
MLP Aware Heterogeneous Memory System
Sujay Phadke and Satish Narayanasamy

University of Michigan, Ann Arbor
{sphadke,nsatish}@umich.edu

Abstract—Main memory plays a critical role in a computer
system’s performance and energy efficiency. Three key pa-
rameters define a main memory system’s efficiency: latency,
bandwidth, and power. Current memory systems tries to balance
all these three parameters to achieve reasonable efficiency for
most programs. However, in a multi-core system, applications
with various memory demands are simultaneously executed.

This paper proposes a heterogeneous main memory with three
different memory modules, where each module is heavily opti-
mized for one the three parameters at the cost of compromising
the other two. Based on the memory access characteristics of an
application, the operating system allocates its pages in a memory
module that satisfies its memory requirements. When compared
to a homogeneous memory system, we demonstrate through
cycle-accurate simulations that our design results in about 13.5%
increase in system performance and a 20% improvement in
memory power.

I. INTRODUCTION

Off-chip main memory plays a critical role in determining
the performance and power of a computer system. There are
three main attributes that determine the efficiency an off-
chip memory: latency (L), bandwidth (B), and power (P).
Memory chip designers often need to make trade-offs between
these parameters. For instance, Reduced Latency DRAM (RL-
DRAM) [6] can operate at a latency of about 25ns but offers
only about 4 GB/s bandwidth. While DDR3-2133 chip [5] can
offer nearly 18 GB/s, it operates at a much higher latency of
about 45ns. It may be possible to operate a DRAM chip at
a lower voltage to reduce power, but that comes at the cost of
increased latency and reduced bandwidth.

Currently, memory system designers try to balance across
the three parameters for the main memory design. However,
a general purpose multi-core system would be simultaneously
running a diverse set of applications with different memory
requirements. Some applications are bandwidth-bounded (e.g.
graphics) and some others are latency-bounded (e.g. pointer-
intensive applications). There are applications for which main
memory system’s performance does not matter (e.g. com-
putationally intensive applications with high data locality).
For such applications a power-efficient main memory would
be a better option. The diversity of applications’ memory
demand in a system is only likely to increase in future as
processors like AMD’s Fusion [1] start to integrate specialized
and domain specific cores into a multi-core processor.

In this paper, we present for the first time, a heterogeneous
main memory for future multi-core systems. It consists of three
memory modules. Each module is optimized for one of the
above mentioned three parameters at the cost of sacrificing
the other two.

To take advantage of our heterogeneous memory, we pro-
pose an offline profiling algorithm that classifies an application
into one of the three types (L,B, P) based on its memory
demand. Level-2 (L2) cache miss rate and Memory Level
Parallelism (MLP) [10] are two key characteristics of an
application that define its main memory demand. MLP is the
ability to generate and service multiple outstanding L2 misses
in parallel. When a memory operation results in a cache miss,
modern out-of-order processors have the ability to execute
later memory operations which exposes MLP [16]. If a later
memory operation also incurs a cache miss, its latency can be
hidden by servicing it in parallel with the earlier cache miss.
Hence, performance of an application with high MLP tend to
be insensitive to memory latency. Two applications with the
same cache miss rate need not have similar degree of MLP,
because MLP is more dependent on how clustered the cache
misses are during an execution and whether a memory access
is dependent on preceding memory accesses or not.

In general, scientific and graphics applications with data-
level parallelism exhibit high MLP (hence, latency insensitive)
and high L2 miss-rate, and therefore can benefit from a
bandwidth optimized memory. Applications that heavily use
pointer-based data structures tend to have low MLP and also
incur significant L2 misses, and therefore can benefit from a
low latency memory. Applications with low L2 miss-rate and
high MLP do not require a high performance memory, and
therefore can benefit from a low power memory.

Based on the above observations, we propose an offline
algorithm that classifies an application into any one of the three
types by profiling its L2 miss rate and MLP characteristics. We
also propose a page allocation policy for an operating system
which uses our profiler’s classification to allocate pages of an
application to the appropriate memory module at runtime.

