
the best performance that current techniques allow.

1.1. Motivation

The motivation behind the design of the IDS we discuss in
this paper is to develop an IDS that has a high effective
overall performance for known as well as unknown attacks.
The detection accuracy of a classifier is usually not equally
good for each class (see Table 2 a little later in the paper).
Experimental studies can be used to determine the effectiveness
of a classifier in terms of its performance with known attacks
so as to build an effective combination classifier to attain
good overall performance with all classes of known as well
as unknown attacks.

1.2. Contribution

Some of the salient contributions of the work described in this
paper are given below.

(i) An enhanced supervised classifier based on a categorical
clustering algorithm [8].

(ii) An unsupervised classifier based on the k-point
clustering algorithm [9] with cluster stability analysis
and labeling.

(iii) A supervised outlier detection algorithm based on
symmetric neighborhood relationship.
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TABLE 1. Categories of attack.

Category Description

DoS In DoS, an attacker tries to prevent legitimate users
from using a service, viz., SYN flood, neptune
and teardrop

DDoS In distributed DoS (DDoS), an attacker tries to
prevent legitimate users from using a service by
sending packets to a network amplifier or a
system supporting broadcast addressing, with the
return address spoofed to the victim’s IP address,
viz., smurf and fraggle

R2L In R2L, attackers try to gain access to a victim
machine without having an account on it, viz.,
password guessing

U2R In U2R, an attacker has local access to the victim
machine and tries to gain super user privilege,
viz., buffer overflow

Probe In Probe, an attacker tries to gain information about
the target host, viz., port-scan and ping-sweep

(iv) A hybrid multi-level classifier based on supervised,
unsupervised and outlier detection algorithms, with
superior performance over all classes.

1.3. Organization of the paper

The rest of the paper is organized as follows. Section 2 discusses
related work in supervised, unsupervised, outlier-based and
multi-level hybrid intrusion detection methods. In Section 3,
we provide an overview of our approach, including a clear
formation of the problem (Section 3.1), and the overall archi-
tecture of our approach (Section 3.2). Details of the approach
are given in Sections 4–6. Section 4 discusses the supervised
classifier we use, Section 5 the unsupervised classifier and
Section 6 our outlier-based approach. These three approaches
work together to achieve the best results possible. Theoretical
analysis of the multi-level hybrid system is given in Section 7.
Experimental results for knowledge discovery and data mining
(KDD) 1999 datasets, NSL-KDD datasets and Tezpur Univer-
sity intrusion detection system (TUIDS) intrusion datasets are
reported in Section 8. Finally, Section 9 concludes the paper.

2. RELATED WORK

Network attacks include four main categories: DoS (single
source as well as distributed source), Probe, U2R and R2L,
following the standard classification of network intrusions as
given in [10]. The categories of attacks is given in Table 1.

Several well-cited supervised anomaly detection meth-
ods [11–18] exist in the literature. Audit data analysis and min-
ing (ADAM) [11] is a supervised anomaly-based as well as

misuse-based NIDS. ADAM uses a classifier which has been
previously trained to classify the suspicious connections as a
known type of attack, an unknown type or a false alarm. The
method is composed of three modules: a preprocessing engine,
a mining engine and a classification engine. The preprocess-
ing engine sniffs out transport control protocol/internet proto-
col traffic data, and extracts information from the header of
each connection according to a predefined schema. The min-
ing engine applies mining association rules to the connection
records. It works on two modes: training mode and detecting
mode.

Burbeck and Nadjm-Tehrani [12] propose a clustering-
based anomaly detection approach anomaly detection With
fast incremental clustering (ADWICE) using an extended
BIRCH [19] clustering algorithm to implement a fast, scalable
and adaptive anomaly detection scheme. They apply clustering
as a technique for training of the normality model.

A number of IDSes employ the unsupervised anomaly-based
approach [20, 21]. Kingsly et al. [20] present an unsupervised
anomaly detection method for network intrusion detection.
The method uses density and grid-based [22] approach, based
on a subspace clustering algorithm pMAFIA [23]. Grid-based
methods divide the object space into a finite number of cells
that form a grid structure. All of the clustering operations are
performed on the grid structure.

Casas et al. [21] introduce an unsupervised network anomaly
detection algorithm (UNADA) for knowledge-independent
detection of anomalous traffic. UNADA uses a novel clustering
method based on sub-space-density clustering to identify
clusters and outliers in multiple low-dimensional spaces.
The evidence of traffic structure provided by these multiple
clusterings is then combined to produce an abnormality ranking
of traffic flows, using a correlation-distance-based approach.

Several multi-level hybrid IDSs (MLH-IDSs) have been pro-
posed recently to deal with the complexity of the intrusion detec-
tion problem by combining machine learning techniques. Pan
et al. [24] combine neural networks and the C4.5 decision trees
algorithm to detect a variety of attacks. Depren et al. [25] use a
hybrid IDS consisting of an anomaly detection module, a mis-
use detection module and a decision support system. Zhang
and Zulkernine [26] combine misuse detection and anomaly
detection components using the random forests algorithm.
Hwang et al. [27] propose a hybrid system combining signature-
based intrusion detection and anomaly detection to detect novel
unknown attacks.Aydyn et al. [28] introduce a hybrid IDS com-
bining anomaly-based IDS and misuse-based IDS. To further
increase the intrusion detection rate, as well as to simplify the
algorithm, a multi-level tree classifier is proposed in [29].

In Table 2, we compare several existing IDSes based on
parameters such as detection type (host-based, network-based
or both), detection approach (misuse, anomaly or both), nature
of detection (online or offline), nature of processing (centralized
or distributed), data gathering mechanism (centralized or
distributed), dataset handled and approach of analysis.
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TABLE 2. List of existing IDSs.

Types of Nature of Nature of Data gathering Datasets/
Year of detection Class detection processing mechanism attacks

Method Name of IDS publication (H/N/Hy*) (M/A/B*) (R/N*) (C/D*) (C/D*) handled Approach

Supervised Snort [3] 1999 N M R C C KDD Rule-based
FIRE [58] 2000 N A N C C KDD Fuzzy logic
ADAM [11] 2001 N A R C C DARPA Association rule
NSOM [59] 2002 N A R C C KDD Neural nets
MINDS [60] 2003 N A R C C KDD Classification
FSAS [61] 2006 N A R C C KDD Statistical
SVM-based [57] 2011 N A N C C KDD SVM & hierarchical clustering

Unsupervised NFIDS [62] 2003 N A N C C KDD Neuro fuzzy logic
HIDE [63] 2001 N A R C D KDD Statistical & Neural nets
ADMIT [64] 2002 H A R C C csh Clustering
N@G [65] 2003 Hy B R C C KDD Statistical
ADWICE [12] 2005 N A R C C KDD Clustering
DNIDS [66] 2007 N A R C C KDD K-NN

Outlier-based LOF [67] 2000 N A N C C NHL Density-based
Fuzzy approach [68] 2003 N A N C C KDD Kernel function
RELOADED [69] 2005 N A N C C KDD Distance-based
LDBSCAN [70] 2008 N A N C C KDD Clustering

Multi-level Xiang et al. approach [29] 2004 N B N C C KDD Decision tree
Depren et al. approach [25] 2005 N B N C C KDD Decision tree & neural nets
Zhang et al. approach [26] 2006 N B N C C KDD Random forest
Hwang et al. approach [27] 2007 N B N C C KDD Signature-based
Hui Lu et al. approach [55] 2009 N A N C C KDD Decision tree

∗H, host; N, network; Hy, hybrid; M, misuse; A, anomaly; B, both; R, realtime; N, non-realtime; C, centralised; D, distributed; KDD-KDD Cup 1999 dataset; DARPA-DARPA
1998/1999 dataset; csh-csh history file mechanism [71]; NHL-NHL96 dataset [72].
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3. OVERVIEW OF OUR APPROACH

In this section, we formulate the problem we set out to solve
in this paper. We follow it by a description of the general
framework of our IDS.

