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The mixed-lineage leukemia 1 (MLL1) gene (now renamed Lysine [K]-speci�c 

MethylTransferase 2A or KMT2A) on chromosome 11q23 is disrupted in a unique group 

of acute leukemias. More than 80 different partner genes in these fusions have been 

described, although the majority of leukemias result from MLL1 fusions with one of 

about six common partner genes. Approximately 10% of all leukemias harbor MLL1 

translocations. Of these, two patient populations comprise the majority of cases: patients 

younger than 1  year of age at diagnosis (primarily acute lymphoblastic leukemias) 

and young- to-middle-aged adults (primarily acute myeloid leukemias). A much rarer 

subgroup of patients with MLL1 rearrangements develop leukemia that is attributable 

to prior treatment with certain chemotherapeutic agents—so-called therapy-related 

leukemias. In general, outcomes for all of these patients remain poor when compared to 

patients with non-MLL1 rearranged leukemias. In this review, we will discuss the normal 

biological roles of MLL1 and its fusion partners, how these roles are hypothesized to be 

dysregulated in the context of MLL1 rearrangements, and the clinical manifestations of 

this group of leukemias. We will go on to discuss the progress in clinical management 

and promising new avenues of research, which may lead to more effective targeted 

therapies for affected patients.
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STRUCTURE AND FUNCTION OF WILD-TYPE MLL1

Mixed-Lineage Leukemia 1 (MLL1) Protein Structure and Binding 

Partners
�e normal MLL1 gene at the 11q23 locus encodes an approximately 500-kDa nuclear protein 
with multiple functional domains and binding partners (Figure  1A), whose structure was �rst 
described by both Tkachuk et al. and Gu et al. (1, 2) and which is expressed in a wide variety of 
normal human tissues (3). �e N-terminal portion of the protein contains a domain for binding 
Menin, a protein that serves as a link between MLL1 and the chromatin-binding protein lens 
epithelium-derived growth factor (LEDGF). LEDGF is a binder of dimethylated H3K36 (placed 
by ASH1L). �e association of MLL1 with Menin/LEDGF is particularly critical for the function 
of MLL fusions, but also a�ects wild-type MLL1 (4–10). �e N-terminus also contains AT-hook 
motifs (DNA-binding domains), speckled nuclear localization domains 1 and 2 (SNL-1 and SNL-2), 
and two repression domains (RD1 and RD2), the �rst of which (RD1) also contains a CxxC 
domain (1, 11–13). �e CxxC domain has homology to DNA methyltransferase 1 (DNMT1), which 
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FIGURE 1 | The structure of mixed-lineage leukemia (MLL) and normal vs aberrant MLL complexes. (A) The structure of the wild-type MLL protein, 

emphasizing the functional domains. MBD, Menin-binding domain; AT, AT hooks; SNL, speckled nuclear localization domains; RD, repression domains (black box in 

�rst RD represents the CXXC domain); BCR, breakpoint cluster region; PHD, PHD �ngers; BD, bromodomain. CS1 and CS2 are the taspase-1 cleavage sites, and 

FYRN and FYRC are the domains whereby MLL-N and MLL-C interact after cleavage. TAD, transactivation domain; SET, H3K4 histone methyltransferase domain. 

(B) MLL fusion proteins are caused by chromosomal rearrangements leading to in-frame fusions between N-terminal MLL (to the BCR) and any of 80 different fusion 

partners. PHD domains, transactivation domains, and the SET domain are lost. (C) MLL-interacting proteins. Proteins involved in repressive functions of MLL are 

grouped above the MLL protein (regulated by CYP33), whereas proteins involved in activation of MLL-dependent transcription are grouped below the MLL protein 

schematic.
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methylates cytosine residues of DNA (11, 14). Although DNMT1 
preferentially targets hemimethylated CpG motifs, the MLL1 
CxxC domain binds non-methylated CpG DNA (15). All of 
these domains are typically conserved in chimeric MLL1 fusion 
proteins (12). �e middle portion of MLL1 contains four plant 
homeodomain (PHD) �ngers (which mediate protein–protein 
interactions) and a bromodomain (which mediates binding to 
histones with acetylated lysine residues). �e C-terminal portion 
contains a transcriptional activation domain and a SET domain 
(1, 12, 16). �e third PHD �nger allows association between 
MLL1 and the cyclophilin CYP33, which is important for 
negative regulation of certain MLL1 target genes (17). �e SET 
(Su(var)3-9, enhancer of zeste, trithorax) domain is homologous 
to that of Drosophila trithorax and catalyzes mono-, di-, and 
trimethylation of lysine 4 on histone 3 (H3K4) in vitro (1, 18). 
�ese latter four domains (PHD �nger, bromodomain, activation 
domain, and SET domain) are all lost in most MLL1 fusion 
proteins (12) (Figure 1B).

A�er its translation, wild-type MLL1 is proteolytically 
cleaved by the enzyme taspase-1 (19, 20). �e resulting 320-kDa 
N-terminal fragment (MLL-N) contains all domains except the 

transcriptional activation domain and the SET domain, both of 
which are retained by the 180-kDa C-terminal fragment (MLL-
C). MLL-N and MLL-C normally associate with one another as 
components of a multiprotein complex that regulates chromatin 
modi�cation and gene expression (19, 21) (Figure 1C). Other 
essential proteins that make up the core of the MLL1 complex 
include RbBP5, Ash2L, and WDR5 (21). �ese three proteins 
form a complex that is able to bind a variety of H3K4 methytrans-
ferases with SET domains, including MLL1. Recent biochemical 
and structural analyses of the interactions between the complex 
members reveal that the RbBP5-Ash2L heterodimer interaction 
with MLL1 stabilizes it in the catalytic conformation, whereas 
WDR5 acts as a bridge between the RbBP5-Ash2L complex and 
MLL1 itself (22). �e WDR5 bridge is not needed for the interac-
tion between RbBP5-Ash2L and other MLL family members, 
but it is essential for the H3K4 methyltransferase activity of 
MLL1. MLL1 recruits these other components, along with other 
chromatin remodeling proteins such as the histone acetyltrans-
ferases CBP/p300 and hMOF, to speci�c target genes (21, 23, 24). 
In fact, recruitment of these other histone-modifying proteins, 
particularly hMOF, has recently been shown to be crucial for 
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MLL1 target gene expression, whereas the H3K4 methyltrans-
ferase activity of MLL1 is dispensable in this regard (24).

�e N-terminal portion of MLL1 present in translocation-
encoded fusions loses its ability to interact with MLL-C (19). 
�e functional consequence of this feature is not clear. In most 
leukemias, residual core complex including MLL-C would be 
expected to be present and retain its histone methyltransferase 
activity, either from expression of the reciprocal fusion (although 
this probably happens only in a minority of patients) or from the 
second, non-rearranged MLL1 allele. �ere is debate whether 
the second allele is required—on one hand, experimental data 
from knockout mice suggest that it might be (25, 26), on the 
other hand, deletion of the second MLL1 allele has been reported 
in patients (27) and also occurs in the ML2 cell line. Whether 
leukemias with deletions of the MLL1 wild-type allele retain 
residual wild-type function through expression and cleavage of a 
reciprocal fusion is unclear, as is the role of the reciprocal fusion 
in general. Wilkinson et  al. reported that the MLL-AF4 fusion 
activates expression of RUNX1 and that the RUNX1 protein then 
interacts with the AF4-MLL reciprocal fusion and the MLL-C 
complex proteins (28). �e authors hypothesized that interaction 
of AF4-MLL enhances its coactivation of RUNX1 target genes, 
although they were not able to successfully target AF4-MLL via 
siRNA for functional con�rmation of this theory. Furthermore, 
a reciprocal translocation predicted to result in the expression of 
a reciprocal fusion transcript was found in only 24 of 182 MLL-
rearranged (MLL-r) patients (29). �e fact that in most patients 
the reciprocal fusion is likely not expressed strongly argues 
against a critical role.

Physiologic Functions of MLL1
MLL1 is both structurally and functionally homologous to the 
Drosophila melanogaster protein trithorax (1), which is involved 
in epigenetic regulation of de�ned developmental genes [reviewed 
in Ref. (30)]. Homozygous deletion of Mll1 in murine embryos 
results in lethality at E10.5–E12.5, with null embryos showing 
abnormal facial development and innervation of embryonic 
structures, as well as abnormal fetal hematopoiesis (31–33). 
Mll1 ± (heterozygous) embryos display both body segmentation 
abnormalities and decreased numbers of cells of several hemat-
opoietic lineages. Many of these defects closely resemble those 
seen upon knockout of developmental patterning genes, such as 
the homeobox (Hox) genes, many of which (Hoxa9, Hoxa7, and 
Hoxc8) have been identi�ed as Mll1 target genes. Although Hox 
genes are expressed in Mll1−/− embryos before the E9.0 stage, their 
expression is not maintained at later time points in the absence 
of Mll1 (34). �ese �ndings indicate that Mll1 is required for the 
maintenance, and not the initiation, of Hox gene expression. In 
steady-state adult murine hematopoiesis, hematopoiesis-speci�c 
knockout of Mll1 resulted in moderate to severe impairment of 
stem cell function (35, 36).

Identi�cation of MLL1 target genes involved in embryogenesis 
and hematopoiesis has been the goal of multiple studies. MLL1 
has been reported to occupy as much as 5,000 genes in leukemia 
cell lines and cultured lymphoblasts (37) and a smaller number 
of genes in �broblasts (38). MLL1 binding correlated with the 
presence of H3K4me3 and occupancy of RNA polymerase 

II, suggesting that despite the presence of multiple negative 
regulatory domains in the MLL1 protein, the net outcome of 
MLL1 binding is typically transcriptional activation. Despite 
correlation of MLL1 binding with H3K4 trimethylation, MLL1 
is not the methyltransferase responsible for the deposition of 
the majority of H3K4 trimethylation in any tissue examined to 
date, as knockout does not result in decreased global levels of 
H3K4me3 (24).