We use M5 [8], an execution driven multi-core simulator,
to model 4, 8 and 16 core processor configurations. We use
DRAMSim [20] to model performance and power character-
istics of our memory designs in detail. For each processor
configuration, we evaluate nearly 120 workloads constructed
from a set of SPEC CPU2006 benchmarks [7]. On average, our
heterogeneous memory system improves system performance
by 13.5% and improves memory system’s power consumption
by 20% for a 4-core system.

II. MOTIVATION

Applications vary widely in terms of their main memory
demands. Fig. 1 presents a case study to illustrate this obser-
vation. For a processor with one core (configuration shown

978-3-9810801-7-9/DATE11/ c© 2011 EDAA

-10

-5

0

5

10

15

20

%
 sp

ee
du

p
astar milc perlbench

low power

low latency high bandwidth

-30

-20

-10

0

10

20

30

%
im

pr
ov

em
en

t in
 po

we
r

astar milc perlbench

low latency

low power

high bandwidth

Fig. 1. Performance and power of memory devices optimized either for latency, bandwidth or power, when compared to DDR3.
in Table II), we study three benchmarks with diverse memory
demands. astar is sensitive to latency, milc is sensitive to
bandwidth, and perlbench has high locality and only rarely
accesses memory. We consider three different types of memory
modules optimized for either latency (ML), bandwidth (MB)
or power (MP)), at the cost of sacrificing some efficiency of
the other two parameters. The detailed configurations for these
three devices are discussed in Section IV (Table I). We evaluate
their performance and power with respect to a commonly used
DDR3-1600 memory, which we consider as our baseline.

As shown in Figure 1, a latency optimized memory im-
proves astar’s performance by 18.5% for only about 1%
power cost. But it is ill-suited for the other two applications.
For milc, it improves performance only by about 5% for
a significant power cost of 14%. The reason is that milc
is bandwidth bounded and less sensitive to memory latency.
Low power memory significantly reduces power by 20%
for perlbench while incurring only 1% performance cost,
because perlbench rarely accesses memory. However, low
power memory is not suitable for milc as it suffers 8% per-
formance penalty. Bandwidth bounded milc’s performance
could be improved by nearly 17% using bandwidth optimized
device. Though it comes at a power cost, the net energy-delay
product is still better than baseline. But performance of the
other two applications does not improve significantly while
using bandwidth optimized memory.

Thus, if a multi-core system executes a mixture of the above
three types of programs, then it would be beneficial to employ
a memory device that contains three different memory modules
where each one is heavily optimized for one of the three
parameters.

III. DESIGN TRADEOFFS IN DRAM ARCHITECTURE

In this section we describe the baseline DRAM architecture
and the trade-offs involved in its design.

DIMMs, Channels and Memory Controller: The main
memory consists of a number of modules called DIMMs
(dual in-line memory module) [11]. The DIMM modules are
connected to the system bus (or a channel) which in turn
connects them to a memory controller. A memory controller
queues up memory requests from processor cores, arbitrates,
sends control signals to DRAM, gets the data and sends it to
the requested processor core. Modern processors have multiple
integrated memory controllers servicing multiple channels. In
this paper, all of our memory designs assume a single channel
connected to three modules.

Ranks and Chips: A DIMM contains multiple ranks. A
rank is composed of multiple chips. Each ×N chip has pins
to support read/write of N bits in a cycle. For a 64-bit data bus

and ×8 chip, each rank needs 8 DRAM chips. A cache line is
usually striped across chips so that its parts can be accessed
in parallel.

Banks: Each chip is divided into banks. Contents of a
single logical bank span across multiple chips and they can be
accessed in parallel. Higher number of banks can service more
memory requests in parallel, thereby providing higher memory
bandwidth. However, higher number of banks also require
more complex control logic and area [11] leading to higher
bank access latency, and therefore could adversely impact the
performance of a latency sensitive application that generates
fewer parallel memory requests.