3.1. Problem formulation

The performance of an individual classifier is not equally
good for classification of all categories of attack as well as
normal instances. There is a possibility of obtaining good
classification accuracy for all categories in a dataset by
using an appropriate combination of multiple well-performing
classifiers. The problem can be formulated as given below.

For a given set of classifiers C1, C2, . . . , CN and for a dataset
D with p classes of instances, the objective of an MLH-IDS
is to provide the best classification performance based on the
effective use of those classifiers Ci that have been identified by
experiments to give the best performance for a subset of classes,
with reference to a set of training instances.

The objective of such a combination is to provide the best
performance from the participating classifiers for each of the
classes.

3.2. Proposed framework

In this paper, we present an MLH-IDS that is capable of
detecting network attacks with a high degree of accuracy.
The implementation of MLH-IDS uses three levels of attack
detection: a supervised method, an unsupervised method and
an outlier-based method.

The selection of supervised or unsupervised or outlier-based
classifier at a particular level for a given dataset is based on
the classification accuracy of the individual classifier for a
given dataset. The overall structure of the multi-level hybrid
classifier we develop is shown in Fig. 1. The first level of
classification categorizes the test data into three categories
DoS, Probe and Rest (unclassified). U2R and R2L, and the
Normal connections are classified as Rest at this stage. This
supervised algorithm is discussed in detail in Section 4. The
main purpose at level 1 is to extract as many U2R, R2L and
Normal connections as possible accurately from the data using
a supervised classifier model. This is because U2R and R2L
are generally quite similar to normal connections. DoS and
Probe attack connections on the other hand are generally more
different. The second level splits Rest into Normal and Rest
categories. At level 2, the Rest category is classified as Normal
and Rest (i.e. class containing attacks) using an unsupervised
classifier model. The unsupervised classifier used in the second
level is discussed in Section 5. The third level separates Rest
into U2R and R2L. The U2R category data are extracted from
Rest using the outlier-based classifier model and the remaining
elements in the Rest category are classified as R2L. The outlier-
based classifier is discussed in Section 6. In high-dimensional

FIGURE 1. Architecture of a multi-level hybrid classifier.

data, feature selection using mutual information (MI) is a widely
accepted approach. In level 3, MI-based relevant features [30]
of U2R are used in the model to classify the U2R category
attacks. Other than U2R category records, the remaining items
are classified as R2L category attacks.

4. SUPERVISED CLASSIFICATION

Our classification technique creates a set of representative
clusters from the available labeled training objects. Unlabeled
test objects are then inserted in these representative clusters
based on similarity calculation and thus they get labels of the
clusters in which they are inserted. The clustering algorithm we
use is a modification of the algorithm presented by the authors
in [8]. The notations used in the algorithm are given in Table 3.

Let the dataset to be clustered contain n objects, each
described by d attributes A1, A2, . . . , Ad having finite discrete-
valued domains D1, D2, . . . , Dd , respectively. A data object is
represented as X = {x1, x2, . . . , xd}. The j th component of
object X is xj and it takes one of the possible values defined
in domain Dj of attribute Aj . Referring to each object by
its serial number, the dataset can be represented by the set
N = {1, 2, . . . , n}. Similarly, the attributes are represented by
the set M = {1, 2, . . . , d}.

The similarity between two data objects X and Y is the sum
of per attribute similarity for all the attributes. It is computed as

sim(X, Y ) =
d∑

j=1

s(xj , yj ), (1)
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TABLE 3. Algorithm notation.

Symbol Description

M Attribute size of the dataset
k Number of randomly selected records
S Set of clusters
MinAtt, MinmAtt Threshold value for minimum attribute
minSize Threshold value for minimum objects in a

cluster
sim(X, Y ), simO Similarity value between two objects
sim(C, X), simC Similarity value between a cluster and an

object
δj , δaj Similarity threshold
Olist, Oblist List of objects forming a cluster
Profile, Clusprofile Profile of a cluster
noAttribtes, Nattrib The cardinality of the subset of the attributes

contributing in forming a cluster
Dattributes, Dattrib Distribution of position of attributes in a

cluster profile
Values, Vattrib Values of attributes forming a cluster profile

where s(xj , yj ) is the similarity for the j th attribute defined as

s(xj , yj ) =
{

1 if |xj − yj | ≤ δj ,

0 otherwise,
(2)

where δj is the similarity threshold for the j th attribute. For
categorical attributes δj = 0 and for numeric attributes δj ≥ 0.

We use a subspace-based incremental clustering technique.
A cluster is a set of objects that are similar over a subset of
attributes only. The minimum size of the subset of attributes
required to form a cluster is defined by the threshold MinAtt. Let
the subset of defining attributes be represented by Dattributes =
{a1, a2, . . . , anoAttributes} such that Dattributes ⊆ M and
noAttributes is the size of Dattributes. A cluster is represented
by its profile. Our profile representation is similar to that of
an object. All objects in a cluster are similar with respect to
the profile. The cluster profile is defined by a set of values,
Values = {v1, v2, . . . , vnoAttributes} taken over the corresponding
attributes in Dattributes, that isv1 ∈ Da1 is the value for attribute
a1 ∈ M , v2 ∈ Da2 is the value for attribute a2 ∈ M and so on.
Thus, the cluster profile is defined by

Profile = {noAttributes, Dattributes,Values}. (3)

Let Olist ⊆ N be the list of data objects in the cluster. A cluster
C is completely defined by its Profile and Olist:

C = {Olist, Profile}. (4)

The subspace-based incremental clustering algorithm inserts an
object in any one of the set of clusters existing at a particular

TABLE 4. A sample dataset.

S. No. A1 A2 A3 A4 A5

1 a3 b2 c4 d1 e2

2 a2 b2 c4 d3 e2

3 a3 b1 c2 d1 e1

4 a2 b2 c4 d1 e2

5 a3 b1 c2 d3 e1

6 a1 b2 c1 d2 e2

7 a3 b1 c2 d2 e1

moment. So the similarity between a cluster and a data object
needs to be computed. Obviously, the cluster profile is used
for computing this similarity. As the similarity needs to be
computed over the set of attributes in Dattributes only, the
similarity function between a clusterC and an objectX becomes

sim(C, X) =
noAttributes∑

j=1

s(vj , xaj ), (5)

where

s(vj , xaj ) =
{

1 if |vj − xaj | ≤ δaj ,

0 otherwise.
(6)

To obtain appropriate values for δj and δaj , the following two
tasks are performed.

(i) Preprocessing of the dataset using logarithm to
the base 2 normalization [31] to remove bias.
We discretize continuous-valued attributes by taking
logarithm to the base 2 and then converting to
integer. This is done for each attribute value z using
the computation: if (z > 2)z =

∫
(log2(z)) + 1. Before

taking the logarithm, the attributes that take fractional
values in the range [0, 1] are multiplied by 100 so that
they take values in the range [0, 100].

(ii) Use of a heuristic method to identify appropriate
range for δj and δaj by exhaustive experiments using
benchmark and real-life datasets.

A discussion on the selection of the appropriate threshold value
for δj in Equation (2) and δaj in Equation (6) is given in
Section 8.3.

Example 1. Consider a small dataset shown in Table 4 with
seven objects defined over five attributes A1, A2, A3, A4 and
A5. The domains for the attributes are, respectively, D1 =
{a1, a2, a3}, D2 = {b1, b2}, D3 = {c1, c2, c3, c4}, D4 =
{d1, d2, d3} and D5 = {e1, e2}.
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Clusters C1 and C2 can be identified in the dataset with
MinAtt = 3 and δaj = 0 for aj ∈ Dattributes:

C1 = {Olist = {1, 2, 4}, noAttributes = 3,

Dattributes = {2, 3, 5}, Values = {b2, c4, e2}},
C2 = {Olist = {3, 5, 7}, noAttributes = 4,

Dattributes = {1, 2, 3, 5}, Values = {a3, b1, c2, e1}}.