NORMAL FUNCTIONS OF THE COMMON 

MLL1 FUSION PARTNERS

Leukemia-associated translocations involving 11q23 have been 
shown to generate in-frame fusions of the MLL1 gene to more 
than 80 di�erent partner genes (29). N-terminally truncated 
MLL1 alone is not su�cient to transform cells (39, 40). �is 
�nding argues for a crucial contribution on the part of the fusion 
partner proteins to leukemogenesis. Although the proteins 
encoded by the 80 + MLL1 partner genes seemingly have diverse 
structures and functions, two common features have emerged 
that likely have importance for the oncogenic potential of the 
chimeric protein. First, many of the partners, including the 
ones most frequently encountered in MLL1 fusions, are nuclear 
proteins involved in the regulation of transcriptional elongation 
[though interaction with the positive transcription elongation 
factor b (pTEFb) complex and phosphorylation of Pol II] and 
direct or indirect recruitment of the H3K79 histone methyl-
transferase DOT1L (41–49). Second, many partners, including 
those that are cytoplasmic, have been shown to form complexes 
in the nucleus as fusion proteins (50). A revealing study dem-
onstrated that a fusion construct of Mll exons 1–8 and lacZ, the 
gene encoding the non-oncogenic enzyme β-galactosidase, was 
able to cause leukemias in mice, albeit with longer latency and 
lower incidence than the more traditional Mll-Af9 fusion (51). 
Importantly, the formation of a tetramer is essential for the func-
tionality of the enzyme β-galactosidase, and all of the leukemia 
cells demonstrated β-galactosidase activity, suggesting that the 
fusion proteins also oligomerized. Martin et al. con�rmed that 
dimerization of MLL1 is transforming through the fusion of 
MLL1 to FKBP12, an inducible dimerizer (52). A �nal interesting 
consideration is that N-terminal MLL1 is normally destabilized 
by the loss of interaction with MLL-C (19). �e MLL1 fusion 
construct loses the domain necessary for MLL-C binding and 
therefore would be expected to be degraded—since it is not, the 
fusion partner may also play a role in enhancing the stability of 
the fusion protein.

The AF4 Protein Family
�e AF4 protein (ALL1-fused gene from chromosome 4) 
is fused in-frame to MLL1 as a result of a t(4,11)(q21,q23) 
translocation (2). �is fusion is responsible for approximately 
50% of cases of infant acute lymphoblastic leukemia (ALL) 
with MLL1 rearrangement and more than 75% of adult MLL-r 
ALLs (29). AF4 is a member of the ALF (AF4, LAF-4, FMR-
2) family of nuclear proteins (41, 42). Two additional family 
members (LAF-4 and AF5q31) have been identi�ed in MLL1 
fusions from patient samples (53, 54). �ese proteins share 
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several regions of homology, including a region rich in serine 
residues that has been shown to have transactivation properties 
in reporter assays and which is conserved in fusions with MLL1 
(55, 56). �e functions of the known family members remain 
incompletely characterized. However, AF4 knockout mice 
display signi�cant delays in lymphopoiesis (generation of B 
and T cells) (57). AF4 has been shown to interact with pTEFb 
and DOT1L (44–46). pTEFb is a complex of cyclin T1/T2 and 
cyclin-dependent kinase 9 (CDK9), which phosphorylates the 
C-terminal domain of RNA polymerase II and thus promotes 
transcriptional elongation (58). AF4 binding to pTEFb enhances 
PolII-CTD phosphorylation and promotes gene transcription. 
AF4 family members may also interact with another transcrip-
tional complex, selectivity factor 1 (SL1), which is composed 
of TATA-binding protein and four associated factors, and 
this association may play a role in direct recruitment of RNA 
polymerase II to target genes (59).

AF9 and ENL
ALL1-fused gene from chromosome 9 (AF9) and eleven-nineteen 
leukemia (ENL) are the second and third most common fusion 
partners of MLL1, and these fusions arise from the t(9,11)
(p22,q23) and t(11,19)(q23,p13.3) translocations, respectively 
(29). MLL-AF9 is most commonly associated with myeloid 
leukemias, while MLL-ENL is prevalent in both lymphoid and 
myeloid leukemias (60). AF9 and ENL have highly similar 
structures. Both proteins have a conserved C-terminal coiled 
coil region with transactivation properties that is necessary and 
su�cient for leukemic transformation in the context of MLL1 
fusions (40). Furthermore, AF9 and ENL have also been shown 
to interact with AF4 via their C-termini and thus be part of 
AF4 containing complexes that also bind pTEFb and DOT1L 
(44–49). �e C-terminal domains mediating this interaction are 
conserved in MLL1 fusions (43) and mutation of the DOT1L-
binding domain of ENL in MLL-ENL cells abrogated colony 
formation and reduced Hox gene expression typically associated 
with transformation (45).

Similar to MLL1, AF9 and ENL have roles in the epigenetic/
transcriptional control of developmental pathways (31, 61). 
Wild-type AF9 in mice and humans seems to have a regulatory 
function speci�cally in megakaryocyte/erythrocyte lineages 
(61, 62). AF9 and ENL have been shown to interact with the 
protein Polycomb 3, also known as CBX8, a component of 
polycomb repressive complex 1 (PRC1), which is implicated 
in maintenance of stable repression of genes, and with certain 
isoforms of the BCL-6 corepressor (45, 63–65). However, rather 
than mediating transcriptional repression, the role of CBX8 in 
the context of MLL fusions appears to mediate the recruitment 
of the histone acetyl transferase Tip60, thereby promoting 
fusion target gene expression (66). Finally, the N-terminal 
YEATS domain of ENL and AF9 have reader function rec-
ognizing histone proteins 1 and 3 (H1 and H3) acetylation 
and, as recently demonstrated, crotonylation (49, 67–69). �e 
wild-type AF9 YEATS domain has been reported to be criti-
cally involved in the recruitment of DOT1L to chromatin and 
H3K79 methylation-mediated transcriptional control [(49) and 
see “DOT1L Inhibitors” section]; however, in the MLL1 fusion, 

the YEATS domain is typically excluded (40). It is possible that 
the N-terminal MLL1 fragment supplies this function; however, 
this has been di�cult to experimentally con�rm. �e precise 
function of these various binding partners to the function of 
AF9 or ENL in their wild-type or MLL1-fused states will still 
require more investigation.

AF10 and AF17
AF10 was the �rst MLL1 fusion partner to be shown to interact 
with DOT1L (70). AF10 and the structurally related AF17 (also a 
rare fusion partner) are consistently co-puri�ed with DOT1L and 
part of the canonical DOT-complex (47). AF10 is required for di- 
and tri- (although not mono-) methylation of H3K79 by DOT1L 
(71). �e PHD �nger of AF10 speci�cally binds to unmodi�ed 
H3K27 (72). Although both AF10/AF17 and AF9/ENL co-purify 
with DOT1L, it is unclear whether all these proteins reside in one 
or in two separate complexes and what the relationship of these 
complexes is to elongation complexes containing AF4, AF5, and 
pTEFb or SL1 (46–48, 59).

TRANSCRIPTIONAL DYSREGULATION IN 

THE CONTEXT OF MLL1 FUSIONS

Controversies Around and Potential Roles 

of an Oncogenic Multiprotein Complex
�e cooperation of most major MLL1 fusion partners in a 
single elongation regulatory complex, termed “super elongation 
complex” (SEC), “AF4/ENL family protein complex,” or “ENL-
associated protein complex”, o�ered an elegant explanation for 
the large number of di�erent partners: translocation of any of 
the members of a large complex containing AF10, AF17, AF9, 
ENL, ELL, AF4, AF5, pTEFb, and DOT1L would cause aberrant 
transcriptional elongation and similar phenotypes. However, 
such a super complex containing an MLL fusion has remained 
elusive, and careful mapping of binding sites has shown that 
binding of several of these members is mutually exclusive, sug-
gesting several smaller, rather than one large complex [(46–48, 
73, 74); Figure 2].

Furthermore, this theory did not explain the di�erent clinical 
phenotypes observed in dependence of the fusion partner (dis-
cussed below). It also did not provide an explanation for the 
transforming activity of MLL fusions with partners such as 
cytosolic coiled coil domain proteins, CBP, septins, and the MLL 
partial tandem duplication (PTDs). Despite a vast amount of 
mechanistic knowledge, MLL rearrangements thus still defy a 
simple and unifying theory of how they cause leukemia.

