
Research Article

Mlifdect: Android Malware Detection Based on Parallel Machine
Learning and Information Fusion

Xin Wang,1 Dafang Zhang,1 Xin Su,2,3 and Wenjia Li4

1College of Computer Science and Electronics Engineering, Hunan University, Changsha, China
2Hunan Provincial Key Laboratory of Network Investigational Technology, Hunan Police Academy, Changsha, China
3Key Laboratory of Network Crime Investigation of Hunan Provincial Colleges, Hunan Police Academy, Changsha, China
4Department of Computer Sciences, New York Institute of Technology, New York, NY, USA

Correspondence should be addressed to Dafang Zhang; dfzhang@hnu.edu.cn

Received 23 January 2017; Revised 4 June 2017; Accepted 6 July 2017; Published 28 August 2017

Academic Editor: Jesús Dı́az-Verdejo

Copyright © 2017 Xin Wang et al. 	is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, Android malware has continued to grow at an alarming rate. More recent malicious apps’ employing highly
sophisticated detection avoidance techniques makes the traditional machine learning based malware detection methods far less
e
ective. More speci�cally, they cannot cope with various types of Android malware and have limitation in detection by utilizing a
single classi�cation algorithm. To address this limitation, we propose a novel approach in this paper that leverages parallel machine
learning and information fusion techniques for better Android malware detection, which is named Mlifdect. To implement this
approach, we �rst extract eight types of features from static analysis on Android apps and build two kinds of feature sets a�er
feature selection. 	en, a parallel machine learning detection model is developed for speeding up the process of classi�cation.
Finally, we investigate the probability analysis based and Dempster-Shafer theory based information fusion approaches which can
e
ectively obtain the detection results. To validate our method, other state-of-the-art detection works are selected for comparison
with real-world Android apps.	e experimental results demonstrate thatMlifdect is capable of achieving higher detection accuracy
as well as a remarkable run-time eciency compared to the existing malware detection solutions.

1. Introduction

We have witnessed more than 1.4 billion smartphones all
over the world in 2015, and �ve out of six new phones were
running Android operating system [1]. Android has become
the most popular mobile OS worldwide. Meanwhile, the
number of Android applications (apps) grows exponentially,
which has signi�cantly bene�ted the daily lives for mobile
users. However, the popularity and openness of Android
system have also attracted many malware authors to aim at
it. According to Symantec Internet Security 	reat Report
[2], there were more than three times as many Android
apps classi�ed as malware in 2015 than in 2014. 	e private
data of the users, such as IMEI, contacts list, and other user
speci�c data, are the primary target of the Android malware,
which has imposed a serious threat for the security and
privacy ofmobile users. Consequently, there is an urgent need

for e
ective defense mechanisms to protect Android-based
mobile devices.

Detection of known Android malware is commonly
performed by antivirus tools, such as AVG (https://www.avg
.com/ww-en/homepage/) and F-secure (https://www.f-
secure.com/en/web/home global/home), which detect An-
droid malware based on their known features (e.g., signature
library). However, they cannot eciently detect unknown
Android malware. 	erefore, a large number of research
works have been focused on Android malware detection by
using various machine learning algorithms. For example,
Drebin [3] extracted several kinds of features, such as API
calls and permissions, and used the support vector machine
(SVM) algorithm to detect unknown malware. However,
it spent too much time to build the classi�er because of
the high-dimensional feature vectors. Fest [4] focused on
selecting useful features from static analysis; it also used

Hindawi
Security and Communication Networks
Volume 2017, Article ID 6451260, 14 pages
https://doi.org/10.1155/2017/6451260

https://www.avg.com/ww-en/homepage/
https://www.avg.com/ww-en/homepage/
https://www.f-secure.com/en/web/home_global/home
https://www.f-secure.com/en/web/home_global/home
https://doi.org/10.1155/2017/6451260

2 Security and Communication Networks

SVM algorithm to classify Android apps. In addition, Du et
al. [5]. utilized the SVM algorithm and the Dempster-Shafer
theory to fuse results. However, these prior works only used
one single classi�cation algorithm, which makes it hard to
prove which algorithm is most suitable for Android malware
detection. Alternatively, Yerima et al. [6]. collected 179
features including API calls and permissions, and they chose
random forest, a kind of ensemble learning algorithms, to
achieve high detection accuracy. But the features cannot
describe an application accurately and the random forest
requires multiple iterations, which consume substantial
amount of computational resource. All those phenomena
make detection ineciency.

To address the above limitations of these prior research
e
orts, we propose a novel detection method based on paral-
lelmachine learning and information fusion, namedMlifdect.
We �rst apply static analysis to extract multilevel features,
such as permissions, API calls, and deployment of compo-
nents, for characterizing the behavioral pattern of Android
applications, and extract more than 65,000 features.	en, we
leverage feature selection algorithms to select typical features
from the extracted features for better detection performance.
Following that, we utilize parallel machine learning to build
a classi�cationmodel which consists of diverse classi�ers and
execute them in parallel to speed up the process. 	e outputs
of classi�cation are probability values instead of classi�cation
results and the output probabilities can complement further
research. A�er combining each output probability value with
local credibility, which is localized as a con�dencemeasure of
a classi�er, Dempster-Shafer theory and probability analysis
are used to integrate them.

To implement Mlifdect, there are three main challenges
which need to be solved. First, the classi�cation model
of Mlifdect consists of six di
erent classi�ers, which may
increase the overall time consumption. Second, it is dicult
to combine the classi�cation outputs of diverse classi�ers as
well. 	ird, di
erent categories of features may have di
erent
sizes, and we may be at the risk of losing some categories
if all features in some certain categories are not selected
at all. To address these challenges, we �rst take advantages
of the parallel machine learning to reduce the execution
time and achieve the tradeo
 between detection accuracy
and time consumption. 	en, we combine outputs of each
classi�er based on Dempster-Shaper theory and probability
analysis, and obtain the �nal classi�cation results. Finally,
according to the size of each category, we divided them into
two sets, and di
erent feature selection algorithms will use
them alternatively.

In summary, we make the following contributions to
detect Android malware in this paper:

(i) We propose an Android malware detection approach
based on parallel machine learning and information
fusion. 	is approach integrates diverse algorithms
and detect Android malware using various categories
of features fromAndroid malware, which can achieve
a good detection results.

(ii) We take advantages of parallel machine learning
to construct classi�cation model, which could save

computational resource and achieve better detection
performance.

(iii) We investigate two information fusion techniques
based on probability analysis and Dempster-Shaper
theory to fuse probability outputs of each classi�er
and generate the �nal classi�cation results.