4.1. The CatSub+ algorithm

Our algorithm, which is an enhanced version of the CatSub
algorithm [8], is named CatSub+. Unlike the CatSub algorithm,
we minimize the dependency on input parameters by providing
the probable range of parameter values based on a heuristic
method. Further, CatSub+ is cost effective, since it works
on subset of relevant features selected using an information-
theoretic method [32]. CatSub+ starts with an initially empty
set of clusters. It reads each object Xi sequentially, inserts it
in an existing cluster based upon the similarity between Xi

and the clusters, or a new cluster is created with Xi if it is
not similar enough, as defined by the threshold MinAtt, to be
inserted in any one of the existing clusters. Search for a cluster
for inserting the present object is started at the last cluster created
and moves toward the first cluster until the search is successful.
If successful, the object is inserted in the cluster found and
the search is terminated. At the time of inserting the object
in the found cluster C, the values of the defining attributes of
the cluster (C.noAttributes) are set according to the computed
similarity measure between the cluster and the object. The sets
of C.Dattributes along with C.Values are also updated. If the
search is not successful, a new cluster is created and the object
itself made the representative object of the cluster, i.e. the full
set of attributes becomes Dattributes while the full set of values
of the object becomes corresponding Values of the new cluster
profile.

Initially, CatSub+ is trained with a fixed number of known
clusters. Once the clusters and corresponding profiles are
built for the known classes, newer instances are incrementally
inserted in any one of the clusters.

Before the initiation of cluster formation and respective
profile building, all the unselected objects are marked as
unprocessed. Similarity thresholds minAtt and minSize are
assigned high values and they are gradually decreased in
steps. In each iteration, the remaining unprocessed objects are
clustered using the similarity measure, with reference to δ.
If it fails to insert an object in any of the preexisting known
clusters (created in the previous iteration), then a new cluster
is created with the object. When the clustering process ends
in the present iteration, cluster profiles are extracted from
each of the clusters having at least minSize objects in it and
the objects in such a cluster are marked as processed. All
insignificant clusters, whose sizes are less than minSize, are
deleted. The remaining new clusters become known clusters

for the next iteration after making them empty by deleting
their object lists. Then the threshold values minSize and minAtt
are reduced so that the next iteration can create larger clusters
instead of fragmented clusters. By reducing the thresholds, more
generalization is allowed. The algorithm iterates so long as
there are unprocessed objects remaining. To ensure termination
of the algorithm, minSize is reduced to minSize/2 so that the
ultimate value of minSize becomes 1, after which no objects
will remain unprocessed. The threshold minAtt is loosened by
setting minAtt = minAtt − α, where α is a small integral
constant such as 1 or 2. Reduction of minAtt below a certain level
(MIN) is not allowed. It remains constant at MIN. Generalization
beyond the MIN level will make data objects belonging to two
different classes indistinguishable. When the clustering process
terminates, the set of profiles found in the profile file becomes
the final cluster profiles for use in the prediction process.

CatSub+ differs from CatSub in the following ways:

(i) It minimizes the dependency on input parameters by
providing the probable range of δj and δaj based on a
heuristic method.

(ii) It works on a subset of relevant features selected based
on an information-theoretic method [32].

The training algorithm is given as Algorithm 1. The algorithm
for prediction is given as Algorithm 2.

Algorithm 1 Similarity computation and update functions
of CatSub+

1: Function sim (cluster C, object X)

2: count = 0;
3: k = C.noAttributes;
4: for (j = 0; j < k; j = j + 1) do
5: l = C.a[j ];
6: if (abs(C.v[j ] − x[l]) <= δ[l]) then
7: count = count + 1;
8: end if
9: end for

10: return count;
11:

12: Function update (cluster C, int r, object X)

13: append(r, C.Olist);
14: count = 1;
15: m = C.noAttributes;
16: for (j = 0; j < m; + + j) do
17: l = C.a[j ];
18: if (abs(s(C.v[j ] − x[l]) <= δ[l]) then
19: count = count + 1;
20: C.v[count] = C.v[j ];
21: C.a[count] = C.a[j ];
22: end if
23: C.noAttributes = count;
24: end for
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Algorithm 2 Prediction algorithm of CatSub+
1: file1=open(“TrainProfile",“read");
2: file2=open(“DataFile",“read");
3: read(file1, totTrain);
4: for (i = 0; i < totTrain; i = i + 1) do
5: read(file1, k);
6: C[i].noAttributes = k;
7: for (j = 0; j < k; j = j + 1) do
8: read(file1, C[i].a[j ]);
9: for (j = 0; j < k; j = j + 1) do

10: read(file1, C[i].v[j ]);
11: if count == C[j ].noAttributes then
12: print(“Object" i “ is of category"
13: clusterLabel[j ]);
14: found = 1; break;
15: else
16: if count > max then
17: max = count; position = j ;
18: end if
19: end if
20: end for
21: if found == 0 then
22: print(“Object" i “is of category";
23: clusterLabel[position]);
24: end if
25: end for
26: end for

4.2. Complexity analysis

The clustering algorithm requires one pass through the set
of training examples that currently remain unprocessed. Each
training example needs to be compared with existing clusters
one after another until it gets inserted in one of the clusters.
The similarity computation involves a subset of attributes.
Therefore, the clustering process has a complexity O(ncd),
where n is the number of training examples, c is the number
of clusters and d is the number of attributes. Each of the
created clusters needs to be visited to extract its size and
profile. Hence, maximum time complexity of one iteration of
the training algorithm becomes O(ncd) + O(c). The algorithm
performs at most k iterations, where k = log2(minSize). As
minSize is the minimum number of objects for a cluster to be
considered significant, it is not large. The overall maximum time
complexity of the algorithm is O(kncd) + O(kc).

5. UNSUPERVISED CLASSIFICATION

The unsupervised classification method uses the k-point
algorithm [9] to create a set of representative clusters from the
available unlabeled objects in the data. Initially, the method
considers k objects randomly from the dataset. The data objects

TABLE 5. A sample dataset.

S. No. A1 A2 A3 A4 A5 A6

1 a3 b2 c4 d1 e2 f1

2 a2 b2 c4 d3 e2 f2

3 a3 b1 c2 d1 e1 f2

4 a2 b2 c4 d1 e2 f1

5 a3 b1 c2 d3 e1 f3

6 a1 b2 c1 d2 e2 f1

7 a3 b1 c2 d2 e1 f3

8 a2 b2 c4 d3 e2 f2

9 a3 b1 c2 d1 e1 f4

10 a3 b1 c2 d1 e1 f5

are then gathered around these selected points (or objects) based
on similarities considering various attributes. The clusters are
formed using two similarity measures: (i) similarity between
two objects and (ii) similarity between a cluster and an object.
The description of notations used in the algorithm is given in
Table 3.

Example 2. Consider a sample dataset shown in Table 5
with 10 objects defined over 6 attributes A1, A2, A3, A4,
A5 and A6. The domains for the attributes are, respectively,
D1 = {a1, a2, a3}, D2 = {b1, b2}, D3 = {c1, c2, c3, c4},
D4 = {d1, d2, d3}, D5 = {e1, e2} and D6 = {f1, f2, f3, f4, f5}.

Clusters C1, C2, C3 and C4 can be identified in the dataset
with MinAtt = 6/2 = 3

C1 = {Oblist = {2, 8}, Nattrib = 6,

Dattrib = {1, 2, 3, 4, 5, 6}, Vattrib = {a2, b2, c4, d3, e2, f1}},
C2 = {Oblist = {1, 4}, Nattrib = 5,

Dattrib = {2, 3, 4, 5, 6}, Vattrib = {b2, c4, d1, e2, f1}},
C3 = {Oblist = {5, 7}, Nattrib = 5,

Dattrib = {1, 2, 3, 5, 6}, Vattrib = {a3, b1, c2, e1, f3}},
C4 = {Oblist = {3, 9, 10}, Nattrib = 5,

Dattrib = {1, 2, 3, 4, 5}, Vattrib = {a3, b1, c2, d1, e1}}.