The Gene Expression Program Controlled 

by MLL1 Fusions
Genome-wide comparisons of gene expression in MLL-r vs MLL 
wild-type leukemias have consistently demonstrated that this 
set of leukemias—irrespective of fusion partner or myeloid vs 
lymphoid di�erentiation—is distinct from all other leukemia 
subtypes with respect to its gene expression signature (75–77). 
�e most frequently overexpressed genes in MLL-r leukemias 
are the later HOX cluster genes (particularly HOXA7-HOXA10) 
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ASH1L). (3) AF10—unmodi�ed H3K27 interaction (blocking reader domain or demethylases?). (4) DOT1L—placement of H3K79me2/3 (blocking methyltransferase 

domain). Pol II phosphorylation: (5) Inhibition of pTEFb. Downstream targets: (6) FLT3.
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and the HOX cofactor MEIS1 (78, 79). HOX genes encode 
transcription factors whose activities control developmental 
processes such as segmentation and hematopoiesis (31, 34, 78, 
80). In these functions, they appear to have somewhat redundant 
roles (80, 81). In the hematopoietic system, both HOX genes 
and MEIS1 are expressed at highest levels in the stem cells and 
early lineage progenitor cells, and expression levels are down-
regulated with di�erentiation (80, 81). Persistent expression of 
both MEIS1and HOX genes has been observed in a wide variety 
of leukemias (78, 82). Investigations into the dependence of 
MLL-r leukemias on upregulation of these genes have shown 
that MEIS1 is necessary for leukemia growth and proliferation 
and that levels of expression of MEIS1 correlate inversely with 
disease latency (83). �e dependence of MLL-r leukemias for 
individual Hox genes appeared somewhat less consistent, likely 
due to functional redundancy among HOX members (81, 84, 
85). However, it seems safe to say that dysregulated expression 
of the HOX developmental regulators and their cofactor MEIS1 
contributes critically to the stem cell-like characteristics of MLL-r 
leukemias and confers or maintains on these cells self-renewal 
properties, growth, and survival advantages that promote their 
oncogenic potential.

�ese stem cell-like properties—which may also in part 
depend on the developmental stage at which the leukemia arose 
(stem cell vs early progenitor)—have been proposed to contribute 
to the high level of resistance to programmed cell death frequently 
observed in the clinic (86–91). In addition, frequent dysregula-
tion of prosurvival pathways such as BCL-2, which counteracts 
the intrinsic mitochondria-mediated apoptotic pathway, may 
contribute to the therapeutic di�culties many of these leukemias 
pose in the clinical setting (89, 92).

CLINICAL FEATURES OF MLL-r 

LEUKEMIAS

Demographics and Common Features
As the name suggests, MLL rearrangements are found in mixed-
lineage leukemias [now named mixed phenotype acute leukemia 
(MPAL) (93)]. For the most part, however, leukemias arising from 
rearrangements of the MLL gene manifest as either acute lym-
phoid or acute myeloid leukemias (ALL or AML, respectively), 
and only a minority of MPAL actually carry MLL rearrange-
ments. MLL-r leukemias make up approximately 10% of acute 
leukemias in all age groups (94). �ere is a bimodal distribution 
of a�ected patients, with MLL rearrangements most commonly 
found in ALL in infants less than 12 months of age and in a much 
broader age range of older children or adults, with AML slightly 
more common than ALL in this age range (94). Finally, there is 
a rare entity known as “therapy-related leukemia,” which typi-
cally occurs a�er exposure to topoisomerase II inhibitors (e.g., 
etoposide, doxorubicin) (95, 96).

In the case of infant leukemias, the incidence of MLL rear-
rangements is 70–80% (29, 97). �erapy-related leukemias 
secondary to the aforementioned chemotherapeutic agents also 
harbor MLL translocations in at least 70% of cases (98, 99). Of 
all patients treated with topoisomerase II inhibitors, between 
2 and 12% go on to develop secondary leukemias (100). �e 
majority of these are AML, although a smaller number of cases 
of ALL have also been reported (96). �e latency period for this 
group of leukemias, in contrast to leukemias secondary to other 
types of carcinogens, is extremely short—as early as 6  months 
postexposure, and generally within 24–48 months of exposure, 
to topo-II inhibitors (95, 96, 98, 100). �e mechanisms behind 
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the development of MLL-r leukemias will be explored in the 
“Environmental and Genetic Risks” section.

MLL-r as a subgroup of acute leukemias is associated with 
certain phenotypic features that set it apart from other classes 
of leukemias. MLL-r acute leukemias, particularly in infants, 
are more likely to present with hyperleukocytosis and CNS 
involvement (101–103). In cases of MLL-r B-ALL, the blasts are 
typically of the pro-B phenotype and lack expression of CD10/
common acute lymphoblastic leukemia antigen and frequently 
show coexpression of myeloid markers (104). �is is also true in 
many cases of MLL-r leukemias in adults (105). In vitro, MLL-r 
blasts o�en have resistance to commonly used chemotherapeu-
tic drugs such as prednisone and l-asparaginase, but typically 
have acute sensitivity to cytarabine (106). It has been reported 
that the transporter protein that imports Ara-C across the cell 
membrane, the human equilibrative nucleoside transporter 1, 
was expressed at 2.5-fold higher levels in a cohort of leukemia 
cells with MLL rearrangements than in MLL wild-type leu-
kemias (107). It is possible that enhanced transport of Ara-C 
across cell membranes leads to preferential accumulation of 
the drug in MLL-r cells, which contributes to their speci�c 
sensitivity.

Common MLL Fusion Partners and 

Lineage Plasticity
�e majority of MLL-r leukemias involve fusions of MLL with 
one of six common partner genes: AF4 [t(4,11)], AF9 [t(9,11)], 
ENL [t(11,19)(q23,p13.3)], AF10 [t(10,11)], ELL [t(11,19)
(q23,p13.1)], or AF6 [t(6,11)] (29). �e relative frequency of 
these fusions with respect to leukemia subtype and age are 
shown in Figure 3 [data adapted from the study by Meyer et al. 
(29)]. Translocations may or may not be observable on karyo-
type analysis, but are more reliably identi�ed by �uorescence 
in situ hybridization (101, 104).

Clinical evidence suggests that the fusion partner of MLL1 
is a major determinant of the ultimate leukemia phenotype. In 
patients, MLL-AF4 is predominantly associated with lymphoid 
malignancies, whereas MLL-AF9 more o�en results in myeloid 
malignancies (29). At the same time, particularly, the lymphoid 
MLL-r leukemias retain a substantial amount of lineage in�del-
ity and lineage plasticity. �is is evident in the frequent co-
expression of myeloid markers and is the phenomenon familiar 
to every clinician of MLL-r B-ALL patients who relapse with 
apparent AML that is cytogenetically related or even identical 
to the initial lymphoid disease. �is phenomenon is likely to 
increase, as therapies directed against B-lymphoid cell surface 
markers enter expanded clinical use (antibodies, antibody–drug 
conjugates, bispeci�c antibodies such as blinatumomab, and 
CAR-T). Relapse with leukemia that has adopted a myeloid fate 
was recently reported for two of seven patients treated with a 
CD19 directed CAR-T (108) and in an infant with t(4,11) ALL 
treated with blinatumomab (109). �is plasticity is also re�ected 
the recurrent �nding of MLL rearrangements in leukemias of 
ambiguous lineage (MPAL) (93, 110). Experimentally, Wei et al. 
demonstrated that the microenvironment can play a role in lineage 
determination. On transduction of human HSCs with a retroviral 
MLL-AF9 construct, transformed cells propagated in culture 

with cytokines that promote myeloid di�erentiation invariably 
expressed myeloid surface markers (111). Despite the association 
of MLL-AF9 with myeloid features, transformed cells exposed 
to cytokines that promote lymphoid di�erentiation expressed 
both B cell and myeloid markers. Importantly, leukemia cells 
of di�erent phenotype from lymphoid or myeloid culture were 
found to be clonally related, suggesting that they arose from a 
single leukemia stem cell. �erefore, although the fusion partner 
a�ects the leukemia phenotype, environmental cues and selective 
pressure can also contribute.

In addition to translocations, in-frame PTD of exons 5-12 
or a portion thereof can be seen in acute leukemias (112, 113). 
�is type of MLL mutation was originally described in adult de 
novo AML patients with normal karyotype and has since been 
demonstrated in both childhood and adult ALL and AML as well 
as in therapy-related leukemia (112), with an overall incidence 
of 5–10% (113). MLL-PTD has also been found in a number of 
leukemias with extra copies of chromosome 11 (114). �e pres-
ence of this abnormality is associated with early relapse of disease 
following initial remission (113, 114).

Environmental and Genetic Risks
When translocated, disruption of the MLL gene typically occurs 
within the breakpoint cluster region (BCR), which spans an 8.3-
kb region from exon 8 to exon 14, inclusive (115, 116). A number 
of sites within this portion of MLL are vulnerable to damage. 
Among them are the sca�old attachment regions (SARs), which 
are areas of contact between DNA and non-histone proteins of 
the chromatin sca�old. Two such SARs have been identi�ed 
within the MLL coding region—one 5’ to the BCR and a stronger 
one within the 3’ part of the BCR (117). Cleavage sites of topoi-
somerase II are also found scattered throughout the MLL BCR, 
with a higher density in the SAR that overlaps the 3’ region of 
the BCR. Topoisomerase II is an enzyme that is essential for the 
relaxation of supercoiled DNA during chromatin remodeling 
processes (100, 116). Drugs that inhibit the enzyme, such as 
epipodophyllotoxins and certain alkylating agents, typically do so 
by forming a stable ternary complex with the enzyme and DNA. 
�e resulting double-strand breaks are most likely to be repaired 
by non-homologous end joining.

Topoisomerase II inhibitors such as etoposide are known 
to be associated with development of MLLs in therapy-related 
cases, and the breakpoints within the MLL gene are frequently 
adjacent to known cleavage sites of the enzyme (116, 118). 
Potential MLL cleavage by unknown apoptosis-activated 
proteases that seem to act independently of topoisomerase II 
has also been reported in response to stimuli such as ionizing 
radiation (119). Interestingly, the majority of MLL breakpoints 
identi�ed in infant leukemias lie toward the 3’ end of the BCR, 
similar to those seen in leukemias secondary to treatment with 
topoisomerase II inhibitors (115–117). �is �nding suggests a 
possible common mechanism for these two groups of leukemias. 
Along those lines, investigations into prenatal exposures of 
infants with MLL-r leukemia have suggested that bio�avonoids 
found in foods and herbal remedies such as dipyrone (“Mexican 
aspirin”); senna in herbal teas; quercetin, a bio�avonoid found 
in onions, red wine, and other foods; and genistein found in 
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soybean products could act as inhibitors of topoisomerase II 
(100, 120, 121) and promote rearrangement of the MLL locus 
in a variety of cells, including CD34+ hematopoietic progeni-
tor cells (120, 122). �erefore, it seems possible that, at least in 
some instances, in utero exposure to environmentally occurring 
topoisomerase II poisons could contribute to the develop-
ment of MLL-rearrangements. However, most of these agents 
are very common, and infant leukemia is a very rare disease. 
�is discrepancy has not well resolved and suggests additional 
stochastic or genetic mechanisms.