(iv) We conduct extensive experiments on real-world
dataset which contains 8,385 apps and compare the
performance of our approach with several well-
known Android malware detection approaches. 	e
results show that our approach outperforms the exist-
ing approacheswhich can achieve 99.7% accuracy and
99.8% recall with 0.1% FP rate.What is more,Mlifdect
can analyze an app within 5 seconds on average.

	e rest of this paper is organized as follows. We discuss
related works in Section 2. Section 3 introduces the static
analysis on Android apps. Section 4 describes the design
details of Mlifdect. We evaluate Mlifdect in Section 5 and
conclude in Section 6.

2. Related Work

	e analysis and detection of Android malware have been
a vivid area of research in the past several years. Several
categories of researches have been proposed to cope with the
growing amount of more and more sophisticated Android
malware. We divide these researches into four categories
which are described as follows.

2.1. Detection Using Static Analysis. Static analysis has been
widely used in the research community, and decompilation is
themost common technique in this research category. Yang et
al. implemented AppContext [7], which classi�ed apps based
on the contexts that trigger security-sensitive behaviors. Seo
et al. [8]. investigated malware samples and determined
suspiciousAPIswhichwere frequently used bymalware.	ey
listed suspiciousAPIs and compared the di
erences of feature
occurrence frequency between malware and benign apps.
Kang et al. [9] extracted permissions, suspicious APIs, and
creator information such as serial number of certi�cate as
features to classify malicious Android apps. Flowdroid [10]
detected malware by building a precise model of Androids
lifecycle, which helped to reduce missed leaks or false
positives.

Our method Mlifdect is somewhat related to these
approaches, but we employ more comprehensive features
for charactering apps, such as hardware, network addresses,
and intents. Moreover, our approach can detect unknown
malware by developing diverse machine learning algorithms
to learn features from known malwares.

2.2. Detection Using Dynamic Analysis. Dynamic analysis
focuses on running apps in sandbox environment or in
real devices in order to gather dynamic behaviors of apps
in terms of accessing private data or using restricted API
calls. For example, AppsPlayground performed functions like
information leakage detection, sensitive APImonitoring, and

Security and Communication Networks 3

kernel level monitoring [11]. Enck et al. presented TaintDroid
[12], one of the popular system-wide dynamic taint tracking
tools, and it monitored multiple sources of sensitive data.
RiskRanker could detect particular malicious behaviors [13].
It could check whether the native code of an application
contains the known exploit codes or not and capture certain
behaviors like encryption or dynamic code loading.

Dynamic analysis can collect dynamic behavior of apps
which is a complement to static analysis. However, the e-
ciency of this kind of approaches depends on code coverage
during automatic execution. Moreover, some works (e.g.,
TaintDroid) need to modify Android OS to implement on
smartphone, which is technically not feasible.

2.3. Detection Using Hybrid Approaches. 	ere are also
hybrid approaches that adopt both static analysis and
dynamic analysis. Spreitzenbarth et al. [14] presented an
automated analyzing system, Mobile-Sandbox, parsed an
app’s permissions and intents information, and analyzed
their suspiciousness. 	en, it performed dynamic analysis
to log actions especially those based on native API calls.
DroidDetector [15] extracted 192 features from both static and
dynamic analyses including required permissions, sensitive
API, and dynamic behaviors emulated using DroidBox and
then detected malware using a DNN-based deep learning
model. Marvin [16] collected requested permissions, com-
ponents, SDK version, and a complete list of available Java
methods during static analysis. 	en, taint tracking, method
tracing, and system call invocation recording were also
performed in the dynamic analysis stage.

	ese methods typically consist of analyzing the applica-
tion before installation and recording the execution behavior.
	e hybrid analysis method is gaining more popularity for
its capability to dissect and investigate Android applications
more accurately. However, they generally introduce a high
time complexity and also have to solve the problems that
dynamic analysis faced.

2.4. Detection Using Machine Learning. In recent years, sev-
eral methods have been proposed based on various machine
learning algorithms. 	ese methods can analyze apps auto-
matically and they work well in detecting unknown apps.
Li et al. built their malware detection model using the sup-
port vector machine (SVM) algorithm on various features,
including risky permissions and vulnerable API calls [17].
Yerima et al. developed a machine learning based approach
based on improved eigenface algorithm [18]. Moreover,
DroidDeepLearner [19] and DroidDeep [20] both identi�ed
malware using cutting-edge deep learning algorithm, which
is more autonomous during the learning process so as to
address the malware detection problem with less human
intervention.

All of the above methods used traditional machine
learning algorithms, which detect Androidmalware based on
one or two classi�cation algorithms. However, our proposed
Mlifdect approach designs a novel classi�cation model based
on multiple algorithms and it also uses more comprehensive
features to boost the detection performance.

3. Android Apps Profiling

In this section, we pro�le Android apps by using static
analysis techniques. In terms of static analysis, we mainly
focus onAndroidmanifest �les and disassembled dex code of
Android apps.AndroidManifest.xml provides data supporting
the installation and later execution of the appwherewe collect
deployment of components, intents, requested permissions,
and hardware.

(i) App components: there are four di
erent types of com-
ponents de�ned in an Android app: activity, service,
content provider, and broadcast receiver. Each app can
declare several components in the manifest �le as
required. Some malware families may share the same
name of components. For example, several variants
of the DroidKungFu malware use the same name for
particular services [21] (e.g., com.google.ssearch).

(ii) Intents: this is responsible for communicating
between apps and di
erent components of an app.
We found that some particular intents are more fre-
quently used in Android malware than benign apps,
such as SIG STR, BOOT COMPLETED. For example,
BOOT COMPLETED is used to trigger malicious
activity directly a�er rebooting the smartphone.

(iii) Requested permissions: permission mechanism is
one of the most important security mechanisms in
Android platform. Permissions are actively granted
by the user when an app is installed, and they are
mainly used to limit the use of some functions and the
access to some components among apps. In previous
research works [22, 23], Android malware would
request some particular permissions more frequently
than benign samples. For example, majority of
malware would request the SEND SMS permission to
send out premium SMS messages. We thus gather all
permissions listed in the manifest to pro�le Android
applications.

(iv) Hardware: if an app needs to request the camera,
bluetooth, or the GPS module of the smartphone,
these features have to be declared in the manifest �le.
Besides, if an app requests GPS and network at the
same time, then it means that the app can read loca-
tion information and reveal it out through network.

	e second part is disassembled code of the apps which
contains API calls, protected strings, commands, and net-
work. 	e dex code can run in the Dalvik virtual machine
directly, which is similar to exe �les in Windows platform.

(i) API calls: API (application programming interface),
documented in Android SDK, is a set of functions
provided to control principal actions of Android OS.
CertainAPI calls are frequently found inmalware and
may allow access to sensitive data or information of
Android-enabled devices. As these API calls can spe-
cially lead to malicious behavior, they are extracted
and gathered in a separated feature set.