5.1. The k-point algorithm

The unsupervised classification algorithm starts with an empty
set of clusters. Initially, k objects are selected randomly from
the dataset. It reads each object Xi sequentially from the dataset
and inserts it in an existing cluster based upon the similarity
between Xi and a cluster. If the similarity between a cluster and
the object is below a threshold, a new cluster is created with
Xi , if Xi is similar with any of the randomly selected k objects
for a defined threshold MinmAtt of attributes. The search for a
cluster for inserting an object starts from the beginning of the
created cluster set until the search is successful. The objects that
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are neither possible to include in any one of the clusters nor to
create a new cluster based upon the specified value of MinmAtt
are excluded from the clusters. Based upon the similarity among
the profiles, similar clusters are merged into a single cluster. The
largest cluster is selected and labeled as normal on the basis of
the assumption of the normal behavior model. The algorithm is
given as Algorithm 3.

Algorithm 3 k-point Algorithm
Input: Dataset D,Value of k;
Output: Largest Cluster, CL;

1: Select k records randomly from the D;
2: Find number of attributes M of each of k records
3: S = ∅; MinmAtt = M/2; T = M;
4: if D (= ∅ then
5: Fetch a record d from D;
6: end if
7: if d is unselected record and S (= ∅ then
8: Find a cluster Ci from S ;
9: Compute similarity, simC(Ci, d) between cluster Ci and

object d;
10: else
11: Goto step 5;
12: end if
13: if simC(Ci, d) == 0 then
14: Add record d to Ci ;
15: Go to step 5;
16: end if
17: Compute similarity, simO(d, ki) between object d and any

record ki from random records for T attributes;
18: if simO(d, ki) == 0 then
19: Create a cluster Cj with Clusprofile =

(Nattrib, Dattrib, Vattrib);
20: Include Cj to S;
21: Go to step 5;
22: else
23: T = T − 1;
24: end if
25: if T > MinmAtt then
26: Go to step 17;
27: else
28: Go to step 5;
29: end if
30: if Number of clusters in S > 2 then
31: if Profiles of Cx == Profile of Cy then
32: Merge Oblist of Cy with Oblist of Cx ;
33: Update S;
34: end if
35: end if
36: Find the largest cluster CL by comparing Oblist of clusters

from S;
37: Stop;

FIGURE 2. Architecture of multiple indices cluster labeling.

TABLE 6. Cluster stability criteria.

Range of Criteria for
Stability measure value better cluster

Dunn index (0,∞) Maximized
C-index (0,1) Minimized
DB’s index (0,∞) Minimized
Silhouette index (−1,1) Near 1
XB index (0,1) Minimized

5.2. Complexity analysis

The k-point algorithm requires one pass through the dataset.
Each object needs to be compared with existing clusters one
after another until it gets inserted in one of the clusters.
The similarity computation involves a subset of attributes.
Therefore, the clustering process has a complexity O(ncd),
where n is the number of objects in the dataset, c is the number
of clusters and d is the number of attributes. Each of the created
clusters needs to be visited for k number of objects for d

attributes. Hence, the maximum time complexity of k-point
algorithm becomes O(ncd) + O(kd).

5.3. Cluster labeling technique

We analyze the stability of the clusters obtained using the
k-point algorithm. We propose an ensemble-based stability
analysis technique based on the Dunn index (Dunn) [33], C-
index (C) [34], Davies Bouldin’s index (DB) [35], Silhouette
index (S) [36] and Xie–Beni index (XB) [37] for cluster validity
(shown in Fig. 2).

The criteria used for labeling the cluster stability analysis
are given in Table 6. Cluster results are passed to a function to
compute all the indices for each of the clusters C1, C2, . . . , Ck ,
and if the obtained value is within the acceptable range, then
the cluster index, CIi is stored as 1; otherwise it is assigned 0,
as defined below.

CIi =
{

1, j th index value, Ij is within its valid range,
0, otherwise.

(7)
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10 P. Gogoi et al.

TABLE 7. Outlier detection algorithm notation.

Symbol Description

|D| Size of dataset
k Size of neighborhood objects
p, q Any objects
dist(p, q) Distance between objects p and q

NNk(p) Nearest neighbor set of k objects for object p

getNNk() Function for computing nearest neighbor set
of k objects

FNNk(p) Forward nearest neighbor set of k objects for
object p

FNOFk(p) Forward neighbor outlier factor for object p

getFNOFk() Function for computing forward neighbor
outlier factor

M Threshold value for forward neighbor outlier
factor

Finally, we consider the number of occurrences of 1 to decide
the compactness of a cluster. This becomes input to the subse-
quent labeling task along with the other two measures, namely
that, cluster size and dominant feature subset shown in Fig. 2.
To compute the dominating feature subset, we use a rough
set and a modified genetic algorithm-based method described
in [38].

6. OUTLIER MINING

We have developed an outlier mining method based on
symmetric neighborhood relationships [39]. For each object
of the dataset, a forward neighbor outlier factor is estimated
by finding the nearest neighbor set and the forward nearest
neighbor set of the data objects to identify outliers. The
description of notation used in the algorithm is given in
Table 7.

In the dataset D = {d1, d2, . . . , dn} of n objects, let di and
dj be two arbitrary objects in D. We use Euclidean distance
to evaluate the distance between objects di and dj , denoted as
dist (di, dj ).

Definition 1. The Nearest Neighbor Set of k objects for an
object p (NNk(p)) is the set of k nearest neighbor objects of p

where k > 0. In dataset D of |D| objects, |NNk(p)| = k

(i) if ∀p (∈ NNk(p) and
(ii) dist(o, p) < dist(ó, p) where o and ó are kth and

(k + 1)th nearest neighbors of p, respectively.

Definition 2. Forward Nearest Neighbor Set of k objects of
object p is the set of objects whose NNk contains p, denoted
as FNNk(p). In dataset D of |D| objects where p and q are

FIGURE 3. Example 3 dataset plot.

arbitrary objects, FNNk(p) is defined as

FNNk(p) = {q ∈ D | p ∈ NNk(q), p (= q}. (8)

A score for each object of the dataset is computed based
on |NNk| and |FNNk| of the object. The score is termed
Forward Neighbor Outlier Factor of k objects (FNOFk) and
it decides the strength of linkage of the object with other
objects.

Definition 3. The Forward Neighbor Outlier Factor of k

objects for an object p is the ratio of the remaining number
of objects of FNNk(p) of the dataset D (except object p)

to the number of dataset objects (except object p), denoted
as FNOFk(p). In dataset D of objects |D|, FNOFk(p) is
defined as

FNOFk(p) = |D| − |FNNk(p)| − 1
|D| − 1

= 1 − |FNNk(p)|
|D| − 1

. (9)

Example 3. A sample 2D dataset is plotted in Fig. 3. The
dataset has six objects p, q1, q2, q3, q4 and q5. For neighborhood
size k = 3, the NNk and FNNk will be as follows:

NNk(p) = {q1, q2, q3}, FNNk(p) = {q1, q2, q3, q4},
NNk(q1) = {p, q2, q4}, FNNk(q1) = {p, q2, q3, q4, q5},
NNk(q2) = {p, q1, q3}, FNNk(q2) = {p, q1, q3, q5},
NNk(q3) = {p, q1, q2}, FNNk(q3) = {p, q2, q5},
NNk(q4) = {p, q1, q5}, FNNk(q4) = {q1},
NNk(q5) = {q1, q2, q3}, FNNk(q5) = {q4}.
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A Multi-Level Hybrid Intrusion Detection Method 11

The number of objects of NNk and FNNk for k = 3 are as
follows:

|NNk(p)| = 3, |FNNk(p)| = 4,

|NNk(q1)| = 3, |FNNk(q1)| = 5,

|NNk(q2)| = 3, |FNNk(q2)| = 4,

|NNk(q3)| = 3, |FNNk(q3)| = 3,

|NNk(q4)| = 3, |FNNk(q4)| = 1,

|NNk(q5)| = 3, |FNNk(q5)| = 1.

The outlier factor FNOFk for k = 3 and |D|=6 are as
follows:

FNOFk(p) = (1 − 4
5 ) = 0.20,

FNOFk(q1) = (1 − 5
5 ) = 0.0,

OFk(q2) = (1 − 4
5 ) = 0.20,

FNOFk(q3) = (1 − 3
5 ) = 0.40,

FNOFk(q4) = (1 − 1
5 ) = 0.80,

FNOFk(q5) = (1 − 1
5 ) = 0.80.