Arrays and Row Buffers: Within each bank, data is
arranged in an array like fashion, with rows and columns.
The DRAM row buffer and latches the data in the entire row
when any part of it is accessed. A DRAM row is typically
much larger than a single memory request. If a memory read
accesses an already open row, it would experience smaller
memory array read latency. Row buffer hit rates are higher for
application with a higher spatial locality. In general, bandwidth
bounded applications with regular memory access patterns
tend to have a higher spatial locality, and therefore benefit from
larger rows. Latency bounded applications with less regular
memory access behavior, however, tend to exhibit poor spatial
locality and therefore do not benefit from a large row buffer. In
fact, for a latency sensitive application, a smaller row buffer
would be beneficial as it would take lesser time to drive a
smaller row. For a given DRAM array size, smaller rows may
require longer column bit lines, but in most memory devices,
benefits of reducing the row access time (RAS) generally
outweighs relatively small increase in column access time
(CAS). Thus, for bandwidth sensitive applications a larger
row is beneficial, whereas for latency sensitive applications
a smaller row is beneficial.

Prefetch buffer: The prefetch buffer in DDR SDRAMs is
part of the chip architecture, and acts as the interface between
the array and the DRAM interface. It can fetch multiple
data words in a burst without the need for additional column
address signals. A prefetch buffer with a depth x allows the
interface I/O clock to operate x times faster than the memory
array clock. DDR3, which we assume for all our designs in
this paper, can support a buffer of maximum depth eight. But
it can also support a smaller buffer depth that reduces latency
but sacrifices memory bandwidth.

IV. DESIGN OF HETEROGENEOUS MEMORY SYSTEM

In this section, we present the design of a heterogeneous
memory system to achieve performance and power improve-
ments over the baseline homogeneous memory system.

M

MB

M

DDR3‐1600
(baseline)

DDR3‐1066DDR2‐800

DDR2 667
6

8

10

12

14

16

18

20
Ba

nd
w
id
th
 (G

B/
s)

ML

MB

MP

LPDRAM

RLDRAM

DDR3‐1600
(baseline)

DDR3‐1066DDR2‐800

DDR2‐667

DDR2‐533

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90

Ba
nd

w
id
th
 (G

B/
s)

Latency (ns)

Fig. 2. Memory design space showing latency and bandwidth for different
memory types. The size of the bubble corresponds to the average power.

TABLE I
HETEROGENEOUS MEMORY MODULES DESIGN SPACE

banks Rowsize Addr. Pre- Voltage Latency B/W Power
per (bytes/ mode fetch (V) (ns) (GB/s) (est.)

module row) buffer
ML 4 32 SRAM 2n 1.8 8 3.6 V. High
MB 16 512 DRAM 8n 1.65 80 17.5 V. High
MP 2 64 DRAM 1n 1.5-1.3 55 5.5 Low
DDR3-1600 8 256 DRAM 8n 1.5-1.3 50 12.8 High
DDR3-1066 8 256 DRAM 8n 1.5 60 8.5 High
DDR2-800 4 128 DRAM 4n 1.8 30 6.4 Med
DDR2-667 4 128 DRAM 4n 1.8 30 5.3 Med
DDR2-533 4 128 DRAM 4n 1.8 28 4.2 Med
ESDRAM 4 512 DRAM 2n 3.3 11 1.6 Med
166 [22]
LPDRAM 4 256 DRAM 2n 1.5 45 4.5 Low
RLDRAM 8 64 SRAM 1.5 20 3.6 High
800
FCRAM 4 128 DRAM 1.8 25 3.46 Low
200

PCM [15] 4 256 - 1.2 R: 50-100;
W: 1000

0.1 V. Low

A. Memory Design Choices

The spectrum of design characteristics (latency, bandwidth
and power) for several known implementations is shown in
Fig. 2 and their detailed characteristics are presented in Table I.
Sources for this data for some designs are provided in the
table. The rest were obtained from the Micron data sheets [2].
Since different manufacturers quote different timings for the
same DRAM (due to manufacturing methods, etc.), we provide
an average value for the observed access latency. Power
depends on activity which we derived using the Micron’s
power calculator [5]. Characteristics of three of our designs
(ML, MP , MB) were estimated using our simulation models
which are discussed in Section VI-A.

As shown in Fig. 2 memory system architects balance
the trade-off between three parameters. For example, DDR3–
1600 has a high bandwidth, but comes at the cost of high
latency and power. RLDRAM optimizes latency and is used
in high speed network packet processing. However, the peak
bandwidth of RLDRAM is much lower than the DDR3 family.
LPDRAM [4] is optimized for power to support mobile
applications at the cost of higher latency (compared to DDR2)
and lower bandwidth (compared to DDR3). In short, there
is no single homogeneous memory which can provide best
possible latency, power and bandwidth.