4 Security and Communication Networks

APIC
feature set

CHPN
feature set

Feature extraction Feature

transformation

API calls Permissions

Intents Components

Protected
Strings

Hardware Network

Commands

Feature selection

CHPN
vector

APIC
vector

Parallel

classification

model

Android Applications

Result

Classification

results

fusion

Va = {1, 0, 1, 1, 0, 1, 0, 0 . . . } ,

Figure 1: Architecture of Mlifdect.

(ii) Protected strings: Seo et al. [8] analyzed malware
samples and de�ned some suspicious strings which
were more o�en used by malware than benign apps.
For example, malware may use getSubscriberId to
disclose a smartphone’s International Mobile Sub-
scriber Identity (IMSI). Cipher is frequently used for
obfuscation. And the string content:sms may mean
leaking SMS contents.

(iii) Commands:Android OS is developed based on Linux
and uses some commands as Linux. Seo et al. [8]
also concluded some commands called by malware
frequently. 	e mobile bot-net malware, Android-
Spyware MinServ contained commands such as note,
push. For example, Android apps can send a message
to premium-rate numbers by using note and transmit
user information to a remote control and command
(C&C) server by using push.

(iv) Network:many Android apps require network access
during running time. Ferreria et al. pointed out
that the majority of apps currently use insecure
network connections in [24]. Malware apps regu-
larly leak privacy data out by establishing network
connections. Some of network addresses might be
involved in botnets. For example, malware from
Basebridge family would send privacy data secretly
to http://b3.8866.org:8080 [25]. 	erefore, the IP
addresses and URLs found in the disassembled code
can be pro�led for Android malware detection.

A�er Android apps pro�ling, Table 1 gives an example of
features from these eight types of features.Wewill explain the
details of extracting these aforementioned features in the next
section.

4. System Design

Traditional machine learning algorithms try to learn one
hypothesis from training data, such as decision tree and

support vector machine. However, Android apps generally
contain an overwhelming number of characteristics, and it
is hard to �nd a classi�cation algorithm that is suitable for
all these various features. 	erefore, one or two classi�cation
algorithms may not work well when dealing with more com-
plicated real-world Android malware. Moreover, traditional
feature selection is processed from all features, which may be
at the risk of losing some small but useful categories.

In this section, we propose theMlifdect, which is a novel
detection approach based on parallel machine learning and
information fusion. 	is approach utilizes a set of various
classi�ers to detect Android malware for the purpose of
avoiding the phenomenon that one single classi�er cannot
e
ectively deal with all types of collected characteristics.
	en, Mlifdect performs all these classi�cation tasks in
parallel to reduce time consumption brought by multiple
classi�ers.

	e architecture of our approach is shown in Figure 1,
which contains �ve main components. Feature extraction
is responsible for extracting features that mentioned in
Section 3 (which is presented in Section 4.1). Feature selection
aims at traversing the entire feature sets and selecting the
typical ones (which is discussed in Section 4.2). Feature
transformation is responsible for transforming the extracted
features into multidimensional vectors (which is presented
in Section 4.3). Parallel classi�cation model is used to build
classi�cation model trained with space vectors based on
machine learning algorithms (which is described in Sec-
tion 4.4). Classi�cation results fusion is the last component,
which focuses on combining the outputs of classi�ers and
generating the results (which is described in Section 4.5).
Next, we will introduce each component in detail.

4.1. Feature Extraction. As the number of Android apps
grows rapidly, it is a huge waste of time and human labor
to extract features manually. 	erefore, we design an auto-
matic and extensible tool for decompressing apk �les and
extracting features. Our tool �rst uses APKTool [26], an open

http://b3.8866.org:8080

Security and Communication Networks 5

T
a
b
le

1:
E
xa
m
p
le
s
o
f
ei
gh
t
ty
p
es

o
f
fe
at
u
re
s
fr
o
m

st
at
ic
an
al
ys
is
.

A
P
P
co
m
p
o
n
en
ts

In
te
n
ts

R
eq
u
es
te
d
p
er
m
is
si
o
n
s

H
ar
d
w
ar
e

A
P
I
ca
ll
s

P
ro
te
ct
ed

St
ri
n
gs

C
o
m
m
an
d
s

N
et
w
o
rk

co
m
.g
o
o
gl
e.
ss
ea
rc
h

B
A
T
T
E
R
Y
C
H
A
N
G
E
D

A
C
T
IO

N
IN

T
E
R
N
E
T

an
d
ro
id
.h
ar
d
w
ar
e.
te
le
p
h
o
n
y

ge
tD

ev
ic
eI
d
(
)

H
tt
p
U
R
L
C
o
n
n
ec
ti
o
n

ch
m
o
d

h
tt
p
s:
//
m
ap
s.
go
o
gl
e.
co
m
/

co
m
.e
gu

an
.s
ta
te

P
H
O
N
E
ST

A
T
E

SE
N
D

SM
S

an
d
ro
id
.h
ar
d
w
ar
e.
w
i�

�
n
d
V
ie
w
B
yI
d
()

ge
tS
im

S
er
ia
lN
u
m
b
er

ro
o
t

h
tt
p
:/
/w

w
w
.u
m
en
g.
co
m
/

co
m
.g
o
o
gl
e.
u
p
d
at
e

B
O
O
T
C
O
M
P
L
E
T
E
D

A
C
C
E
SS

F
IN

E
L
O
C
A
T
IO

N
an
d
ro
id
.h
ar
d
w
ar
e.
lo
ca
ti
o
n

ge
tA
p
p
li
ca
ti
o
n
C
o
n
te
xt
()

sm
s
to

ge
tp
ro
p

h
tt
p
:/
/m

ed
ia
.a
d
m
o
b.
co
m
/

⋅⋅
⋅

⋅⋅
⋅

⋅⋅
⋅

⋅⋅
⋅

⋅⋅
⋅

⋅⋅
⋅

⋅⋅
⋅

⋅⋅
⋅

https://maps.google.com/
http://www.umeng.com/
http://media.admob.com/

6 Security and Communication Networks

<rule><id>1</id><category>Permission</category><description>Permissions in manifest</
description><regex>android\.permission\.\w∗\b|com\.android\.\w∗\.permission\.\w∗\b</regex><target�le>smali</target�le></rule>

Listing 1: An example of feature extraction rule.xml.

source recompilation tool, to decompress the .APK �les to
AndroidManifest.xml and dex �les. 	en, several customized
extraction rules are implemented by regex. Next, we collect
and save the features by applying the rules to unpacked �les.
	e rule used to extract permissions is shown as Listing 1.

In Listing 1, the category denotes the type of features we
want.	e value of regex is de�ned tomatch permissions such
as android.permission.SEND SMS. And the target �le means
that permissions will be matched in AndroidManifest.xml
while API calls can be matched in dex code. In addition, the
other categories are extracted in this way.

Based on aforementioned extraction approach, we totally
extract more than 65,000 features which cover the eight
di
erent kinds of features for Android apps.