The outliers are found for threshold M ≥ 0.80 and k = 3 as
follows:

FNOFk(q4) = 0.80 and FNOFk(q5) = 0.80.

6.1. GBBK algorithm

The outlier detection algorithm named the GBBK algo-
rithm consists of two functions: getFNOFk(D, k) and
getNNk(D, p, k) (reported as Algorithm 4). The function
getFNOFk(D, k) computes the distances among all objects
using Euclidean distance, sorts all distances and searches for the
shortest k distances. The function getNNk(D, p, k) searches for
forward nearest neighbor objects for each of k objects returned
by the function getFNOFk(D, k) for any object and computes
a score using Equation (9).

6.2. Complexity analysis

The outlier detection algorithm comprises two functions:
getNNk() and getFNOF(). The complexity of function getNNk()
is due to the distance computation among n objects and sorting
of n object distances using Quicksort. So, it is n log n. Thus,
the time complexity of this function is O(n + n log n). Again,
the complexity of the function getFNOF() is due to search
among n × k objects, computation of the outlier factor for n

objects and search of n objects using a user-defined threshold
value. Thus, the time complexity of this function is O(n × k ×
(n + n log n) + 2n). Hence, the time complexity of the outlier
algorithm is O(n×k × (n+n log n)+2n) ∼= O(n2). However,
the use of spatial index structure [40] reduces the complexity
significantly.

Algorithm 4 GBBK algorithm
Input: Dataset D, M, k, p;
Output: Outlier List L;

1: X = getFNOFk(D, k);
2: ∀t∈X

3: if t ≥ M then
4: Add t to L;
5: end if
6:

7: Function getFNOFkD, k

8: while |D| (= Null do
9: ∀p∈D S = getNNk(D, p, k);

10: end while
11: ∀q∈S T = getNNK(D, q, k);
12: if p ∈ T then
13: Add q to list of FNNk(p);
14: |FNNk(p)| = |FNNk(p)|+1;
15: end if
16: Compute ∀p∈DFNOFk(p) = {1 − |FNNk(p)|

|D|−1 };
17: return FNOFk(p);
18:

19: Function getNNkD, p, k

20: if |D| (= Null then
21: ∀q;p (=q;p,q∈D Compute dist(p, q);
22: end if
23: ∀q Sort dist(p, q);
24: Add k shortest distant objects from p to NNk(p);
25: return NNk(p);

7. MLH-IDS: COMPLEXITY ANALYSIS

The multi-level hybrid intrusion detection method (MLH-IDS)
is composed of three individual methods we have already
discussed in this paper. The time complexities of each method
are (i) O(ncd) + O(c) for CatSub+ (reported in Section 4.2),
(ii) O(ncd) for k-point (reported in Section 5.2) and (iii) O(n2)

for the outlier-based method (reported in Section 6.2). The time
complexity of MLH-IDS is the summarization of these three
methods.

Lemma 1. The performance of MLH-IDS in terms of detection
accuracy cannot be less than the performance of the individual
classifiers used.

Proof. Let the MLH-IDS be called S for our current discussion.
Thus, S is comprised of m classifiers C1,C2,…,Cm, which
are placed at level 1, level 2,…, level m, respectively. Also,
let p < pi , where p is the performance of S and pi is the
performance of classifier Ci (i = 1, 2, . . . , m). As per strategy
(as reported in Section 3), Ci is placed at a level k (k =
1, 2, . . . , m) for detection of certain class(es) for which its
performance is the best among them classifiers and performance
of S is the performance of the classifiers Ci used at that level. In
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TABLE 8. TUIDS intrusion dataset packet level.

Data sets DoS Probe Normal Total

Packet Level 151 203 26 839 254 833 432 875
Packet Level+ 75 600 13 420 127 416 216 436

TABLE 9. TUIDS intrusion dataset flow level.

Data sets DoS Probe Normal Total

Flow Level 162 333 62 741 175 057 400 131
Flow Level+ 81 166 31 375 87 528 200 069

other words, performance of S at level k cannot be less than that
of the classifier used at level k, since the strategy is followed
for each level, and so p (< pi . Thus, there is a contradiction and
hence the proof.

8. EXPERIMENTAL RESULTS

In this section, we report a comprehensive experimental eval-
uation of the efficiency and effectiveness of the MLH-IDS
method. All necessary experiments were carried out on an Intel
workstation with Intel core 2 Quad @2.4GHz, 2 GB RAM,
160GB HDD. The programs were developed in C in a Linux
environment. The method was evaluated with our real-time
TUIDS [41] intrusion dataset, a DDoS Dataset, the KDD Cup
1999 dataset [42] and the new version of KDD (NSL-KDD)
dataset [43].

8.1. Datasets

The description of the four datasets is given next.

8.1.1. TUIDS intrusion dataset
The MLH-IDS method was evaluated using our own real-life
TUIDS intrusion dataset. A summary of the dataset is given
in Tables 8 and 9. The TUIDS dataset actually includes two
datasets—Packet Level and Flow Level. The network traffic for
attack and normal was captured using our local network within
a 4-week period. The attacks were generated using attack tools
[44] against a local network server and the produced traffic
was collected as known attack traffic. Sixteen different types of
attacks were generated. The attacks along with the correspond-
ing tools for their generation are given in Table 10. The network
traffic was captured at packet level and flow level through
two separate port-mirroring machines. The captured data were
preprocessed and filtered to extract various types of features.

The setup of the testbed for network flow capture included
one router, one L3 switch, two L2 switches, one server, two
workstations and forty nodes. A number of (six) virtual local
area networks (VLANs) were created from the L3 switch and
the L2 switch and nodes and workstations were connected to

TABLE 10. Attack list and the generating tools.

Attack Generation tool Attack Generation tool

bonk targa2.c 1234 targa2.c

jolt targa2.c saihyousen targa2.c

land targa2.c oshare targa2.c

nestea targa2.c window targa2.c

newtear targa2.c syn Nmap
syndrop targa2.c xmas Nmap
teardrop targa2.c fraggle fraggle.c
winnuke targa2.c smurf smurf4.c

separated VLANs. The L3 switch was connected to a router
through an internal IP router and the router was connected
to the Internet through an external IP router. The server was
connected to the L3 switch through the mirror port to observe
the traffic activity to the switch. Another local area network
(LAN) of 350 nodes was connected to other VLANs through
five L3 and L2 switches and three routers. The attacks were
launched within our testbed as well as from another LAN
through the Internet. In launching attacks within the testbed,
nodes of oneVLAN were attacked from nodes of anotherVLAN
and also the same VLAN. Normal traffic was created within our
testbed under restricted conditions after disconnecting another
LAN. The traffic activities to our testbed were observed in the
computer connected to the mirror port. A diagram of the testbed
for generation of real-life intrusion datasets is shown in Fig. 4.

The packet level network traffic was captured using the
open source software tool called gulp [45]. The packets were
analyzed using the open source packet analyzing software
wireshark [46]. The raw packet data were preprocessed and
filtered before extracting and constructing new features. In
packet level network traffic, 50 types of features were extracted.
The list of features are given in Table 11. The extracted features
are classified into four groups: (i) basic, (ii) content-based, (iii)
time-based and (iv) connection-based.

The network flow is a unidirectional sequence of packets
passing through an observation point in the network during
a certain time interval between source and destination hosts.
All traffic belonging to a particular flow has a set of common
properties. The NetFlow protocol (IPFIX standard) [47, 48]
provides a summarization of information about the router or
switch traffic. We used the NetFlow version 5 protocol [49]
to export flow records and used nfdump [50] to receive flow
records. The extracted flow-level features are reported in
Table 12. The extracted features are of 24 types and are classified
into three groups: (i) basic, (ii) time-window-based and (iii)
connection-based.

8.1.2. DDoS dataset
The MLH-IDS method was evaluated with a DDoS Dataset
we generated as well. Details of this dataset are given in
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FIGURE 4. Testbed for generation of TUIDS intrusion dataset.