B. Heterogeneous Architecture Overview

As described in the previous section, there are many differ-
ent design points which we can use to build a heterogeneous
memory. In this paper we discuss one simple heterogeneous
main memory design. Our design is composed of three
memory modules where each of them is either optimized
for latency, bandwidth or power. We start with the DDR3-

Pages:

baseline heterogeneous

Low-power

Low-latency

High
bandwidth

Bandwidth Sensitive

Latency Sensitive

Power Saving

DIMMs

Processor
Core

Memory
controller

Channel

System

bus

DD
R3

DD
R3

DD
R3

Fig. 3. Page Allocation in baseline homogeneous memory versus heteroge-
neous memory

1600 design and optimize its structures for any one of the
three parameters. For simplicity, our architecture assumes a
single channel connecting three memory modules to an on-
chip memory controller. Also, it uses the industry standard
DDR3 interface as the interface of choice for all three types
of memories. The interface can support varied latency modules
and offers high bandwidth [3].

Fig. 3 illustrates the difference between a homogeneous and
a heterogeneous memory architecture. In our heterogeneous
memory, based on the demand of an application, its pages
would be stored in the appropriate memory module (Figure 3).
For bandwidth sensitive applications, in addition to improved
device efficiency, it is also important to exploit bank-level
parallelism to issue simultaneous read/write commands to
different banks in a pipelined fashion and achieve higher
bandwidth. Therefore, we allocate pages of a bandwidth
sensitive application across all the banks in all the memory
modules. A profiling algorithm to classify applications and
a heterogeneous memory aware page allocation policy are
described in Section V. The rest of this section describes the
three different memory modules used in our heterogeneous
memory.

1) Latency Optimized Memory Module (ML): DRAM la-
tency is the time required to fetch data from the memory
array and send it to the requesting CPU core. As described
in Section III, smaller row buffers could reduce the worst
case memory latency. While smaller rows could degrade the
performance of bandwidth bounded applications with higher
spatial locality, it could improve the performance for many
latency-sensitive applications with poor spatial locality. For
our latency optimized memory module, we study DRAM
module with relatively smaller rows (32 bytes/row).

Smaller prefetch buffer depth could reduce I/O buffer la-
tency due to lesser logic overhead and circuit area. The tradeoff
is the reduced memory bandwidth. We use a prefetch buffer
of depth 2n.

When compared to DRAM addressing mode, an SRAM
addressing mode (implemented in RLDRAM [6]) reduces
memory latency. In traditional DRAM devices, the address
is supplied in two consecutive clock cycles (command and
bank address in the first clock cycle, remaining address in the
second clock cycle). This provides the advantage of reducing
the number of pins required on the controller side by half. In
SRAM addressing, the entire address is provided in one clock
cycle which reduces latency. However, power consumption

could be higher and pin bandwidth could be lower.
2) Bandwidth Optimized Memory Module (MB): Band-

width refers to the rate at which data can be transferred to
or from memory over a period of time. As we described
in Section IV-B, we allocate pages of a bandwidth sensitive
application across the banks in all the modules to harness the
benefit of bank-level parallelism. With bank-level parallelism,
it is possible to issue simultaneous read/write commands to
different banks in a pipelined fashion and achieve higher band-
width. To further improve bandwidth, we employ a bandwidth-
optimized module with relatively a large number of banks (16
banks in a module) and a large row buffer size (512 bytes/row).
It uses DRAM multiplexed addressing scheme (instead of
SRAM scheme) to improve effective pin bandwidth. We set
the prefetch buffer depth to be 8n which is the maximum
supported by the DDR3 interface. All these design choices
could lead to higher latency and power, but provide higher
bandwidth.