4.2. Feature Selection. A�er feature extraction, there are
totally 65,804 features collected. However, the dimensions
of features are too large which may introduce a very high
computational overhead, which will impact the detection
results [27]. In addition, some features are common in
both the normal and malware samples, which may down-
grade the overall quality of the classi�cation model, such
as WRITE EXTERNAL STORAGE, a permission used to
obtain privilege to write data on SD card. Some features
only appear in very few apps in our dataset, such as
DOWNLOAD WITHOUT NOTIFICATION. 	erefore, we
need to select typical features before building a classi�cation
model based upon them.

In this work, we use feature selection algorithms to select
typical features which are valuable to distinguish application
classes. As explained before, we extracted eight kinds of
features based on static analysis. Let us assume that all those
features are selected together by a feature selection algorithm;
some categories may have very few features le� a�er the
selection process, such as the command category. To avoid
this situation, we divide the eight kinds of features into two
sets.	e �rst set contains four categories: API calls, requested
permissions, intents, and components, which we name as the
APIC set. 	e rest contains command, hardware, protected
strings, and network URL, which is called CHPN.

Given the large number of features of APIC set, we use
FrequenSel to select features and it has been proved that
FrequenSel works well in selecting features from the APIC
set. FrequenSel, which is proposed by Fest, selects features

by discovering the di
erences of the feature occurrence
frequency between malware and benign apps and selects
features that have higher occurrence frequency than a prede-
�ned threshold value in either malware or benign (the details
can be found in [4]). A�er selection, we totally obtain 287
features, which is called the APIC feature set.

On the other hand, the size of features in CHPN set is
relatively less than that in theAPIC set; the feature occurrence
frequency in CHPN set also is less than that in APIC set. If
we still use FrequenSel, we may miss some useful features.
	erefore, we utilize the information gain algorithm [28] to
select features from CHPN set. Finally, we obtain 99 features,
which is named as the CHPN feature set. In the experiment
section, we will explain the reason why we choose these two
kinds of selection algorithms in detail.

4.3. Feature Transformation. Malicious activities are usu-
ally re�ected in speci�c patterns and combinations of the
extracted features. For example, an instance sending pre-
mium SMS messages needs the permission SEND SMS in
the set of requested permission. Ideally, we would like to
formulate Boolean expressions that capture these depen-
dencies between features and return true if a malware is
detected. However, inferring Boolean expressions from real-
world applications is a hard problem and it is dicult to solve
eciently.

To address this problem, we aim at capturing the
dependencies between features using concepts frommachine
learning. As most learning approaches operate on numerical
vectors, we �rst need to map the extracted feature sets into a
vector. For this purpose, we de�ne a joint set � that includes
all observable strings contained in the eight feature sets,
which can be obtained by applying the below equation, in
which �� represents the corresponding feature.

� = {�1, �2, . . . , ��} . (1)

We ensure that elements of di
erent sets do not collide by
adding a unique pre�x to all strings in each feature set. Using
the set �, we de�ne an |�|-dimensional vector space, where
each dimension is either 0 or 1. A sample � is mapped to this
space by constructing a vector �:

� = {V1, V2, . . . , V�} ,

V� = {{{
1 if �� ∈ ��
0 if �� ∉ ��.

(2)

	us a feature vector can be translated into� = {0, 1, 0, 0, . . .};
1 indicates that the feature is contained in this sample,
whereas 0 indicates that the feature is not contained in this
sample.However,� is o�en a sparse vector; in order to reduce
the storage overhead, we transform� to a compressed format�∗. Assuming that the features are arranged in a �xed order,
then we can index a feature by its position, and �∗ is de�ned
as follows:

�∗ = {2, 5, 9, . . .} . (3)

Security and Communication Networks 7

KNN with

APIC

Probability analysis

based fusion

join

J48 with

APIC

Random forest

with APIC

KNN with

CHPN

J48 with

CHPN

Random forest

with CHPN

Bengin Malware

Run

Local

credibility

Local

credibility

Local

credibility

Local

credibility

Local

credibility

Dempster-Shafer

based fusion

Probability

output

Probability

output

Probability

output

Probability

output

Probability

output

Probability

output

Local

credibility

Classi�cation

Classi�cation results fusion

Figure 2: Classi�cation model.

	e positions of nonzero elements in � are stored in �∗,
which saves a great amount of memory space. In this way,
we can obtain two kinds of vector spaces which will be used
to train or test classi�ers based on the APIC feature set and
CHPN feature set.

4.4. Parallel Classi�cation Model. Prior machine learning
works try to learn one hypothesis from training data, and
it is hard to �nd an ideal algorithm that works best for all
di
erent types of Android malware. To solve this problem,
our approach applies various machine learning classi�ers in
parallel for identifying Android malware, which has many
potential bene�ts more than just accuracy improvement
[29]. For instance, it is possible to speed up the process
of prediction and harness the various strengths of the con-
stituent classi�ers, such as complementing white box analysis
through close observation of intermediate output from base
classi�ers. Figure 2 shows an overview of classi�cationmodel
based on parallel machine learning. As we can see, the

classi�cationmodel contains six di
erent classi�ers, and each
classi�er outputs the probabilities that apps are benign.	en,
local credibility, which is de�ned to describe the con�dence
measure of a classi�er, is calculated for the information
fusion. 	e details of Mlifdect classi�cation algorithm are
shown in Algorithm 1.

First, we input three machine learning algorithms (KNN,
random forest, and J48) and two kinds of training sets (APIC
and CHPN) as variables. 	en, we create six threads and
dispatch a kind of machine learning algorithm and training
set to each thread (lines (1)–(9)). For example, J48 with APIC
means that J48 algorithm and APIC training set are used to
build a classi�er, while the random forest with CHPN clas-
si�er is constructed by random forest algorithm and CHPN
training set. A�er threads creation and data distribution, the
classi�cation model begins to activate the threads separately
and concurrently to construct classi�ers. For each classi�er,
the possibility that an app belongs to benignwill be calculated
and displayed, and the local credibility will be calculated
(lines (10)–(14)).

8 Security and Communication Networks

Input: CPHN, APIC
Output: probabilities and local credibility
(1) alg[] = {KNN, random forest, J48}, data[] = {APIC, CHPN};
(2) for � from 0 to 2 do
(3) for � from 0 to 1 do
(4) create a thread
(5) dispatch alg[�] and data[�] to the thread
(6) � ⇐ � + 1
(7) end for
(8) � ⇐ � + 1
(9) end for

(10) run all threads, start classi�cation
(11) for each thread do
(12) output the probabilities of apps
(13) calculate the local credibility
(14) end for

Algorithm 1: Classi�cation.

	e strengths of using di
erent classi�ers for malware
detection lie in multiple aspects. For example, the inter-
pretable intermediate possibility can be useful for conducting
further analysis and the local credibility is crucial for the
Basic Probability Assignments (BPAs) which will be used in
Dempster-Shafer theory.