Table 13. The experimental testbed shown in Fig. 4 was used for
generation of DDoS attacks and normal network traffic. Attacks
were generated from one VLAN to another by spoofing a node
of one intermediate VLAN using attack tools [44]. The network
traffic was captured during a period of three weeks. We used
the NetFlow version 5 protocol to export flow records and used
nfdump to receive flow records. The extracted DDoS Dataset
features are given in Table 14.

8.1.3. KDD Cup 1999 dataset
The MLH-IDS method was also tested on datasets available in
the KDD Cup 1999 intrusion detection benchmark datasets [42].
Each record of the datasets represents a connection between two
network hosts according to network protocols and is described
by 41 attributes (38 continuous or discrete numerical attributes
and 3 categorical attributes). Each record is labeled as either
normal or one specific kind of attack. Each dataset contains 22
types of attacks. The attacks fall in one of the four categories:
U2R, R2L, DoS and Probe. The number of samples of each
category of attack in the Corrected KDD dataset and the 10%
KDD dataset are shown in Table 15.

8.1.4. NSL-KDD datasets
NSL-KDD is a network-based intrusion dataset [43]. It is
a filtered version of KDD Cup 1999 intrusion detection
benchmark dataset. In the KDD Cup 1999 dataset, there are a
huge number of redundant records, which can cause the learning
algorithms to be biased toward the frequent records. To solve

this issue, one copy of each record was kept in the NSL-KDD
dataset. Statistical characteristics of the two datasets of NSL-
KDD: (i) KDDTrain+ and (ii) KDDTest+ are shown in Table 16.

8.2. Data preprocessing

We discretized the continuous valued attributes by taking
logarithm to the base 2 and then converting to integer as
described in Section 4. Nominal valued attributes are mapped to
discrete numerical codes which are nothing but serial numbers
(beginning with zero) of unique attribute values in the order
in which they appear in the dataset. The class label attribute is
removed from the dataset and stored separately in a different
file. The class labels are used for training and evaluating the
detection performance of the algorithm.

8.3. δ selection

We have analyzed the effect of selection of δj in Equation (2)
and δaj in Equation (6) using the benchmark dataset Corrected
KDD Cup 1999 and two real-life datasets, viz., Packet level and
Flow level TUIDS datasets. The performance of the proposed
method in terms of recall depends on the selection of δj and
δaj as seen in Figs 5 and 6. It is dependent on the dataset used
for evaluation. However, a most probable range of δj and δaj

for these datasets is shown with vertically drawn dashed lines
in Figs 5 and 6. In our experiments, better results are obtained
with δj = 0.6 and δaj = 0.65.
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TABLE 11. Packet level features of the TUIDS intrusion dataset.

Sl. Feature names Type* Feature description

Basic features
1. Duration C Time since occurrence of the first frame
2. Protocol D Protocol of layer 3- IP, TCP, UDP
3. Src IP C Source IP address
4. Dst IP C Destination IP address
5. Src port C Source port of machine
6. Dst port C Destination port of machine
7. Service D Network service on the destination e.g. http, telnet, etc.
8. num-bytes-src-dst C No. of data bytes flowing from src to dst
9. num-bytes-dst-src C No. of data bytes flowing from dst to src
10. Fr-no. C Frame number
11. Fr-length C Length of the frame
12. Cap-length C Captured frame length
13. Head-len C Header length of the packet
14. Frag-offset D Fragment offset value
15. TTL C Time to live
16. Seq-no. C Sequence number
17. CWR D Congestion window record
18. ECN D Explicit congestion notification
19. URG D Urgent TCP flag
20. ACK D Ack flag
21. PSH D Push TCP flag
22. RST D Reset RST flag
23. SYN D Syn TCP flag
24. FIN D Fin TCP flag
25. Land D 1 if connection is from/to the same host/port; 0 otherwise

Content-based features
26. Mss-src-dst-requested C Maximum segment size from src to dst requested
27. Mss-dst-src-requested C Maximum segment size from dst to src requested
28. Ttt-len-src-dst C Time to live length from src to dst
29. Ttt-len-dst-src C Time to live length from dst to src
30. Conn-status C Status of the connection (1-complete, 0-reset)

Time-based features
31. count-fr-dst C No. of frames received by the unique dst in the last T sec from the same src
32. count-fr-src C No. of frames received by the unique src in the last T sec to the same dst
33. count-serv-src C No. of frames from the src to the same dst port in the last T sec
34. count-serv-dst C No. of frames from dst to the same src port in the last T sec
35. num-pushed-src-dst C No. of pushed pkts flowing from src to dst
36. num-pushed-dst-src C No. of pushed pkts flowing from dst to src
37. num-SYN-FIN-src-dst C No. of SYN/FIN pkts flowing from src to dst
38. num-SYN-FIN-dst-src C No. of SYN/FIN pkts flowing from dst to src
39. num-FIN-src-dst C No. of FIN pkts flowing from src to dst
40. num-FIN-dst-src C No. of FIN pkts flowing from dst to src

Connection-based features
41. count-dst-conn C No. of frames to the unique dst in the last N packets from the same src
42. count-src-conn C No. of frames from the unique src in the last N packets to the same dst
43. count-serv-src-conn C No. of frames from the src to the same dst port in the last N packets
44. count-serv-dst-conn C No. of frames from the dst to the same src port in the last N packets
45. num-packets-src-dst C No. of packets flowing from src to dst
46. num-packets-dst-src C No. of packets flowing from dst to src
47. num-acks-src-dst C No. of ack packets flowing from src to dst
48. num-acks-dst-src C No. of ack packets flowing from dst to src
49. num-retransmit-src-dst C No. of retransmitted packets flowing from src to dst
50. num-retransmit-dst-src C No. of retransmitted packets flowing from dst to src

∗C, continuous, D, discrete.
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TABLE 12. Flow level features of the TUIDS Intrusion dataset.

Sl. Feature names Type* Feature description

Basic features
1. Duration C Length of the flow (in seconds)
2. Protocol-type D Type of protocols—TCP, UDP, ICMP
3. src IP C Src node IP address
4. dst IP C Destination IP address
5. src port C Source port
6. dst port C Destination port
7. ToS D Type of service
8. URG D Urgent flag of TCP header
9. ACK D Ack flag
10. PSH D Push flag
11. RST D Reset flag
12. SYN D SYN flag
13. FIN D FIN flag
14. Source byte C No. of data bytes transferred from the src IP addrs to the dst IP addrs
15. dst byte C No. of data bytes transferred from the dst IP addrs to the src IP addrs
16. Land D 1 if connection is from/to the same host/port; 0 otherwise

Time-window features
17. count-dst C No. of flows to the unique dst IP addr inside the network in the last T sec from the same src
18. count-src C No. of flows from the unique src IP addr inside the network in the last T sec to the same dst
19. count-serv-src C No. of flows from the src IP to the same dst port in the last T sec
20. count-serv-dst C No. of flows to the dst IP using the same src port in the last T sec

Connection-based features
21. count-dst-conn C No. of flows to the unique dst IP addrs in the last N flows from the same src
22. count-src-conn C No. of flows from the unique src IP addrs in the last N flows to the same dst
23. count-serv-src-conn C No. of flows from the src IP addrs to the same dst port in the last N flows.
24. count-serv-dst-conn C No. of flows to the dst IP addrs to the same src port in the last N flows

∗C, continuous; D, discrete.

TABLE 13. DDoS dataset.

Categories

Dataset Normal smurf fraggle synflood Total

DDoS 71 599 9022 0 51 140 131 761
DDoS+ 35 800 4510 6088 25 570 71 968

8.4. Experimental results

Experiments were performed using four datasets, viz., (i) Real-
time TUIDS intrusion dataset, (ii) DDoS Dataset, (iii) KDD Cup
1999 dataset and (iv) NSL-KDD dataset were used to evaluate
the performance of our method.