3) Power Optimized Memory Module (MP): We employ
two techniques used in Micron’s LPDRAM to reduce refresh
power [4]. One is called Partial Array Self Refresh (PASR)
where a memory controller selects a portion of memory to
refresh. Another is called Temperature Compensated Self Re-
fresh (TCSR) where an on-chip temperature sensor adapts the
refresh interval based on the device temperature. In addition,
we consider four key design choices to arrive at a low power
design. First, we use a small number of banks (two banks per
module). Second, we use small row size (32 bytes per row).
We choose the smallest possible prefetch buffer size (1n) and
restrict it to perform only one read/write per cycle. Finally,
operation voltage is selected to be the minimum possible
(1.5V). All these design choices reduce power but increases
memory latency and reduces bandwidth.

V. PROFILING AND OPERATING SYSTEM SUPPORT

We propose an efficient page allocation policy(V-B) using
which an operating system can allocate pages of an applica-
tion to an appropriate memory module without significantly
increasing the page fault rate.

A. Classifying Applications

An application’s type could be determined either at compile-
time using profiling or at runtime. We employ offline profiling,
but the mechanisms that we discuss can be adapted to engineer
a dynamic profiler using processor’s performance counters. In
our study, we used execution-driven simulations to profile the
memory access behavior of applications.

Our offline algorithm classifies applications based on its
memory demand which is determined by profiling its L2 miss-
rate and Memory Level Parallelism (MLP). MLP is a measure
of how well we can hide the latency penalty of consecutive
long latency loads. To measure the MLP of an application, we
profile the average number of cycles a memory read instruction
is stalled at the head of the re-order buffer (ROB) due to an
L2 miss [16]. Higher this stall time, lower the MLP for that
application.

Algorithm 1 describes our algorithm. If an application
has an L2 MPKI (Misses Per Kilo Instructions) higher than

Algorithm 1 Benchmark Classification Algorithm
for all benchmarks do

if (L2 MPKI ≥ thr1b) AND (ROB stall time ≤ thrmlp) then
Type B: optimize for bandwidth

else if (L2 MPKI ≥ thr1l) AND (ROB stall time ≥ thrmlp)
then
Type L: optimize for latency

else
Type P: optimize for power

end if
end for

thr1b = 10, thr1l = 0.5, thrmlp = 5

a threshold and high MLP, we classify that application as
bandwidth sensitive. If an application is not bandwidth in-
tensive, then we check if the application has L2 MPKI higher
than another threshold and whether it has low memory-level
parallelism (MLP). If an application is neither bandwidth nor
latency sensitive, then it is classified as a candidate for power
optimization.

B. Page Allocation and Page Fault Mechanism

The operating system (OS) selects physical pages to store
an application’s virtual page. We propose a slightly modified
LRU page replacement policy to ensure that an application’s
page is stored in a memory module that meets its demand
as much as possible. For type L and type P applications,
the pages should be mapped to their respective modules. For
type B workloads, its pages should be allocated across all
the modules in a round-robin fashion to maximize module-
and bank-level parallelism.

Our modified LRU (Least Recently Used) policy works as
follows. On encountering a page fault, the OS selects m least
recently used pages as potential candidates for replacement.
From these m pages, it picks the best victim based on whether
it is stored in a module that would benefit the new page’s
application’s memory demand. If none of the m pages are
stored in the required memory type, then the OS picks the
closest match. If a page in the latency optimized module is
not available among the m pages, we select a page in the
bandwidth optimized module. If a page in power optimized
module is not available, we try to find a page in the latency
optimized module first. If both of these attempts fail, then
the most LRU page is replaced, irrespective of its type. In our
study, we configured m to be 10. This page replacement policy
ensures that most pages are allocated on the desired memory
module while not significantly increasing the page fault rate
when compared to our baseline LRU policy.

VI. RESULTS

This section evaluates the performance and power benefits
of our heterogeneous memory architecture.