A�er calculating the possibilities � of each class (benign
or malware) from each individual classi�er, confusionmatrix
is used to obtain the local credibility. Confusion matrix is
commonly used in supervised learning, which can re�ect
the relationship between the classi�cation results and actual
values. Confusion matrix can be expressed as follows:

(�00 �01�10 �11) . (4)

In confusion matrix, the data of each row represents the
number of real samples, while the data of each column rep-
resents the sample number of classi�cation results. Assume
that an arbitrary data of confusion matrix is represented as��� (� ∈ [0, 1], � ∈ [0, 1]); � represents the probability of
real sample when the output category of a classi�er is �. 	e
following equation states that

lc� = ���
∑1�=0 ��� , (5)

where lc� will be localized as a con�dence measure of the
classi�er. Finally, we de�ne�(0) = lc0 ∗ (1 − �) and�(1) =
lc1 ∗ �, where� is the BPA of Dempster-Shafer fusion.

4.5. Classi�cation Results Fusion. In order to obtain the base-
line results for investigating the parallel classi�ers approach to
Androidmalware detection, the information fusion approach
which involved a combination of decisions from each indi-
vidual classi�er was developed. Two di
erent fusion schemes
were considered.

Probability Analysis Based Fusion. 	is method is inspired
by traditional voting strategies. 	e majority voting, which

Input: probabilities outputs of apps
Output: classi�cation results
(1) for � from 1 to 6 do
(2) collect ��
(3) end for
(4) � = �1 + �2 + �3 + �4 + �5 + �6
(5) if � <= �ℎ���ℎ��� then
(6) return 0
(7) else
(8) return 1
(9) end if

Algorithm 2: Probability analysis based fusion.

is generally used, has some limitations, such that a subset of
classi�ers (majority in number) may agree on the misclassi-
�cation of an instance by chance. It is suitable for detecting
benign applications and lacks the accuracy in the detection
of malware. On the contrary, the veto voting may a
ect the
classi�cation performance as outcome may depend only on
one single algorithm and it is more suitable for detecting
malware [30], while our new method can overcome the
de�ciencies and evaluate both malware and benign instances
more objectively.

As shown in Algorithm 2, we sum up the probabilities (�)
from each individual classi�er, where �� is used to quantify
the possibility that an instance does not belong to malware,
and calculate as equation (line (5)). Finally, the algorithm
compares � with prede�ned threshold. If the value of sum is
smaller than the threshold, the algorithm will return 0 and
identify this app as malicious; otherwise the algorithm will
return 1 and regard it as benign (lines (5)–(9)).
Dempster-Shafer �eory Based Fusion. It was �rst introduced
in 1976 by Shafer [31] as an extension of Dempster’s probabil-
ities on multivalued mapping [32]. Dempster-Shafer theory
has a strong ability to deal with uncertain information and

Security and Communication Networks 9

needs weaker conditions than Bayesian theory. Whether an
Android app is malware is an obvious uncertain problem
and the outputs of diverse classi�ers are independent of
each other, which satisfy the conditions of Dempster-Shafer
theory.

In our approach, all the .apk �les should be represented
as Θ = 0, 1. 0 represents malware, and 1 represents normal
instance. 	e following conditions should be met:

�Θ (0) = 0,
∑

∈2Θ

= 1, (6)

where function � is de�ned as BPA; �(0) and �(1) are
calculated in Section 4.4. If multiple sources exist, Dempster-
Shafer evidence combination formula can be de�ned as
follows:

(%1 ⊕ %2 ⊕ ⋅ ⋅ ⋅ ⊕ %�) (#)
= 1
- ∑

1∩
2∩⋅⋅⋅∩
�=

%1 (#1) ∗ %2 (#2) ∗ ⋅ ⋅ ⋅
∗ %� (#�) ,

(7)

where the constant- can be calculated as

- = ∑

1∩
2∩⋅⋅⋅∩
� ̸=0

%1 (#1) ∗ %2 (#2) ∗ ⋅ ⋅ ⋅ ∗ %� (#�)

= 1 − ∑

1∩
2∩⋅⋅⋅∩
�=0

%1 (#1) ∗ %2 (#2) ∗ ⋅ ⋅ ⋅
∗ %� (#�)

(8)

- is a coecient that re�ects the degree of con�ict of
evidences, which is in the range of [0, 1]. If - is closer to 1,
it means greater con�ict between evidences. On the contrary,
when - is closer to 0, it indicates that the con�ict is smaller.1/(1 − -) is a normalization factor which can prevent a
nonzero value be assigned to empty sets.

5. Evaluation

To validate the proposed Mlifdect, we perform an empirical
evaluation regarding its e
ectiveness and eciency. Our
dataset contains 8,385 applications, 3,982 of which are mal-
ware and the rest are benign samples. Malware samples are
collected from Drebin [3] and Android Malware Genome
Project [33], and benign samples are downloaded from
Google Play and scanned with VirusTotal [34], to ensure
that none of them is malicious. In particular, we deploy
our detected system in a laptop which is equipped with 8G
memory, i5-4219UCPU, andwindows 7OS and then conduct
the following three experiments:

(1) Detection performance: �rst, we evaluate the detection
performance of Mlifdect on an app dataset of 3,982
malware and 4,403 normal apps using 10-fold cross-
validation.

(2) Performance comparison: next, we compare the detec-
tion performance ofMlifdect with some state-of-the-
art approaches, including Drebin [3] and emphFest
[4], as well as two detection approaches presented
by Yerima et al. One is based on improved eigenface
algorithm [18] and another is based on ensemble
learning [6], which we call them Eigenspace and
HAEL.

(3) Run-time performance: �nally, we evaluate the run-
time performance of Mlifdect. For this experiment,
we use di
erent measurements including usage rate
of memory and CPU with the same machine.

5.1. Detection Performance. In our �rst experiment, we evalu-
ate the detection performance ofMlifdect using 10-fold cross-
validation.Moreover, we use three types ofmetrics to evaluate
the detection performance which are accuracy, recall, and �-
measure. And they are de�ned as follows, where TP, FP, TN,
and FN are the number of True Positive, False Positive, True
Negative, and False Negative samples.

Accuracy = (TP + TN)
(TP + FP + FN + TN) ,

Recall = TP

(TP + FN) ,
�-measure = 2 ∗ TP

(2 ∗ TP + FP + FN) .
(9)

5.1.1. Detection with Di	erent Feature Selection Algorithms.
First of all, we evaluate performance of Mlifdect to �nd the
most suitable feature selection algorithms. For this purpose,
we use two categories of feature sets (mentioned in Sec-
tion 4.4) and choose two feature selection algorithms: infor-
mation gain and FrequenSel to select typical features from
the two feature sets. 	erefore, we can obtain four kinds of
combinations, such as using FrequenSel to select both feature
sets or using information gain to select features from APIC
feature set while FrequenSel to choose from CHPN feature
set.	en, we utilize KNN, random forest, and J48 algorithms
to build the classi�cation model based on the four di
erent
kinds of selected feature sets. Moreover, the Dempster-Shafer
theory based fusion is evaluated in the experiment.