It is also important to note that, in very young patients, there 
is substantial evidence that the gene rearrangement usually, if 
not always, occurs in  utero. Polymerase chain reaction (PCR) 
testing of neonatal blood spots has demonstrated the presence 
of translocations involving the MLL gene even in babies whose 

disease was diagnosed months later (123). Twin studies o�er 
further support for the prenatal origin of these leukemias. �e 
concordance rate for infant leukemia in identical twins is pre-
dicted to be close to 100%, and siblings typically have identical 
MLL breakpoints (123, 124). �ese observations suggest a trans-
placental transfer of leukemia cells from one twin to the other. 
Despite a rate of twin–twin transfusions of 8% in dichorionic 
twins, the rate of transplacental seeding of leukemia is much 
lower in this situation. Both immune-mediated and genetic 
mechanisms may be responsible for this discrepancy. In fact, 
there is emerging evidence that genetic risk factors contribute 
to MLL-r leukemogenesis. In a remarkable GWAS study, a rare 
polymorphism in MLL3 was present in 100% of infants with 
MLL-r leukemia (125). �e mechanistic implications of this 
variant are currently being explored.
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TREATMENTS AND OUTCOMES FOR 

MLL-r LEUKEMIAS

Principles and Outcomes of Multiagent 

Chemotherapy
Historically, the 5-year event-free survival (EFS) for infant ALL 
has ranged from 20 to 40% for those with MLL rearrangements, 
vs 60% or higher for those with wild-type MLL (102, 104). �e 
most recent studies for whom published long-term survival data 
exist have indicated only modest improvement in these numbers 
[4-year EFS of 40–50% and overall survival (OS) of 50–55%] 
(102, 126, 127). Most patients (~80–90%) will go into remission 
initially, but relapse rates of 50–60% are reported, the most com-
mon site of relapse being the bone marrow (128). Intensi�cation 
of chemotherapy may reduce the risks of relapse, but comes at the 
cost of signi�cant therapy-related morbidity and mortality, mostly 
of infectious etiology (104). In contrast, the cases of MLL-r AML 
in infants do not generally have worse outcomes than their non-
MLL-r AML counterparts (129). Pediatric patients greater than 1 
year of age with MLL-r ALL are better than infants, although not 
as well as their non-MLL-r counterparts. Most recent data esti-
mate a 5-year EFS of ~60% (129) compared to ~92% in pediatric 
ALL overall (130). In a European study of 85 adult ALL patients 
with t(4,11) rearrangements (105), 5-year EFS and OS were 34 
and 35%, respectively, which is slightly diminished compared to 
~40–45% long-term survival in adult ALL overall (131). Again, 
most MLL-r patients achieve an initial remission (>90%), but 
many patients ultimately relapse.

�e relationship between MLL rearrangements and outcome 
in AML is less straightforward than in ALL. �e most com-
mon MLL fusion in AML, MLL-AF9, has been reported to be 
associated with an intermediate to good prognosis (132, 133). 
In contrast when analyzing a large cohort of pediatric de novo 
AML with a variety of di�erent MLL rearrangements, 5-year 
EFS and OS were poorer [44% EFS and 56% OS (133)] when 
compared to pediatric AML in general [55% EFS and 70% OS 
(134)], with substantial di�erences depending on the fusion 
partner.

Clinical features that have been shown to be predictive of 
outcome in infant MLL-r ALL include age at diagnosis, total white 
blood cell count at diagnosis, presence or absence of CD10 on 
blast cells, and initial response to steroid therapy (97, 104, 126, 
128, 129). Age cuto� predictive of poorest outcomes varies based 
on the study (<90 days vs <6 months). WBC count >300K, lack 
of CD10 expression, and poor response to prednisone (de�ned 
as >1,000 blast cells per microliter in the peripheral blood) all 
confer particularly dismal outcomes as well (97, 104, 126, 128, 
129). In adult MLL-r ALL, older age (>25  years) was the only 
independent factor associated with decreased survival [<35 vs 
71% (105)].

Historically, it was thought that t(4,11) fusions in ALL were 
associated with poorer survival compared to other translocations 
(128). However, despite the association of t(4,11) and t(11,19) 
fusions with younger age groups, more recent trials have failed 
to �nd any signi�cant association between relapse or survival in 
MLL-r ALL and any particular fusion partner (97, 104, 126, 129). 

�is may be related to the fact that despite a myriad of fusion 
partners being reported, only a few dominate the clinical experi-
ence. Furthermore, MLL-r leukemias are typically not treated 
on a uni�ed protocol, but managed largely based on phenotype 
(AML vs ALL) and age (infant leukemia). Most current clinical 
risk strati�cations do not take the fusion partner into account. 
However, several studies investigating the relationship between 
fusion partner and outcome have suggested that there is a correla-
tion. A meta-analysis of the association between fusion partner 
and outcome in 756 children with MLL-r AML from 11 study 
groups operating in 15 countries suggested massively divergent 
OS: while 24 children with the t(1,11)(q21,q23) translocation 
(MLL-AF1q) had an OS of 100% (event free survival, EFS 92%), 
EFS and OS were 11 and 22%, respectively, for patients with the 
t(6,11)(q27,q23) translocation (MLL-AF6) (133). �is study 
did not con�rm the possible “good risk” feature of the common 
MLL-AF9 translocation that was previously reported (132). �e 
dismal outcome for MLL-AF6 mutant disease had previously 
been reported in adults (135). Also, children older than 1 year 
with MLL-AF4 (and interestingly, MLL-AF9) mutant B-ALL were 
reported to have a worse outcome than children with other MLL 
translocation partners (129). In an even more fascinating twist, 
MLL-AF9 might be predictive of a good OS when it occurs in FAB 
M5-AML as opposed to other FAB subgroup AML or ALL PIMD 
(133). Whether this re�ects statistical outliers in an increasingly 
smaller and more �nely sliced “pie,” genetic/pharmacogenomics 
di�erences, or underlying biology (possibly re�ecting cell of 
origin) is unclear.

One interesting correlation is that both infant ALL and 
 therapy-related leukemias, which have overall the worst outcomes 
of MLL-r leukemias, are associated with breakpoints in intron 
11 rather than intron 9 or 10 (115). Emerenciano et al. recently 
demonstrated that the presence of MLL breakpoint in intron 11 
was also an independent predictor of poor survival in a cohort 
of 30 MLL-r pediatric leukemia patients (136). Fragmentation 
of the MLL gene at intron 11 is predicted to generate an MLL 
C-terminal truncated protein whose PHD �ngers are misfolded, 
eliminating the ability to associate with its repressive complex 
(137). �e authors of this study theorize that, in these cases, 
unbalanced activation functions of the resultant MLL fusion 
protein lead to more aggressive leukemia phenotypes. Whether 
this can be mechanistically proven in future experiments remains 
to be seen.

The Role of Hematopoietic Stem Cell 

Transplant (HSCT) in the Treatment of 

MLL-r Leukemia
�e role of HSCT in the treatment of MLL-r leukemias continues 
to be a matter of intense debate, with several studies and meta-
analyses suggesting that HSCT does not improve survival in 
MLL-r leukemias at any age group or lineage, with the excep-
tion of therapy-associated AML (126, 129, 133, 138–141). �e 
combined analysis of the North American CCG 1953 and POG 
9407 infant ALL trials concluded that HSCT failed to show any 
bene�t  (142). Initial chemotherapy was identical on the two 
protocols. In the later phases, chemotherapy was very similar, 
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with the main di�erence being methotrexate dosing. Patients on 
the CCG also received maintenance therapy, while patients on 
the POG trial did not. On the CCG trial, HSCT in CR1 was the 
preferred mode of treatment if a suitable donor could be identi-
�ed, whereas on the POG trial, this was le� to the judgment of 
the investigator. �e recommended conditioning consisted of 
Ara-C/Cy/TBI, although only about half of the patients received 
this conditioning. Transplant-related mortality, particularly in 
children receiving TBI, was high. �is study included 132 infants 
with MLL rearrangement, although a�er adjustment for time to 
transplant, only 100 children were evaluable. Fi�y-three under-
went HSCT, 47 did not. Five-year EFS for children who were 
alive at the time of transplant was similar between the HSCT and 
chemotherapy groups (48.85 vs 48.7%), prompting the authors 
to conclude that HSCT did not improve survival in MLL-r infant 
ALL. In addition, there were no di�erences in subgroups based 
on WBC, age, or CD10 expression. However, the comparatively 
smaller number of patients with high-risk features and variability 
in transplant regimen made the subgroup analysis for this patient 
population di�cult.