A. Experimental Setup

We use the M5 [8] execution-driven simulator for modeling
the performance of the multi-core processor and the system
bus. The detailed configuration is presented in Table II. The
simulator was augmented with DRAMSim [20] for detailed
DRAM timing. It models the DRAM system in detail for each
type of memory we studied, by keeping track of the internal

0
10
20
30
40
50
60
70

0
5
10
15
20
25
30
35

ROB stall time L2 MPKI L2 MPKIROB stall time

0
10
20
30
40
50
60
70

0
5
10
15
20
25
30
35

ROB stall time L2 MPKI L2 MPKIROB stall time

Fig. 4. Bar graph: Number of machine cycles spent stalling at head of the
ROB per L2 read miss. Line Graph: L2 MPKI

states of each DRAM rank, bank and channel. We model mem-
ory, bus and memory controller delays and contention as well
as ability to service multiple outstanding memory requests. We
use an open-page policy in the SDRAMs. Power modeling was
done by using activity factors from the simulation and feeding
them into the Micron DRAM power calculator [5]. To model
the power saving techniques used in MP , we scaled the worst-
case power figures in the DRAM calculator by the potential
savings that can be obtained.

TABLE II
SYSTEM CONFIGURATION

Execution core 1 GHz Alpha ISA out-of-order,
Dispatch/Issue/Commit width 8, 80 entry ROB, 32 entry
LSQ

On-chip caches 64KB split L1, 2-way, 2 cycles, 1 read/write port,
Unified L2 (2-8 MB), 8-way, 15 cycles, 1 read/write port,
64B line size, 12 MSHRs

Pre-fetcher distance of 64, tagged, degree of 2
Mem-core interface DDR3, 128-bit channel
Main Memory Baseline: Three 1GB DDR3-1600 modules

We used the SPEC CPU2006 V1.1 suite of benchmarks [7].
We evaluated 24 of the 31 benchmarks which includes all the
benchmarks that we could run on our simulator. We used the
available Simpoints [17] to select phases of the workloads.
After fast-forwarding to the relevant simpoint and warming
up for 1 million cycles, we simulated 100 million instructions
in detailed out-of-order mode for each core. For a multi-core,
multi-workload simulation, we simulated until every core has
executed at least 100 million instructions.

B. Benchmark Classification

Using the profiling algorithm described in Section V-A,
we classified benchmarks into 3 types as shown in Table III.
Figure 4 shows the L2 Misses-Per-Kilo-Instructions (MPKI)
and the average number of processor cycles that a memory
operation spends at the head of the ROB. Three benchmarks
(lbm, mcf and milc) are sensitive to bandwidth due to high L2
MPKI and high MLP (as seen from the low ROB stall time in
Fig. 4). Six applications (e.g. dealII) with high ROB stall
time and adequate L2 MPKI are classified as latency sensitive.
The rest are classified as candidates for power optimization.

TABLE III
BENCHMARKS CLASSIFICATION

Type Benchmarks
L (latency) dealII, gromacs, soplex,omnetpp, xalanbmk, astar
P (power) povray, leslie3d, perlbench,bzip2, zeusmp, libquantum,

h264ref, sjeng, sphinx3, tonto, hmmer, gobmk, bwaves
B (bandwidth) lbm, mcf, milc

5.00

10.00

15.00

20.00

mp
rov

em
en
t

‐5.00

0.00

5.00

10.00

15.00

20.00

% im
pro

vem
en
t

Fig. 5. Performance of heterogeneous memory system over DDR3 homoge-
neous memory for a 4-core system.

0 00

5.00

10.00

15.00

20.00

25.00

30.00

mp
rov

em
en
t

‐10.00

‐5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

%
im

pro
ve
me

nt

Fig. 6. Power improvements heterogeneous memory system over DDR3
homogeneous memory for a 4-core system.

C. Workload Mixes and System Setup

We evaluate for 4, 8 and 16 core configurations, each with
12 different workload types. A workload type is determined
by the number of Latency (L), Power (P) and Bandwidth (B)
applications in the workload. 1L4P4B stands for a workload
type with 1 latency sensitive benchmark, 4 power optimized
benchmarks and 4 bandwidth bounded benchmarks (deter-
mined in Section VI-B). For each workload type, we con-
sider 10 different workloads (mixture of different benchmarks
selected based on their type), thus yielding a total of 120
workloads for each of the three processor configuration.

We use weighted speedup to measure the performance of
a multicore system. W.Speedup =

∑
n

(
IPCi

shared

IPCi
alone

)
, where

IPCi
shared and IPCi

alone denote the IPC of the ith application
when running in a shared multi-core environment with others,
and running alone respectively.