Figures 3, 4, and 5 show the accuracy, recall, and �-
measure results of the four di
erent selected feature sets,
respectively. We observe that when using FrequenSel to select
features from APIC feature set and using information gain to
select CHPN feature set, we can achieve the highest accuracy,
recall, and �-measure.	is result also means that this type of
combination can build the best classi�cation model than the
others.

It is known that information gain would lead to dis-
tribution bias and long tail e
ect, which cannot properly
select typical features for classi�cation. APIC feature set
consists of a large number features, and about 88% of them
selected by information gain make contributions under 0.01.
In other words, most features distributed on the tail are
unimportant, and they contribute very little to machine

10 Security and Communication Networks

Accuracy

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

u
ra

cy

All use
infoGain

APIC use
infoGain,

CHPN use
FrequenSel

APIC use
FrequenSel,
CHPN use
infoGain

All use
FrequenSel

Figure 3: Accuracy of Mlifdect with di
erent feature selection
algorithms.

0.90

R
ec

al
l

Recall

0.92

0.94

0.96

0.98

1.00

All use
infoGain

APIC use
infoGain,

CHPN use
FrequenSel

APIC use
FrequenSel,
CHPN use
infoGain

All use
FrequenSel

Figure 4: Recall of Mlifdect with di
erent feature selection algo-
rithms.

learning algorithms. Moreover, we have to manually cut o

the tail in di
erent positions, which will change the number
of features and in�uence the accuracy of classi�cation.

CHPN feature set contains far less features than APIC,
and 30 features only remain a�er being �ltered by FrequenSel,
which cannot make a good use of the machine learning
algorithms. So we use information gain in turn and discard
the features which have no contribution to the classi�cation.
Results have shown that it works better. And in the following
experiments, we utilize FrequenSel to select APIC feature set
and information gain to select CHPN feature set.

5.1.2. Detection with Di	erent �resholds. Following that,
we will explore the value of threshold that can get best

0.90

0.92

0.94

0.96

0.98

1.00

All use
infoGain

APIC use
infoGain,

CHPN use
FrequenSel

APIC use
FrequenSel,
CHPN use
infoGain

All use
FrequenSel

F-measure

F
-m

ea
su

re

Figure 5: �-measure of Mlifdect with di
erent feature selection
algorithms.

0.976

0 2 4

�reshold

6

0.984

0.992

1.000

Accuracy

A
cc

u
ra

cy

Figure 6: Accuracy of Mlifdect with di
erent thresholds.

performance of Mlifdect with the probability analysis based
fusion. A�er feature selection, we build the classi�cation
model. 	en, we combine the outputs of individual classi�er
when threshold = 1, 2, 3, 4, 5, and the results are shown in
Figures 6, 7, and 8.

From the three �gures, we have three observations: (1) the
result of accuracy can achieve 99.7% when the theshold = 3.
(2) When threshold = 4, the result of recall can achieve the
highest result compared to other values of threshold. (3) 	e
result of �-measure is similar to accuracy.

Based on observations towards output probability of
each individual classi�er, we �nd that there are 95% of
apps whose probabilities range from 0 to 0.1 or 0.9 to 1.
Consequently, when the threshold is set as 1 or 5,Mlifdect has
already achieved a good detection performance. If the sum

Security and Communication Networks 11

0.94

R
ec

al
l

Recall

0.96

0 2 4

�reshold

6

0.98

1.00

Figure 7: Recall of Mlifdect with di
erent thresholds.

0.96

0.97

0 2 4

�reshold

6

0.98

0.99

1.00

F
-m

ea
su

re

F-measure

Figure 8: �-measure of Mlifdect with di
erent thresholds.

of probabilities result of the six classi�ers is smaller than 3,
it means that more than half of the classi�ers consider the
instance as malware. 	erefore, with the threshold growing
from 1 to 3, the accuracy and recall will increase accordingly.
Moreover, there are only a few apps whose sum results
are between 3 and 4, when threshold equals 3 or 4 they
have similar accuracy and recall. Finally, when the sum of
probabilities result is larger than 4, it is obvious that there
are more than half of classi�ers which identify it as a benign
one. In this situation, assuming the threshold is increased to
5, it would lead to a decrease of classi�cation performance.
	erefore, 3 is the best threshold value, and we set theshold =3 in the following experiments.

5.2. Results Comparison

5.2.1. Comparison with Related Approaches. In this experi-
ment, we compare the detection results ofMlifdect with sev-
eral static analysis based approaches for detection of Android

Accuracy

K
N

N

J4
8

H
A

E
L

F
es

t

D
re

b
in

M
li

fd
ec

t-
PA

M
li

fd
ec

t-
D

S

E
ig

en
sp

ac
e

R
an

d
o

m
fo

re
st

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

u
ra

cy

Figure 9: 	e comparison of accuracy.

malware. In particularly, we consider Eigenspace [18], HAEL
[6], Fest [4], and Drebin [3]. Moreover, we also compare
Mlifdect with several single classi�cation algorithms, such as
KNN and random forest.

Here, we still use the same scheme to select features
from two categories of feature sets and use 10-fold cross-
validation approach to build classi�cation model. What is
more, the two information fusionmethods aremeasured, and
the Dempster-Shafer theory based fusion is called Mlifdect-
DS whereas Mlifdect-PA represents the probability analysis
based fusion.

As shown in Figure 9, the fusionmethod usingDempster-
Shafer theory is a little better than using probability analysis,
which can achieve 99.7% accuracy. And the best accuracy
comes fromMlifdect which is attributed to the integration of
six base classi�ers, including KNN, random forest, and J48,
and makes prediction with information fusion. Note that our
approach is superior to HAEL even if it is also an ensemble
learning algorithm. Moreover, compared to Eigenspace, Fest,
and Drebin, Mlifdect extracts eight types of features, which
can characterize apps in a more comprehensive manner.

5.2.2. Classi�cation of Unknown Apps. In order to verify
whether our approach is ecient or not, the performance of
classifying unknown applications is also evaluated.We utilize
Mlifdect and some related works to detect 2,350 unknown
apps which are downloaded from some third-party markets
(e.g., Gfan). Table 2 presents the detection results.

In Table 2, Mlifdect achieves more outstanding accuracy,
recall, and �-measure, all of which are close to 98.3% in
identifying unknown apps. 	e results demonstrate that our
malware detection model can achieve high accuracy and
recall in classifying real-world apps even with limited prior
knowledge on them.