No bene�t for HSCT for infants with MLL-r leukemia was 
also shown by two retrospective analyses (129, 143) and in a 
report of children treated in Europe (144). In contrast, the analy-
sis of a larger cohort of 297 infants with MLL rearrangement 
treated on Interfant99 identi�ed a group of patients less than 
6  months of age with either a WBC of >300,000, prednisone 
poor response, or high end consolidation MRD that had an 
extremely poor survival with chemotherapy only (97, 145, 146). 
On Interfant99, high-risk patients did bene�t from HSCT: the 
survival for children <6 months with either a WBC > 300,00 or 
PPR who were alive at the time of HSCT was only 22.2% when 
treated with chemotherapy and 59% on the HSCT arm (97). �e 
number of patients who received HSCT was small, but given the 
dismal outcome of this subgroup, a more aggressive approach 
seems justi�ed. �e outcome of a similar group of infants on 
other trials such as CCG 1953 and POG 9407 is not known, 
since the number of patients was smaller, prednisone response 
and MRD were not assessed or reported, and WBC criteria for 
subgroup analysis were di�erent from the Interfant99 study  
(97, 104).

In summary, although numbers are small, HSCT is likely 
bene�cial for a de�ned subgroup of high-risk infants, particu-
larly if conditioning regimen and donor choice allow for a low 
transplant-related mortality. �ere are no data supporting HSCT 
in CR1 in older children with MLL-r ALL or de novo AML. As 
discussed earlier, the study by Balgobind et  al. suggests that 
de�ned fusion partners may be associated with a particularly 
poor prognosis (133); however, currently, this is not used for 
treatment strati�cation in either ALL or AML. In contrast to de 
novo leukemia, outcomes for therapy-related AML are substan-
tially worse, and HSCT in �rst CR is standard of care (141). In 
addition to tAML, treatment-related MLL-r ALL is occasionally 
seen. Although outcomes for tAML are inferior to de novo 
AML, no such data exist for MLL-r tALL vs de novo ALL, and 
chemotherapy only may be the treatment of choice, particularly 
for patients who show a good response to therapy (as measured 
by MRD).

Role of FLT-3 in MLL-r Leukemias
One of the most signi�cantly upregulated genes in the tran-
scriptional pro�le of MLL-r leukemias is Fms-like receptor 
tyrosine kinase-3 (FLT-3) (75). �is gene encodes a class III 
receptor tyrosine kinase, which is closely related to KIT, FMS, 
and platelet-derived growth factor receptor (147). Under 
physiologic conditions, binding of the FLT-3 ligand leads to 
dimerization and phosphorylation of the receptor, which acti-
vates downstream signaling pathways such as PI3K/Akt, Ras/
MAPK, and Stat5 (147). Activating mutations in FLT-3 have 
been described in a variety of hematologic malignancies, but 
have primarily been characterized in pediatric and adult AML 
(147, 148). �e two types of activating mutations commonly seen 
in these contexts are internal tandem duplications in the jux-
tamembrane domain of FLT-3 [so-called FLT-3 internal tandem 
duplications (ITD) mutations] and point mutations within the 
tyrosine kinase domain (TKD) that confer constitutive activity to 
the enzyme (147). �e presence of a FLT-3 ITD mutation confers 
an extremely poor prognosis (148).

FLT-3 gene upregulation in MLL-r leukemias correlates 
to overexpression of the FLT-3 protein in these ALL samples 
compared to non-MLL-r leukemias, which has been demon-
strated by several groups (149–152). On average, MLL-r infant 
ALL (which is the most thoroughly studied subtype of MLL-r 
leukemias) expresses 37-fold higher FLT-3 protein compared to 
normal bone marrow and 2- and 16-fold higher expression of 
FLT-3 compared to non-MLL-r ALL in children less than 1 year 
of age and older children, respectively (150, 152). By contrast, 
the data have been less consistent with respect to activating 
mutations of FLT-3, with most of the recent studies suggesting 
that they are rare (149–151, 153). FLT-3 ITD have not been 
demonstrated in recent cohorts of MLL-r ALL patients, and 
FLT-3 TKD mutations have an approximate incidence of only 
3–18% in MLL-r ALL (149–151). Most recently, Andersson 
et al. investigated a cohort of 85 infant and pediatric patients 
with ALL, of which 67 had MLL rearrangements. Of these, only 
four patients had FLT-3 mutations, two of which were TKD 
mutations and two of which were present only in a minor clone 
(154). �is �nding is also consistent with the general �nding 
by this group that MLL-r leukemias, in particular those aris-
ing in infants, have one of the lowest frequencies of somatic 
non-silent mutations of any other type of cancer (mean 1.3 per 
major clone). Nevertheless, in vitro studies have demonstrated 
that high levels of FLT-3 expression, even in the absence of these 
activating mutations, are associated with phosphorylation and 
activation of the protein (149, 150).

Mouse models of MLL-r leukemias have suggested cooperation 
between the MLL fusion oncoprotein and FLT-3 in the progres-
sion to the leukemia phenotype (155). In addition, a retrospective 
study showed correlation of high levels of FLT-3 expression with 
poor outcomes in 32 MLLr infants treated on Interfant99 (36 vs 
71% 1-year EFS in high vs low FLT-3 expressing leukemias) (156). 
A later study by Chillon et al. con�rmed these �ndings—of 17 
patients with MLL-AF4 B-ALL, none of those with high FLT-3 
expression were alive at 1 year, compared to 71% of patients with 
low FLT-3 expression (152). FLT-3 expression levels were not 
predictive of outcomes in patients with non-MLL-r ALL. �ese 
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�ndings suggested that targeting of FLT-3 in MLL-r patients 
might be a bene�cial therapeutic approach.

In vitro cytotoxicity experiments with MLL-r ALL patient 
samples demonstrated in  vitro sensitivity to the FLT-3 kinase 
inhibitors, with response correlating with the amount of FLT-3 
overexpression [PKC412 (150) and CEP-701/lestaurtinib (151)). 
Furthermore, synergy studies between CEP-701 and standard 
chemotherapeutic agents (e.g., etoposide, daunomycin) suggested 
that timing is critical—administration of CEP-701 a�er cytotoxic 
agents yielded synergistic cytotoxicity, whereas administration of 
CEP-701 before cytotoxic chemotherapy was antagonistic (157). 
�ese studies laid the groundwork for the design of clinical trials 
to test the e�cacy of FLT-3 inhibitors.

Several clinical trials involving FLT-3 inhibitors have been 
conducted in both adult and pediatric leukemias. Of primary 
relevance to MLL-r leukemias is the �erapeutic Advances in 
Childhood Leukemia & Lymphoma (TACL) study, whose results 
have just been published (158). �is study was a phase 1 trial 
evaluating the safety of quizartinib (AC220) in combination with 
high-intensity chemotherapy for relapsed childhood leukemia. 
Quizartinib is a second-generation kinase inhibitor designed to 
be potently active against FLT-3 and is more selective than �rst-
generation inhibitors such as lestaurtinib (159, 160). Twenty-two 
patients were enrolled, of which 18 had relapsed AML (9 with 
FLT-3 mutations) and 4 had relapsed MLL-r ALL (3 infants and 
1 teenager). Patients received combination chemotherapy with 
cytarabine and etoposide (days 1–5) followed by quizartinib 
(days 7–28) for 1–2 cycles. In all cases, target-speci�c activity of 
quizartinib was demonstrated with near-maximal (>95%) sup-
pression of FLT-3 phosphorylation in plasma inhibitory assays 
(PIAs). Dose-limiting toxicities attributable to the targeted 
agent involved primarily GI toxicities such as elevated lipase or 
transaminases or nausea/vomiting/diarrhea. Of the 17 evaluable 
patients for response, better response correlated with the presence 
of FLT-3 ITD mutations in the AML patients. �ree of the four 
MLL-r ALL patients could be evaluated for disease response—one 
had stable disease and two had progressive disease. �e study was 
not powered to make conclusions about statistically signi�cant 
impacts on OS.

Another trial speci�c to infant leukemia, the Children’s 
Oncology Group (COG) trial AALL0631, has been recently 
closed, and data analysis is ongoing. �is trial was a rand-
omized, phase III trial of the FLT-3 inhibitor lestaurtinib in 
combination with intensive cytotoxic chemotherapy for newly 
diagnosed infants with MLL-r ALL. Although the �nal results 
of the trial have not yet been published, the results from the 
TACL trial raise concern that FLT3 inhibition may not be the 
breakthrough that is so desperately needed for these patients. 
However, �nal results on the outcomes and the depth of FLT-3 
inhibition achieved in AALL0631 regimen is not (yet) known, 
thus failure to achieve su�cient target inhibition remains a pos-
sible explanation for the lack of e�cacy. It is also critical to keep 
in mind that in both AALL0631 and the TACL study, the assays 
used to determine the degree of FLT3 inhibition measures the 
inhibitory e�ect of patient serum on BAF3 cells that are Flt3 
dependent (PIA). �e threshold at which this very sensitive 
indicator cell line responds may be di�erent from responses 

in patients’ leukemia cells. It may be necessary to determine 
on-target activity in actual patient cells and correlate that with 
response to get a better sense for whether FLT3 inhibition is of 
therapeutic value in MLL-r leukemia.

Proteasome Inhibitors
Proteasome inhibitors are increasingly being integrated into 
therapeutic regimens for a variety of malignancies. �e rationale 
behind their use has traditionally been that cancer cells, due to 
increased cell turnover, are more dependent on the proteasome 
machinery for protein recycling than are normal cells. �ese drugs 
have yielded mixed results when used alone or in combination 
with cytotoxic chemotherapy for a variety of malignancies and 
are associated with signi�cant toxicities, particularly neurotoxic-
ity [reviewed in Ref. (161)].