8.4.1. Results with TUIDS intrusion dataset
A. Packet Level dataset:
The confusion matrix for all-attacks categories on the
Packet Level dataset is shown in Table 17. For cross-evaluation

of the Packet Level dataset, Packet Level data is used for training
and Packet Level+ data is used for testing. The Packet Level+
dataset has new attack records that do not exist in Packet Level
dataset and these are marked as Unknown in our experiment. In
cross-evaluation, training is carried out with training data and
testing is performed with the test data. Cross-evaluation results
are given in Table 18. In this case, a majority of Unknown attacks
is misclassified as DoS and Normal. The average execution time
of classification using cross-validation is 0.64 min.
B. Flow Level dataset:
The confusion matrix for all-attacks categories in the Flow Level
datasets is shown in Table 19. The Flow Level+ dataset has new
attack records that do not exist in the Flow Level dataset and
these are marked as Unknown in experiment. In cross evaluation
training is carried out with training data and testing is performed
with the test data. For cross-validation of the Flow Level dataset,
Flow Level data is used for training and Flow Level+ data is used
for testing. Cross-validation results are shown in Table 20. The
average execution time for classification using cross-validation
is 0.25 min.
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TABLE 14. Features of the DDoS dataset.

No. Features Type* Description

1. Duration C Length of the flow (in seconds)
2. Protocol-type D Type of protocols—TCP, UDP, ICMP
3. src IP C Source node IP address
4. dest IP C Destination IP address
5. src port C Source port
6. dest port C Destination port
7. ToS D Type of service
8. URG D Urgent flag of TCP header
9. ACK D Ack flag
10. PSH D Push flag
11. RST D Reset flag
12. SYN D SYN flag
13. FIN D FIN flag
14. src byte C No. of data bytes transferred from the src IP addrs to the dst IP addrs
15. Land D 1 if connection is from/to the same host/port; 0 otherwise
16. count-dst C No. of flows to the unique dst IP addrs inside the network in the last T sec (5 s) from the same src
17. count-src C No. of flows from the unique src IP addrs inside the network in the last T sec (5 s) to the same dst
18. count-serv-src C No. of flows from the src IP addrs to the same dst port in the last T sec (5 s)
19. count-serv-dst C No. of flows to the dst IP addrs using the same src port in the last T sec (5 s)
20. count-dst-conn C No. of flows to the unique dst IP addrs in the last N flows from the same src
21. count-src-conn C No. of flows from the unique src IP addrs in the last N flows to the same dst
22. count-serv-src-conn C No. of flows from the src IP addrs to the same dst port in the last N flows
23. count-serv-dst-conn C No. of flows to the dst IP addrs to the same src port in the last N flows
24. Label Label of the feature instance as normal/attack

∗C, continuous; D, discrete.

TABLE 15. Attacks distribution in KDD Cup datasets.

Datasets DoS R2L U2R Probe Normal Total

Corrected KDD 229 853 16 347 70 4166 60 593 311 029
10-percent KDD 391 458 1126 52 4107 97 278 494 021

TABLE 16. NSL-KDD dataset.

Datasets DoS U2R R2L Probe Normal Total

KDDTrain+ 45 927 52 995 11 656 67 343 125 973
KDDTest+ 7458 67 2887 2422 9710 22 544

8.4.2. Results using the DDoS dataset
The confusion matrix for all-attacks categories on the DDoS is
shown in Table 21. The DDoS+ dataset has new attack records
that do not exist in the DDoS dataset and these are marked as
Unknown in experiment. In cross evaluation, training is carried
out with training data and testing is performed with the test
data. Cross evaluation results are given in Table 22. In this
case, a majority of Unknown attacks is misclassified as DoS

FIGURE 5. δj selection.

and Normal. The average execution time of classification using
cross evaluation is 0.21 min.

8.4.3. Results using KDD Cup 1999 dataset
The confusion matrices for KDD Cup 1999 dataset on the
Corrected KDD and the 10% KDD datasets are shown in
Tables 23 and 24, respectively. Cross-validation results are
given in Table 25. In cross validation, the 10-percent KDD
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FIGURE 6. δaj selection.

TABLE 17. Confusion matrix for Packet Level dataset.

Predicted class

Actual class DoS Probe Normal Sum Recall 1-Prc∗

DoS 150 885 103 215 151 203 0.9979 0.0148
Probe 86 26 557 196 26 839 0.9895 0.0176
Normal 2380 373 252 080 254 833 0.9892 0.0016
Sum 153 151 27 033 252 491 432 875

∗1-Precision.

TABLE 18. Confusion matrix for cross-evaluation with Packet Level
data for training and Packet Level+ data for testing.

Predicted class
Actual
class DoS Probe Normal Un@ Sum Recall 1-Prc∗

DoS 71 910 161 303 226 72 600 0.9905 0.0519
Probe 134 10 075 103 578 10 890 0.9629 0.1165
Normal 3204 1162 121 656 1394 127 416 0.9548 0.0034
Un@ 595 5 15 4915 5530 0.8888 0.3090
Sum 75 843 11 403 122 077 7113 216 436

@Unknown, ∗1-Precision.

dataset is used for training and the Corrected KDD dataset
is used for testing. The attack records that are present in the
Corrected KDD dataset but do not exist in the 10-percent KDD
dataset are marked as Unknown. In this case, the majority of
Unknown attacks is misclassified as the R2L category. Average
execution times for classification are 1.36, 1.91 and 1.42 min
for Corrected KDD, the 10% KDD and for cross-validation,
respectively.

8.4.4. Results on NSL-KDD dataset
The confusion matrices for the NSL-KDD dataset using the
KDDTrain+ and the KDDTest+ are shown in Tables 26 and
27, respectively. For cross-validation, the KDDTrain+ dataset is

TABLE 19. Confusion matrix for Flow Level dataset.

Predicted class
Actual
class DoS Probe Normal Sum Recall 1-Prc∗

DoS 162 089 52 192 162 333 0.9985 0.0105
Probe 146 62 057 538 62 741 0.9891 0.0137
Normal 1569 812 172 676 175 057 0.9864 0.0042
Sum 163 804 62 921 173 406 400 131

∗1-Precision.

TABLE 20. Confusion matrix for cross evaluation with Flow Level
data for training and Flow Level+ data for testing.

Predicted class
Actual
class DoS Probe Normal Un@ Sum Recall 1-Prc∗

DoS 77 840 153 194 479 78 666 0.9895 0.0317
Probe 165 29 384 170 656 30 375 0.9674 0.0439
Normal 2298 1147 82 407 1676 87 528 0.9415 0.0070
Un@ 84 48 220 3148 3500 0.8994 0.4717
Sum 80 387 30 732 82 991 5959 200 069

@Unknown, ∗1-Precision.

TABLE 21. Confusion matrix for the DDoS dataset.

Predicted class
Actual
class smurf syna Normal Sum Recall 1-Prc∗

smurf 8869 43 110 9022 0.9831 0.0503
syna 316 50 096 728 51 140 0.9796 0.0028
Normal 154 97 71 348 71 599 0.9965 0.0116
Sum 9339 50 236 72 186 131 761

asynflood, ∗1-Precision.

TABLE 22. Confusion matrix for cross evaluation with DDoS data for
training and DDoS+ data for testing.

Predicted class
Actual
class smurf syna Normal frab Sum Recall 1-Prc∗

smurf 4421 24 26 39 4510 0.9804 0.0935
synf 219 24 749 328 274 25 570 0.9679 0.0108
Normal 51 97 35 427 225 35 800 0.9896 0.0190
frag 186 150 331 5421 6088 0.8905 0.0903
Sum 4877 25 020 36 112 5959 71 968

asynflood, bfraggle, ∗1-Precision.

used for training and the KDDTest+ dataset is used for testing.
The attack records that exist in the KDDTest+ dataset but do
not exist in the KDDTrain+ dataset are marked as Unknown.
Cross-validation results are given in Table 28. In this case, the
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TABLE 23. Confusion matrix of the Corrected KDD dataset.