5.3. Run-Time Performance. To analyze the run-time perfor-
mance ofMlifdect-DSwhich has the highest accuracy rate, we
use memory and CPU utilization rate as well as running time
as our evaluation metric.

12 Security and Communication Networks

Table 2: Result of unknown apps classi�cation.

Alg Correctly classi�ed Accuracy Recall �-measure

Eigenspace 2,148 91.4% 91.2% 91.8%

HAEL 2,254 95.5% 96.1% 95.9%

Fest 2,165 92.2% 92.9% 92.6%

Drebin 2,109 89.7% 89.9% 90.1%

Mlifdect-PA 2,309 98.2% 98.3% 98.2%

Mlifdect-DS 2,314 98.5% 98.3% 98.4%

0.0

0.1

0.2

0.3

U
sa

ge
 r

at
e

o
f

m
em

o
ry

Usage rate of memory

0.4

0.5

0.6

0.7

K
N

N

J4
8

Classi�er

H
A

E
L

F
es

t

D
re

b
in

M
li

fd
ec

t-
D

S

E
ig

en
sp

ac
e

R
an

d
o

m
fo

re
st

Figure 10: 	e max usage rate of memory.

5.3.1. Usage Rate of Memory and CPU. For comparison,
we consider the some other methods including Enginspace,
HAEL, Fest, Drebin and three other single classi�ers which
use KNN, random forest, and J48, respectively. Figure 10
shows the max usage rate of memory.	e information stored
in memory includes loading �les (training set for classi�ca-
tion), code, and global variables in program. For this reason,
Mlifdect achieves a similar performance when compared to
the three single classi�ers, and it takes a little bit less memory
than Fest. Eigenspace andHAEL save a little amount of mem-
ory because they use less features, while Drebin consumes a
large amount of memory because it works without feature
selection and has to deal with a huge training �le.

	e usage rate of CPU is de�ned as the ratio of CPU busy
time and the whole cycle within the task manager refresh
cycle. As we can see from Figure 11, the classi�ers built with
random forest includingHAEL run fast so that the usage rate
of CPU are higher than others. Our approach combines six
classi�ers which are built with KNN, random forest, and J48,
so it takesmore time to classi�cation than any single classi�er.
However, due to the design of parallel processing, Mlifdect
compromises the average usage rate of CPU among the three
single classi�ers, whereas it enhances the ratewhen compared
to Eigenspace and Fest.

5.3.2. Running Time of Mlifdect. Table 3 demonstrates that
Mlifdect outperforms Eigenspace, Fest, andDrebin in terms of

K
N

N

J4
8

H
A

E
L

F
es

t

0.27U
sa

ge
 r

at
e

o
f

C
P

U

Usage rate of CPU

0.36

0.45

D
re

b
in

M
li

fd
ec

t-
D

S

E
ig

en
sp

ac
e

R
an

d
o

m
fo

re
st

Classi�er

Figure 11: 	e average usage rate of CPU.

Table 3: 	e comparison of detection time.

Alg Building model Classifying

Eigenspace 187.1 s 842.9 s

HAEL 4.34 s 52.9 s

Fest 59.9 s 483 s

Drebin 467 s 2552 s

Mlifdect 25.4 s 103.6 s

the time spent in building model and classifying completely.
Drebin costs toomuch time in buildingmodel and classifying
because of the high dimensions of features. HAEL performs
very fast because it only uses random forest algorithm. By
using parallel machine learning, our approach has the win-
win situation of detection accuracy and detection time.

In summary, all results of these experiments clearly show
that Mlifdect can achieve high accuracy and high eciency
in real-world apps scenario without requesting for substantial
hardware support.

6. Conclusion

In this paper, we introduce Mlifdect, an Android malware
detection approach based on parallel machine learning and
information fusion. Mlifdect combines concepts from static
analysis, machine learning, and information fusion. In this

Security and Communication Networks 13

work, we �rst extract a total of 65,804 features from eight
types of features ofAndroid apps.Next, we concurrently build
the classi�cationmodelwhich contains six di
erent classi�ers
based on three algorithms (KNN, random forest, and J48) and
two kinds of features sets (APIC and CHPN) selected by Fre-
quenSel and information gain, respectively, and then we use
the fusion method with probability analysis and Dempster-
Shafer theory to identify Android malware samples. Our
evaluation results depict the potential of this approach, where
Mlifdect outperforms other related approaches and it can clas-
sify Android benign and malware apps with 99.7% accuracy.
Moreover, we also evaluate the run-time performance, which
shows that Mlifdect introduces relatively low classi�cation
overhead. 	us, we consider our approach proposed in this
paper as an e
ective yet lightweight solution to classify real-
world Android apps. Moreover, the basic machine learning
based classi�ers can provide interpretable intermediate out-
put that can be useful for further analysis if needed.

Conflicts of Interest

	e authors declare that they have no con�icts of interest.

Acknowledgments

	iswork is supported by theNational Science Foundation of
China under Grant no. 61472130, the Science and Technology
Projects of Hunan Province (no. 2016JC2074), the Research
Foundation of Education Bureau of Hunan Province, China
(no. 16B085), and theOpen Research Fund of Key Laboratory
ofNetworkCrime Investigation ofHunanProvincial Colleges
(no. 2016WLFZZC008).

References

[1] IDC, “Apple, huawei, and xiaomi �nish 2015 with above average
year-over-year growth, as worldwide smartphone shipments
surpass 1.4 billion for the year,” ifunde�nedselectfont, 2016,
http://www.idc.com/getdoc.jsp?containerId=prUS40980416.

[2] Symantec, “internet security threat report,” ifunde�nedselect-
font, 2016, https://www.symantec.com/content/dam/symantec/
docs/reports/istr-21-2016-en.pdf.

[3] D.Arp,M. Spreitzenbarth,M.Hübner,H.Gascon, andK. Rieck,
“Drebin: e
ective and explainable detection of androidmalware
in your pocket,” in Proceedings of the NDSS Symposium 2014,
February 2014.

[4] K. Zhao, D. Zhang, X. Su, and W. Li, “Fest: a feature extrac-
tion and selection tool for Android malware detection,” in
Proceedings of the 20th IEEE Symposium on Computers and
Communication, (ISCC ’15), pp. 714–720, July 2015.

[5] Y. Du, X. Wang, and J. Wang, “A static android malicious code
detection method based on multi-source fusion,” Security and
Communication Networks, vol. 8, no. 17, pp. 3238–3246, 2015.

[6] S. Y. Yerima, S. Sezer, and I. Muttik, “High accuracy android
malware detection using ensemble learning,” IET Information
Security, vol. 9, no. 6, pp. 313–320, 2015.

[7] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck,
“AppContext: di
erentiating malicious and benign mobile app
behaviors using context,” in Proceedings of the 37th IEEE/ACM

International Conference on So�ware Engineering (ICSE ’15), vol.
1, pp. 303–313, IEEE, May 2015.