Accumulating data now suggest that proteasome inhibitors 
may be promising agents to supplement the treatment of MLL-r 
leukemias. Liu et al. noted that the expression levels of MLL fusion 
proteins was not excessive in leukemic cells and hypothesized that 
tight regulation of fusion protein expression might be achieved 
through the proteasome machinery. Indeed, they demonstrated 
that proteasome inhibitor treatment increased the protein levels 
of both wild-type MLL and, to a greater extent, MLL fusion 
proteins (162). Stabilization of MLL fusions activated transcrip-
tion of CDKN1B, which encodes p27, via PAX5. Of note, PAX5 
is selectively expressed in pro-B cells (163). Consistent with this 
model, proteasome inhibitor treatment was associated with a 
dose-dependent decrease in cell viability in lymphoid, but not 
myeloid, MLL-r leukemia cell lines. A cohort of �ve adult patients 
with MLL-r leukemias were then treated compassionately with 
single agent bortezomib. �ree patients (two with pro-B pheno-
type and one with biphenotypic leukemia) had transient hema-
tologic responses to the drug, one for over a year. Two patients 
with myeloid phenotype had no response to proteasome inhibitor 
therapy.

Bortezomib was also identi�ed through high-throughput 
drug screens as an active agent against models of infant MLL-r 
leukemias (164, 165). Mechanistically, Koss et  al. found that 
bortezomib treatment led to decreased histone 2B ubiquitina-
tion (H2Bub). H2Bub is required for the methylation of H3K79 
mono- to di- and trimethylation (166), and knockdown of the 
H2B ubiquitin ligase RNF20 led to decrease in H3K79me2 mark 
at MLL target gene sites and in vitro and in vivo compromise of 
leukemia cell viability (167). Both the study by Liu et al. (162) 
and Wang et al. (167) also explored the e�ect of bortezomib in 
NF-kB signaling. Intact NF-kB has been reported to be required 
for MLL-fusion-mediated leukemogenesis in a murine model 
(168, 169), and bortezomib has been implicated in negatively 
regulating NF-kB via the accumulation of IkBa in the absence 
of proteasomal degradation (170). However, both Liu et al. (162) 
and Koss et al. (164) found no evidence of NF-kB modulation, 
suggesting that this pathway is not mechanistically involved in 
therapeutic e�ect. Taken together, proteasome inhibitors may 
be useful as adjunctive therapy for MLL-r leukemias, and bort-
ezomib in combination with standard chemotherapy and HDAC 
inhibition is currently being evaluated in clinical trials for MLL-r 
ALL (NCT02419755, see next section).
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HDAC Inhibitors
Similar to proteasome inhibitors, HDAC inhibitors (HDACi) 
have been reported by multiple groups to be active in MLL-r 
leukemias, with e�ects being attributed to diverging mechanisms 
(165, 171–174). HDACs are a large family of proteins named 
for the ability of the founding member, HDAC1, to deacetylate 
histones. However, many members of the family are cytosolic 
proteins named HDAC due to structural homology, but without 
possessing histone deacetylase function. Several HDACs have 
been reported to be overexpressed in pediatric ALL; however, 
there is no agreement as to which members are speci�cally 
deregulated (175–177).

�e earliest functional relevance of HDACs was suggested by 
a study investigating the activity of valproic acid in MLL-r leuke-
mia. Valproic acid induced growth inhibition and cell-cycle arrest 
in MLL-r leukemia cell lines and primary samples. �e authors 
proposed upregulation of p21 as a mechanism (171). Stumpel 
et al. showed that romidepsin (FK288) and vorinostat had activity 
in 2 t(4,11) B-ALL cell lines and 15 infant B-ALL patient samples 
(172). Good, although not as profound, sensitivity to HDAC 
inhibition was also found for non-MLL rearranged B-ALL. �ey 
also demonstrated decrease in expression of MLL-AF4 at both 
the transcript and protein levels, raising the possibility that e�ect 
of these drugs is primarily due to downregulation of the MLL 
fusion itself.

In contrast, Stubbs et  al. found that several HDACis were 
broadly active against a variety of di�erent cytogenetic subtypes 
of B-ALL, including (but not exclusively) MLL-r leukemias 
(174). Genetic knockdown as well as class-speci�c inhibitors 
suggested that HDAC1 and 2 are the critical HDACs in B-ALL, 
with knockdown or inhibition resulting in direct cytotoxicity 
and DNA damage. DNA damage as a result of HDAC inhibition 
has been suggested to underlie the frequently observed synergy 
with chemotherapy. Stubbs et  al. proposed that the particular 
sensitivity of B-ALL to HDAC inhibition could also relate to the 
role of HDAC1 and HDAC2 in early B-cell development (178). 
On the other hand, two studies suggested that inhibition of 
HDAC3 is critically responsible for the activity of HDACis in 
B-ALL (179, 180).

Bhatla et al. published sensitivity of the t(4,11) B-ALL cell line 
RS4,11 to the HDACi vorinostat, and vorinostat was shown to 
be synergistic with standard chemotherapeutic agents such as 
prednisolone and cytarabine (173). �e authors of this study also 
speci�cally investigated relapsed B-ALL (irrespective of karyo-
type) and proposed the reversal of the “relapse gene signature” 
as a mechanism. Finally, an interesting mechanism was proposed 
by Ahmad et al., who proposed that HDACis reactivate wild-type 
MLL to counteract the transcriptional functions of MLL-AF4 or 
other fusions (181). However, the role of wild-type MLL in MLL-r 
leukemia is controversial as discussed above, and the experiments 
by Ahmad et  al. were performed in HeLa cells, with unclear 
implications for the context of leukemia.

From a clinical standpoint, a 2011 case study reported a 
sustained complete cytogenetic response to single-agent panobi-
nostat in an elderly man with therapy-related MLL-r leukemia 
(182). St. Jude Children’s Research Hospital has an ongoing phase 
II clinical trial combining a proteasome inhibitor (bortezomib) 

and an HDACi (vorinostat) in combination with cytotoxic 
chemotherapy for pediatric patients with relapsed or refractory 
MLL-r leukemias (NCT02419755). Chemotherapy backbone 
varies depending on the leukemia phenotype (ALL vs AML), 
and all drugs are intended as a bridge to transplant. A report of 
six “pilot” patients with relapsed/refractory MLL-r leukemia was 
presented at the 2014 American Society of Hematology Annual 
Meeting. �e overall response rate of this cohort to chemotherapy 
in combination with bortezomib and vorinostat was 83%: four 
patients had complete response, one patient had partial response, 
and one patient had stable disease (164). Whether this regimen 
can achieve durable responses without excess toxicity in these 
patients remains an ongoing question, but initial results are 
certainly promising.

Hypomethylating Agents
Two separate groups have investigated the methylation status of 
MLL-r leukemias compared to MLL-wild-type leukemias and 
normal controls (183, 184). Global promoter hypermethylation 
was seen in the MLL-r leukemias relative to both non-MLL-r 
leukemias and normal samples, leading to downregulation or 
silencing of a subset of tumor suppressor genes. Retrospective 
analysis demonstrated a statistically signi�cant correlation 
between degree of methylation and risk of relapse (183). 
Furthermore, hypomethylating agents zebularine and decitabine 
showed preferential cytotoxicity to MLL-r cells compared to other 
leukemic cells. Both decitabine and another hypomethylating 
agent, 5-azacitidine, are FDA approved for treatment of myelo-
dysplastic syndromes and AML in adult patients, particularly 
those with co-morbidities limiting other therapeutic options 
[reviewed in Ref. (185)]. 5-azacitidine, but not decitabine, usage 
was associated with increased OS in these patients. �ese data 
form the basis for a clinical trial run by the National Cancer 
Institute (NCT02828358), and for a new COG therapy trial 
(AALL15P1), both for infant MLL-r ALL, which test the toler-
ability of 5-azacitidine in combination with standard cytotoxic 
chemotherapy.

Similarly to decitabine and 5-azacitidine, other nucleoside ana-
logs may also target the methylation status of MLL-r leukemias. 
Clofarabine, an powerful cytotoxic adenosine analog, is thought 
to also block DNA methylation through depletion of S-adenosyl 
methionine, which donates methyl groups to DNA methyltrans-
ferase enzymes (186), as has been demonstrated for the related 
molecule cladribine (187). In a recent study by Stumpel et al., low 
doses of clofarabine were cytotoxic to MLL-r leukemias in vitro, 
and clofarabine was synergistically active with cytarabine against 
these cells (188). A variety of clinical trials, none speci�c to MLL-r 
leukemias, currently incorporate clofarabine into study therapy.

Immunotherapy
One of the most exciting new therapeutic approaches in B-ALL 
has been the development of immunotherapies, particularly the 
use of bispeci�c antibodies (blinatumomab) and engineered 
T-cells (CAR-T) in B-ALL. Most clinical trials using CAR-T 
cells in B-ALL to date have allowed children >1 year and adults 
with MLL rearrangements, but have excluded infants, mostly 
due to di�culties around e�cient collection and expansion of 
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autologous T-cells. Infants were included in the early clinical trials 
with blinatumomab (189), and despite theoretical concerns about 
the immaturity of T-cell responses very early in life, some encour-
aging responses were seen [Lia Gore, personal communication 
(109)]. However, MLL-r B-ALL may have “built-in” mechanisms 
to evade immune recognition and/or destruction through their 
lineage plasticity. As mentioned earlier, relapse with leukemia 
that has adopted a myeloid fate has been observed in two out of 
seven patients treated with a CD19-directed CAR-T (108) and in 
an infant with t(4;11) ALL treated with blinatumomab (109). It is 
not yet clear whether this will remain a rare occurrence or emerge 
into a common mechanism of relapse and resistance.