Predicted class

Actual class DoS Probe Normal U2R R2L Sum Recall 1-Prc∗

DoS 229 828 2 23 0 0 229 853 0.9999 0.0001
Probe 7 4114 42 0 3 4166 0.9875 0.0044
Normal 6 15 54 574 1 5997 60 593 0.9007 0.0273
U2R 0 0 10 57 3 70 0.8143 0.0272
R2L 0 1 1452 2 14 892 16 347 0.9110 0.2873
Sum 229 841 4132 56 101 60 20 895 311 029

∗1-Precision.

TABLE 24. Confusion matrix of the 10-percent KDD dataset.

Predicted class

Actual class DoS Probe Normal U2R R2L Sum Recall 1-Prc∗

DoS 391 450 1 7 0 0 391 458 1.0000 0.0000
Probe 0 4092 15 0 0 4107 0.9963 0.0104
Normal 1 42 97 221 0 14 97 278 0.9994 0.0012
U2R 0 0 6 44 2 52 0.8462 0.0435
R2L 0 0 88 2 1036 1126 0.9201 0.0152
Sum 391 451 4135 97 337 46 1052 494 021

∗1-Precision.

TABLE 25. Confusion matrix for cross evaluation of MLH-IDS with 10-percent KDD for training
and Corrected KDD for testing.

Predicted class

Actual class DoS Probe Normal U2R R2L Unknown Sum Recall 1-Precision

DoS 221 903 102 702 19 42 530 223 298 0.9938 0.0047
Probe 43 2247 22 4 10 51 2377 0.9453 0.2439
Normal 433 192 58 563 14 441 950 60 593 0.9665 0.0155
U2R 0 0 1 35 1 2 39 0.8974 0.6316
R2L 3 182 170 5 5273 360 5993 0.8798 0.2620
Unknown 565 249 26 18 1378 16 493 18 729 0.8806 0.1030
Sum 222 947 2972 59 484 95 7145 18 386 311 029

majority of Unknown attacks is misclassified as DoS, Probe and
R2L categories. The average execution times for classification
are 0.67, 0.11 and 0.17 min for KDDTrain+ dataset, KDDTest+

dataset and for cross evaluation, respectively.

8.5. Comparison of results

We performed experiments using the TUIDS datasets, viz., the
Packet level, and Flow level and DDoS datasets using the deci-
sion tree-based algorithm C4.5 [51] and a graph-based

Bayesian Networks algorithm following [52] and the
Naive Bayes algorithm [53] with Weka [54]. The results
of comparison of performance using these algorithms and
our method are given in Tables 29 and 30, respectively, for
the TUIDS datasets at the Packet level and the Flow level.
Experimental results of comparison using the above-mentioned
algorithms and our method for the DDoS dataset are given
in Table 31. The results of MLH-IDS outperforms the other
three methods in all categories DoS, Probe and Normal for
the Packet level and Flow level datasets. In case of the DDoS
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TABLE 26. Confusion matrix of the KDDTrain+ dataset.

Predicted class

Actual class DoS Probe Normal U2R R2L Sum Recall 1-Prc∗

DoS 45 900 4 23 0 0 45 927 0.9994 0.0025
Probe 0 11 563 93 0 0 11 656 0.9920 0.0173
Normal 114 199 66 883 5 142 67 343 0.9932 0.0026
U2R 0 0 9 43 0 52 0.8269 0.1224
R2L 0 0 47 1 947 995 0.9518 0.1304
Sum 46 014 11 766 67 055 49 1089 125 973

∗1-Precision.

TABLE 27. Confusion matrix of the KDDTest+ dataset.

Predicted class

Actual class DoS Probe Normal U2R R2L Sum Recall 1-Prc∗

DoS 7443 0 14 0 1 7458 0.9980 0.0009
Probe 2 2399 16 0 5 2422 0.9905 0.0099
Normal 5 24 9556 0 125 9710 0.9841 0.0195
U2R 0 0 3 57 7 67 0.8507 0.0500
R2L 0 0 157 3 2727 2887 0.9446 0.0482
Sum 7450 2423 9746 60 2865 22 544

∗1-Precision.

TABLE 28. Confusion matrix for cross evaluation of MLH-IDS with the KDDTrain+ dataset for training
and the KDDTest+ dataset for testing.

Predicted class

Actual class DoS Probe Normal U2R R2L Unknown Sum Recall 1-Precision

DoS 5680 0 14 0 1 46 5741 0.9894 0.0363
Probe 2 1072 16 0 5 11 1106 0.9693 0.1104
Normal 5 24 9515 0 89 77 9710 0.9799 0.0156
U2R 0 0 3 31 2 1 37 0.8378 0.0723
R2L 0 0 79 3 1913 179 2174 0.8799 0.0385
Unknown 207 109 39 9 52 3360 3776 0.8898 0.0855
Sum 5894 1205 9666 43 2062 3674 22 544

dataset, MLH-IDS outperforms the other methods for Normal
and synflood categories.

A summarized comparison of results of MLH-IDS with
other competing methods reported in [51, 55–57] for KDD
Cup 1999 intrusion datasets is given in Table 32. As seen in
Table 32, MLH-IDS outperforms all other methods for DoS,
Probe and R2L categories. In case of U2R category attack,
except the method reported in [55], MLH-IDS outperforms all
other methods. Work is underway to improve the performance

of the k-point algorithm with cluster stability analysis for more
accurate identification of normal instances.

9. CONCLUSIONS AND FUTURE WORK

The work presented in this paper proposes a multi-level hybrid
intrusion detection method based on supervised, unsupervised
and outlier methods. The proposed method exhibits very good
performance in detecting rare category attacks as well as
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TABLE 29. Comparison of results for the TUIDS dataset Packet
level.

Baysian Naive C4.5
Category Measure network [52] Bayes [53] [51] MLH-IDS

DoS Recall 0.9911 0.9891 0.9807 0.9979
1-Prc∗ 0.0230 0.0219 0.0124 0.0148

Probe Recall 0.9376 0.8580 0.9530 0.9895
1-Prc∗ 0.0212 0.0084 0.0168 0.0176

Normal Recall 0.9750 0.9240 0.9820 0.9892
1-Prc∗ 0.0106 0.0145 0.0152 0.0016

∗1-Precision.

TABLE 30. Comparison of results for theTUIDS dataset Flow level.

Baysian Naive C4.5
Category Measure network [52] Bayes [53] [51] MLH-IDS

DoS Recall 0.9760 0.8540 0.9860 0.9985
1-Prc∗ 0.0190 0.0860 0.0140 0.0105

Probe Recall 0.9890 0.9040 0.9850 0.9891
1-Prc∗ 0.0050 0.0814 0.0030 0.0137

Normal Recall 0.9550 0.2690 0.9750 0.9864
1-Prc∗ 0.0830 0.0120 0.0480 0.0042

∗1-Precision.

TABLE 31. Comparison of results for the DDoS Dataset.

Baysian Naive C4.5
Category Measure network [52] Bayes [53] [51] MLH-IDS

Normal Recall 0.9730 0.4520 0.9920 0.9965
1-Prc∗ 0.0030 0.0140 0.0240 0.0116

smurf Recall 1.0000 0.9570 0.9810 0.9831
1-Prc∗ 0.5580 0.2670 0.0061 0.0503

synflood Recall 0.9795 0.9705 0.9730 0.9796
1-Prc∗ 0.7530 0.5070 0.0048 0.0028

∗1-Precision.

TABLE 32. Comparison of detection rates for the Corrected KDD
dataset (%).

Three-level Multiple-level
tree hybrid

classifier classifier SVM-based C4.5
Category [55] [56] IDS [57] [51] MLH-IDS

DoS 98.54 99.19 99.53 99.99 99.99
Probe 93.50 98.71 97.55 94.82 98.75
Normal 94.68 96.80 99.29 94.42 90.07
U2R 97.14 66.67 19.73 67.11 81.43
R2L 48.91 89.14 28.81 81.53 91.10

large-scale attacks of both new and existing attacks when tested
with several benchmark and real-life intrusion datasets. In
further studies, we will strive to create a more effective ensemble
approach based on faster and efficient classifiers so as to make
a significant contribution in the study of the intrusion detection.
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