[8] S.-H. Seo, A. Gupta, A. M. Sallam, E. Bertino, and K.
Yim, “Detecting mobile malware threats to homeland security
through static analysis,” Journal of Network and Computer
Applications, vol. 38, no. 1, pp. 43–53, 2014.

[9] H. Kang, J.-W. Jang, A. Mohaisen, and H. K. Kim, “Detecting
and classifying androidmalware using static analysis along with
creator information,” International Journal of Distributed Sensor
Networks, vol. 11, no. 6, Article ID 479174, 2015.

[10] S. Arzt, S. Rasthofer, C. Fritz et al., “FlowDroid: precise context,
�ow, �eld, object-sensitive and lifecycle-aware taint analysis for
android apps,” in Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation
(PLDI ’14), pp. 259–269, ACM, June 2014.

[11] V. Rastogi, Y. Chen, and W. Enck, “AppsPlayground: automatic
security analysis of smartphone applications,” in Proceedings of
the 3rd ACM Conference on Data and Application Security and
Privacy (CODASPY ’13), pp. 209–220, ACM, February 2013.

[12] W. Enck, P. Gilbert, S. Han et al., “TaintDroid: an information
�ow tracking system for real-time privacy monitoring on
smartphones,” ACM Transactions on Computer Systems, vol. 32,
no. 2, article 5, 2014.

[13] M. Grace, Y. Zhou, Q. Zhang, S. Zou, andX. Jiang, “RiskRanker:
scalable and accurate zero-day android malware detection,”
in Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services (MobiSys ’12), pp. 281–294,
June 2012.

[14] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and
J. Ho
mann, “Mobile-sandbox: having a deeper look into
Android applications,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing (SAC ’13), pp. 1808–1815,
Association for Computing Machinery, March 2013.

[15] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware
characterization and detection using deep learning,” Tsinghua
Science and Technology, vol. 21, no. 1, Article ID 7399288, pp.
114–123, 2016.

[16] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “MARVIN:
ecient and comprehensive mobile app classi�cation through
static and dynamic analysis,” Computer So�ware and Applica-
tions Conference, pp. 422–433, 2015.

[17] W. Li, J. Ge, and G. Dai, “Detecting malware for android
platform: an SVM-based approach,” in Proceedings of the 2nd
IEEE International Conference on Cyber Security and Cloud
Computing, pp. 464–469, November 2015.

[18] S. Y. Yerima, S. Sezer, and I. Muttik, “Android malware detec-
tion: an eigenspace analysis approach,” in Proceedings of the
Science and Information Conference, (SAI ’15), pp. 1236–1242,
IEEE, London, UK, July 2015.

[19] Z.Wang, J. Cai, S. Cheng, andW. Li, “DroidDeepLearner: iden-
tifying android malware using deep learning,” in Proceedings of
the 2016 IEEE 37th Sarno	 Symposium, pp. 160–165, Newark, NJ,
USA, September 2016.

[20] X. Su, D. Zhang, W. Li, and K. Zhao, “A deep learning
approach to android malware feature learning and detection,”
in Proceedings of the 2016 IEEE Trustcom/BigDataSE/ISPA, pp.
244–251, Tianjin, China, August 2016.

[21] X. Jiang, “Security alert: new droidkungfu variant,” ifunde-
�nedselectfont, 2011, https://www.csc.ncsu.edu/faculty/jiang/
DroidKungFu3/.

[22] B. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I.
Molloy, “Android permissions: a perspective combining risks

http://www.idc.com/getdoc.jsp?containerId=prUS40980416
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.csc.ncsu.edu/faculty/jiang/DroidKungFu3/
https://www.csc.ncsu.edu/faculty/jiang/DroidKungFu3/

14 Security and Communication Networks

and bene�ts,” in Proceedings of the 17th ACM Symposium on
Access Control Models and Technologies, pp. 13–22, ACM, June
2012.

[23] K. A. Talha, D. I. Alper, and C. Aydin, “APK Auditor:
permission-based android malware detection system,” Digital
Investigation, vol. 13, pp. 1–14, 2015.

[24] D. Ferreira, V. Kostakos, A. R. Beresford, J. Lindqvist, and A.
K. Dey, “Securacy: an empirical investigation of android appli-
cations’ network usage, privacy and security,” in Proceedings of
the 8th ACMConference on Security and Privacy inWireless and
Mobile Networks, (WiSec ’15), June 2015.

[25] Android, “basebridge,” ifunde�nedselectfont, 2011, http://
www.symantec.com/securityresponse/writeup.jsp?docid=2011-
060915-4938-99&tabid=2.

[26] Apktool, ifunde�nedselectfont, http://code.google.com/p/an-
droid-apktool/.

[27] M. Z. Mas’Ud, S. Sahib, M. F. Abdollah, S. R. Selamat, and
R. Yusof, “Analysis of features selection and machine learning
classi�er in android malware detection,” in Proceedings of
the 5th International Conference on Information Science and
Applications, ICISA 2014, pp. 1–5, IEEE, May 2014.

[28] J. T. Kent, “Information gain and a general measure of correla-
tion,” Biometrika, vol. 70, no. 1, pp. 163–173, 1983.

[29] T. Hastie, R. Tibshirani, and J. Friedman, �e Elements of
Statistical Learning, Springer, Berlin, Germany, 2001.

[30] R. K. Shahzad andN. Lavesson, “Comparative analysis of voting
schemes for ensemble-based malware detection,” Journal of
Wireless Mobile Networks, Ubiquitous Computing, and Depend-
able Applications, vol. 4, no. 1, pp. 98–117, 2013.

[31] G. Shafer, A Mathematical �eory of Evidence, Princeton Uni-
versity Press, Princeton, NJ, USA, 1976.

[32] A. P. Dempster, “Upper and lower probabilities induced by a
multivalued mapping,” Annals of Mathematical Statistics, vol.
38, pp. 325–339, 1967.

[33] Y. Zhou and X. Jiang, “Dissecting android malware: char-
acterization and evolution,” in Proceedings of the 33rd IEEE
Symposium on Security and Privacy, pp. 95–109, San Francisco,
Calif, USA, May 2012.

[34] V. Total, ifunde�nedselectfont, 2013, https://www.virustotal
.com/en/.

http://www.symantec.com/securityresponse/writeup.jsp?docid=2011-060915-4938-99&tabid=2
http://www.symantec.com/securityresponse/writeup.jsp?docid=2011-060915-4938-99&tabid=2
http://www.symantec.com/securityresponse/writeup.jsp?docid=2011-060915-4938-99&tabid=2
http://code.google.com/p/android-apktool/
http://code.google.com/p/android-apktool/
https://www.virustotal.com/en/
https://www.virustotal.com/en/

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at

https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