MLL SPECIFIC PATHWAYS AND 

TARGETED INHIBITORS IN EARLY 

CLINICAL TRIALS

Role of RAS Pathway Mutations  

in MLL-r Leukemias
Mutations in RAS pathway members have been frequently 
described in MLL-r leukemias and are perhaps more prevalent 
than mutations in FLT-3. Prelle et  al. evaluated the incidence 
of secondary mutations in a cohort of 144 pediatric and adult 
patients with MLL-r leukemias, of which 100 individuals had 
t(4;11) mutations and the remaining 44 patients had a variety 
of other fusions. NRAS or KRAS mutations were present in 16 
patients (11.1%) (153). In an independent cohort of 109 infant 
ALL patients screened for NRAS, KRAS, or BRAF, 15 patients 
(13.8%) had mutations in either NRAS or KRAS (190). �is group 
also reported a signi�cant decrease in OS was speci�cally seen 
in patients with RAS mutations in the t(4;11) cohort, but not in 
the overall study group. Additional studies have cited frequency 
of RAS pathway mutations in MLL-r leukemia patients ranging 
from 22 to 45% (191–194).

Recently genome-wide analysis of infant MLL-r and MLL-
wild-type ALLs, in addition to pediatric MLL-r ALL in older 
age groups, was performed as a part of the Pediatric Cancer 
Genome Project (154). �is study con�rmed that although MLL-
r leukemias in general carry a paucity of additional mutations, 
the most commonly seen mutations involve the RAS pathway. 
However, the variant allele frequencies (VAF) for these mutations 
in the majority of the infant cases were <30%, indicating that 
the individual mutations were present in minor clones within 
the leukemia population. �is was also noted for the NRAS 
and KRAS mutations described in the study by Driessen et  al. 
(190). Furthermore, of �ve RAS pathway-mutated patients with 
matched diagnosis and relapse samples, the mutations were lost 
in two cases and the VAF decreased in one case, suggesting a 
gradual depletion of the RAS-mutated subclone (154). Again, this 
mirrors previous studies by Prelle et al. and Emerenciano et al., 
both of whom documented loss of RAS mutations in two of three 
and in �ve of 18 relapse samples evaluated, respectively (153, 
192). Furthermore, Emerenciano et al. documented the presence 
of RAS mutations in DNA samples from newborn blood spots for 
two patients in their cohort, one with higher allele frequency than 
at diagnosis of leukemia. �is �nding suggests the possibility that 

RAS pathway mutations provide a proliferative advantage dur-
ing onset of leukemogenesis, but are not necessary for leukemia 
maintenance in the context of MLL rearrangements.

With the advent of multiple inhibitors of the RAS pathway 
that are either FDA approved or in clinical trials, the question 
whether RAS pathway activation plays a role in MLL-r leukemia 
receives new urgency. It is also possible, similar to FLT3, that 
activation of the pathway can occur in the absence of mutations. 
Kampen et  al., using peptide arrays of normal bone marrow 
and leukemia cells, demonstrated increased phosphorylation of 
MAPK pathway proteins in MLL-r AML samples compared to 
either normal bone marrow or non-MLL-r AML’s (195). MEK 
inhibitors have shown selective activity against MLL-r leukemia 
cell lines and primary samples in vitro in several studies, although 
in almost every case those cells with RAS mutations were more 
sensitive to these drugs than were cells without RAS mutations 
(193–195). �e possible exception to this rule lies in leukemia 
cells harboring t(6;11), leading to an MLL-AF6 fusion. Manara 
et al. have shown that the normally cytoplasmic protein AF6 is 
instead localized to the nucleus in the presence of MLL-AF6, 
which is associated with increased RAS pathway activity. �e 
AF6 protein has RAS-association domains, and genetic silenc-
ing of MLL-AF6 leads to decreased RAS activity and decreased 
phosphorylation of ERK (196). Furthermore, chemical inhibition 
of RAS signaling by either PD98059 (MEK inhibitor) or tipifarnib 
(farnesyltransferase inhibitor) was selectively toxic to t(6;11) 
leukemia cells. �erefore, although RAS inhibition may not be of 
bene�t in the majority of MLL-r leukemias, where mutations are 
subclonal and not likely to impact the survival of the leukemia, 
it may be of bene�t in the context of leukemias with MLL-AF6 
fusions, which are notorious for their particularly poor outcomes.

Dot1L Inhibitors
�e histone 3 lysine 79 methyltransferase Dot1L has been shown 
to be necessary for MLL fusion-mediated transformation in a 
variety of experimental models (45, 70, 197–200), and increased 
levels of H3K79 dimethylation have been demonstrated at MLL 
fusion target gene loci [(70, 198, 201); see also Figure 2]. DOT1L 
contributes to the maintenance of the MLL leukemic gene expres-
sion program at least in part by antagonizing Sirtuin-1-mediated 
repressive epigenetic modi�cations to H3K9 (202).

A small molecule inhibitor of Dot1L (EPZ-5676 or pinometo-
stat) has been developed by Epizyme, Inc. and is being studied in 
early clinical trials in both adult and pediatric patients with MLL-
r leukemias (NCT01684150 and NCT02141828). Preclinical 
studies demonstrated target speci�city and downregulation of 
MLL target genes upon treatment of MLL-r cell lines with EPZ-
5676 (203). EPZ-5676 also demonstrated synergy with other 
chemotherapeutic agents known to target MLL-r leukemias, 
regardless of the order of administration (204). Continuous 
intravenous infusion of the compound caused tumor regression 
and prolonged survival in mice and rat xenogra� models of MLL-
r leukemias (203). Unfortunately, the lack of oral bioavailability 
and short half-life of the drug currently mandate the continuous 
IV infusion, resulting in e�orts to develop alternative Dot1L 
inhibitors, which maintain speci�city and e�cacy but are easier 
to administer (205). Data from the phase I/II clinical trials are 
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forthcoming, but it will be crucial to correlate mechanistic e�ect 
(i.e., reduction of H3K79 methylation) with outcomes in these 
patients. Preliminary data published in abstract form suggest sus-
tained single-agent e�cacy in two patients, but also a substantial 
number of patients with only transient or no response, and who 
did not achieve profound depletion of H3K79 methylation at 
MLL-fusion target loci at the dose used (206, 207).

Bromodomain Inhibitors
�e bromodomain and extra terminal (BET) family of proteins, 
which includes BRD2, BRD3, and BRD4, are a family of chro-
matin adaptor proteins that recognize and bind to acetyl-lysine 
residues. A global proteomic screen identi�ed interaction of these 
proteins with components of the SEC, many of whom are MLL 
fusion partners (208, 209). Simultaneously, an shRNA screen 
identi�ed the BET protein BRD4 as a therapeutic target in MLL-
AF9,NrasG12D murine AML model (210). Inhibitors of BRD4 had 
e�cacy in MLL-AF9,NrasG12D model and on a variety of leukemia 
cell lines, with MLL-r leukemias preferentially a�ected (209, 210). 
E�cacy of BRD4 inhibition was con�rmed in primary MLL-r 
patient samples in vitro (165, 209).

In addition to the bromodomain of BET family proteins, the 
bromodomain of CBP/p300 bromodomain has emerged as a 
potential therapeutic target for leukemia, including MLL-r leuke-
mia. A small molecule inhibitor of the CBP/p300 bromodomain 
led to decreased colony formation and promoted di�erentiation 
in MLL-CBP and MLL-AF9 leukemia models as well as primary 
MLL-r patient cells (211). �is latter inhibitor was found to have 
synergistic inhibition of MLL-r cells when combined with the 
bromodomain inhibitor JQ1 or doxorubicin.

One recent study suggested a sequential recruitment of 
DOT1L and BRD4 to a subset of genes located adjacent to super 
enhancers (212). Dimethylation of H3K79 by DOT1L allowed 
binding of histone acetyltransferases including EP500 and 
CREBBP to these regions, which leads to acetylation of H4K5 
and subsequent binding of BRD4 and the SEC. Accordingly, 
inhibition of DOT1L led to dramatically decreased binding of 
BRD4 to chromatin, and the combination of a bromodomain 
inhibitor and a DOT1L inhibitor was synergistically active 
against MLL-r leukemias both in vitro and in vivo. In contrast, 
regulation of distinct programs by DOT1L and BRD4 were 
reported by Garcia-Cuellar et al. (213). DOT1L-dependent loci 
were characterized by promoter-centered binding of MLL-ENL, 
while BRD4-dependent loci exhibited fusion binding beyond 
the termination site. Despite the discrepancies in proposed 
molecular mechanisms, the combination of DOT1L and BRD4 
inhibition may be promising to explore further.

Lysine-Speci�c Demethylase-1 (LSD1) 

Inhibitors
Lysine-speci�c demethylase-1, also known as KDM1A, has 
been shown to be important for maintenance of MLL target 
gene expression (214) and was identi�ed in an RNAi screen as 
a gene whose repression inhibited growth of MLL-AF9,NrasG12D 
murine cells (215). It has enzymatic speci�city for lysines 4 and 
9 on histone 3. Pharmacologic inhibition of LSD1 with tranyl-
cypromine (TCP) was shown to result in a decreased expression 

of MLL target genes; it also impaired colony-forming potential 
and leukemic engra�ment in immunode�cient mice (214). 
However, there were signi�cant toxicities to the mice from TCP 
and related inhibitors, particularly related to thrombocytopenia 
and anemia. Using newer generation small-molecule inhibitors of 
LSD1, these results were con�rmed in vitro and in vivo without 
any signi�cant toxicities to mice (216). Furthermore, in  vitro 
synergy was demonstrated when LSD1 inhibitors were combined 
with the DOT1L inhibitor SYC-522. However, Shi et  al. were 
only able to demonstrate a detrimental e�ect of LSD1 inhibition 
in  vitro, whereas no disadvantage of LSD1 inhibition could be 
shown in competitive engra�ment experiments in mice (215). 
Pharmacologic inhibitors of LSD1 are in early clinical trials in 
adult AML/MDS (GSK GSK2879552 single agent, NCT02177812, 
Tranylcypromine + ATRA, NCT02717884, NCT02261779, and 
NCT02273102). It remains to be seen whether LSD1 inhibitors 
will have e�cacy in patients with MLL-r leukemias.

Polycomb Protein Inhibitors
Polycomb repressive complexes 1 and 2 are two protein com-
plexes involved in chromatin modulation and transcriptional 
repression. Both have been implicated in MLL-r leukemias. 
PRC1 contains core components BMI1, RING2A, and RING2B 
and mediates H2Ak119 monoubiquitination. Several groups 
have investigated the functional requirement of these PRC1 
components in MLLr leukemia. Initial reports investigating the 
role of BMI1 using BMI1 knockdown and/or MLL-AF9 leuke-
mias generated on a Bmi1−/− background suggested that PRC1 
canonical function is not required for MLLr leukemogenesis, 
although some transcriptional and minor functional e�ects on 
leukemia initiating cell frequency were observed (66, 217, 218). 
In contrast, combined knockout of Ring1a/b in a murine model 
of MLL-AF9-induced leukemia was not tolerated (219). �e stark 
discrepancy in phenotypic consequences between knockout of 
di�erent PRC1 components have not been well resolved and may 
relate to di�erently composed subcomplexes and/or functions 
outside of canonical PCR1.

In addition, the non-canonical PRC1 member CBX8 has been 
implicated leukemogenesis particularly mediated by MLL-AF9 
and MLL-ENL. As mentioned earlier, AF9 and ENL bind CBX8 
(63, 64), and leukemia initiation and maintenance in murine 
models MLL-AF9 and MLL-ENL AML were dependent on CBX8 
(66). CBX function in MLLr leukemia appears to be independent 
of its role in PRC1, however, and instead involve the recruitment 
of the histone acetyl transferase Tip60 to fusion target loci (66). 
�is is further supported by the �nding that binding of CBX8 
to ENL reverses the repressor activity of CBX8 (220). In mouse 
models, deletion of CBX8 had no detrimental e�ect on normal 
hematopoiesis, suggesting CBX8 and/or Tip60 could be interest-
ing target for future development of inhibitors.

PRC2 consists of the canonical components EZH2, EED, and 
SUZ12. EZH2 is a histone methyltransferase targeting H3K27. 
Multiple groups have documented decreased proliferation, 
di�erentiation, and loss of stem cell potential in MLL fusion 
leukemias when any component of the complex was geneti-
cally knocked down or deleted (215, 221–223). �is e�ect was 
most prominent with depletion of the universal components of 
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the complex, EED or SUZ12, whereas EZH1 and EZH2 have 
somewhat redundant functions (215, 221). Impairment of the 
leukemia phenotype was largely attributable to de-repression of 
INK4A and ARF, although deregulation of other PRC2 target 
genes such as GATA2 and EGR1 were also implicated (223). 
Two inhibitors (DZNep and UNC1999) have shown e�cacy 
in vitro against MLL-r leukemias and have prolonged survival 
in xenogra� models of disease (224, 225). Another small mol-
ecule inhibitor, which disrupts the protein–protein interaction 
between EZH2 and EED, has had similar utility in MLL-AF9 
models without any e�ect on non-transformed cells (222). 
However, inactivating mutations in PRC2 components has also 
been observed in AML and MDS patients and at least in MDS 
correlates with poor prognosis. As an added wrinkle to the story, 
the observation that AF10, a necessary cofactor for H3K79 di- 
and trimethylation by DOT1L, binds unmodi�ed H3K27 (72) 
suggests that inhibition of EZH2 or PRC2 components could 
also facilitate H3K79 methylation on MLL-fusion target genes, 
although there is currently no experimental data to document 
that this is the case. Pharmacologic inhibitors of EZH2 are in 
clinical trials for diseases where PRC2/EZH2 hyperfunction is 
clearly linked to malignant transformation (such as lymphomas 
with activating EZH2 mutations or INI1-negative solid tumors). 
EZH2 inhibition is not currently investigated in clinical trials for 
AML or MLL-r leukemias.

Agents that Counteract Antiapoptotic 

Mechanisms
As previously mentioned, MLL-r leukemias have been reported 
to be resistant to programmed cell death (86–89). Leukemias 
with t(4,11) translocations (MLL-AF4) tend to have elevated lev-
els of prosurvival BCL-2 protein, which counteracts the intrinsic 
mitochondria-mediated apoptotic pathway (89). In vitro cyto-
toxicity studies of the pan-BCL-2 family inhibitor obatoclax 
demonstrated e�cacy of this agent against a panel of MLL-r 
infant leukemias as well as MLL-r cell lines (165, 226); obatoclax 
also synergized with multiple standard chemotherapeutic agents 
(226). Recent work has suggested that t(4,11) leukemias tend to 
have highest expression of BCL-2 of multiple classes of acute 
leukemias and that the MLL-AF4 protein upregulates BCL-2 
expression via DOT1L-mediated H3K79 methylation (92). 
�e selective BCL-2 inhibitor, ABT199 (venetoclax), which has 
shown promise in clinical trials against chronic lymphocytic 
leukemia and other hematopoietic malignancies (227–229), was 
e�ective both in vitro and in xenogra� models against MLL-r 
leukemias in combination with cytotoxic chemotherapies and 
with a DOT1L inhibitor. Further work in xenogra� models 
con�rms not only the enhanced sensitivity of MLL-r leukemias 
to BCL-2 inhibition compared to other subgroups of ALL but 
also the enhanced e�cacy of combined inhibition of BCL-2 and 
BCL-XL (230). �ese data suggest yet another class of targeted 
agents that may prove useful adjuncts to therapy in MLL-r 
leukemias.

Cell Cycle Checkpoint Inhibitors
Recent studies have identi�ed cyclin-dependent kinase 6 
(CDK6) as a target gene of MLL fusion proteins (231). CDK6 

binds to D cyclins and promotes cell cycle progression through 
phosphorylation and inhibition of target genes such as RB1. 
MLL-r leukemias seem to be dependent on CDK6, but not on 
CDK4, for growth and proliferation (231, 232). �is dependence 
on CDK6 was not seen in non-MLL-r leukemias. Furthermore, 
treatment of either MLL-r cell lines or primary patient AML cells 
with the CDK6 inhibitor palbociclib (PD0332991) led to both 
growth inhibition, decreased colony formation, and a di�erenti-
ated phenotype (232). �ird-generation transplant recipient 
mice given palbociclib-treated MLL-AF9 cells had decreased 
disease burden and prolonged survival compared to mice given 
MLL-AF9 control cells. �ese preclinical data suggest that CDK6 
is a potential target for MLL-r leukemias; accordingly, there is 
an active phase Ib/IIa clinical trial out of the University of Ulm 
(NCT02310243) of palbociclib as monotherapy for adults with 
MLL-r leukemias.

Menin Inhibitors
As mentioned earlier, the protein Menin interacts with the 
N-terminal portion of the MLL1 protein and has been shown to be 
essential for MLL fusion protein leukemogenesis [(6–9); see also 
Figure 2]. Menin also interacts with wild-type MLL1, and studies 
in mice have shown that genetic deletion of Menin a�ects long-
term hematopoietic stem cell potential and B-lineage lymphoid 
progenitors (233). �e therapeutic window of Menin inhibition 
for MLL-r leukemias is therefore uncertain. Nonetheless, several 
groups have developed small molecule inhibitors that disrupt the 
interaction between MLL1 and Menin and have shown in vitro 
and in  vivo impairment of leukemia growth and proliferation, 
irrespective of the MLL fusion partner (234–237). As these 
studies were all short-term experiments with murine models of 
MLL-r leukemias, longer-term preclinical models will be essen-
tial studies to perform before development of clinical trials with 
these agents.

Dinaciclib
Due to the association of common MLL fusion partners in the 
SEC with pTEFb, the role of speci�c pTEFb inhibitors has also 
been examined as potentially useful in targeting MLL-r leukemias 
(Figure 2). �e e�cacy of the CDK9 inhibitor (part of the pTEFb 
complex) Flavopiridol on MLL-r leukemia cells has long been 
recognized (46). Dinaciclib, which inhibits the CDK9 component 
of pTEFb, showed e�cacy in preclinical models both in vitro and 
in vivo, inducing apoptotic cell death in MLL-r leukemia models 
and inhibition of MLL target genes (165, 238). No toxicity data 
were reported in these studies, so it remains to be seen whether 
this inhibitor will demonstrate appropriate speci�city for MLL 
target genes without causing inordinate toxicity due to global 
repression of RNA polymerase II.

FINAL THOUGHTS

MLL translocations lead to aberrant expression of stem cell 
genetic programs in hematopoietic cells, which leads to a par-
ticularly aggressive subtype of leukemias in children and adults. 
Outcomes with conventional chemotherapy remain suboptimal 
to dismal, and hematopoietic stem cell transplantation has 
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not proven to be bene�cial except in the most high-risk infant 
patients. Despite extensive resources and manpower devoted to 
a better understanding of MLL fusion biology, we still possess an 
inadequate understanding of the pathophysiology of this disease. 
Accompanying the ever increasing number of fusion partners 
identi�ed is the ever widening circle of epigenetic regulators 
thought to be involved in genetic dysregulation upon expression 
of MLL translocations. However, in the era of targeted therapies, 
we may �nally be at the cusp of discovering combinations of 
therapeutic agents that can improve the outcomes for these 
patients.
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