D. Benefits of Heterogeneous Memory

Fig. 5 and Fig. 6 shows the improvement in weighted
speedup and power for a 4-core system using a heterogeneous
memory (ML, MP , MB) when compared to the DDR3-
1600 homogeneous memory. We show results for 12 different
workload types. For each workload type, we present the
average improvement observed for the 10 workload mixtures.

We observe improved efficiency for most workload types.
Maximum gains are observed for types with roughly equal
distribution among application types (last three on the right-
hand side) – 16% performance, 26% memory’s power. Our
worst case is when application mixture is heavily imbal-
anced (leftmost 3 workload types). Even so, the maximum
performance penalty noticed is only 3% (4P). We believe
such imbalance in workload mixture would be rare in most
user scenarios. On average our system improves performance
by 13.5%, memory’s power by 20.01% averaged across 120
different workloads for a 4-core configuration.

Fig. 7 shows results for 4, 8 and 16 cores (average over 120
workloads for each configuration). We find that heterogeneous
memory retains its advantages as the number of cores scale.

0

5

10

15

20

25

weighted speedup power

%
im

pr
ov

em
en

t
4 8 16

Fig. 7. Improvements in weighted speedup (WS) and memory power for 4,
8 and 16-core system due to Heterogeneous Memory.

We find on average performance improves by 14% (16-core)
and memory’s power reduces by 17% (16-core).

We measured the efficiency of our page allocation method
(Section V-B) for a 4-core system. For only about 1% increase
in page fault rate, our policy was able to allocate pages on the
required memory type for most pages. Only 2.35% memory
accesses were to a page that was allocated on a memory type
that was not optimal.

VII. RELATED WORK

To our knowledge, we are the first to make a case for
heterogeneity in memory modules to cater to the varying
memory demands of applications concurrently running on a
multi-core processor. Given the space limitation, here we touch
upon only a few closely related prior works.

Hybrid memory systems with a high performance DRAM
as the first level main memory and a secondary large low
power non-volatile memory has been proposed [12], [18] to
reduce the long latency in accessing disks. These earlier works
studied a hierarchical organization based on the latency of a
memory type. Whereas, our design goal is to employ memories
with different characteristics to meet diverse memory demand
across applications. As the performance of a non-volatile
memory scales to get closer to that of DRAM’s, it could serve
as one of the power optimized module in our heterogeneous
design.

Previous works like Mini-rank [21] describe techniques
that can improve bandwidth and power efficiency, but for
some latency cost. They do not consider the advantage of
heterogeneous memory modules, but their technique could be
one of the ways to heavily optimize a memory module for one
parameter (bandwidth) at cost of sacrificing the other (latency).
Several prior works proposed techniques to optimize DRAM
energy [19] and power [14]. All these ideas are complementary
to ours as these techniques can be used to further improve the
efficiency of modules in a heterogeneous memory.

Microarchitecture designs to expose and exploit MLP to
reduce the impact of memory [16] and network latency [9]
on an application’s performance have been proposed. While
the advantages of heterogeneous cores on a chip have been
studied earlier [13], our work makes a case for heterogeneous
main memory.

VIII. CONCLUSIONS

Most computer systems already use multi-core processors.
This paper demonstrates that different applications that could
run simultaneously on multi-core systems have varied needs
from the main memory system. We proposed a heterogeneous

memory system to provide better latency and bandwidth based
on an application’s memory demand. We also discussed a
profiling method to classify applications, and a page allocation
policy that can take advantage of a heterogeneous memory.
Through cycle accurate simulations, we demonstrated signif-
icant performance and power benefits of our heterogeneous
memory.

ACKNOWLEDGMENT

We thank Felix Loh and Chaz Whiting for their help
with the simulation infrastructure. We thank Reetuparna Das
and the anonymous reviewers for providing their valuable
feedback.

REFERENCES

[1] AMD Fusion
TM

Family of APUs: Enabling a Superior, Immersive
PC Experience. http://sites.amd.com/us/Documents/48423B fusion
whitepaper WEB.pdd.

[2] DDR3 SDRAM Part Catalog. http://www.micron.com/partscatalog.
html?categoryPath=products/parametric/dram/ddr3 sdram.

[3] External Memory Interface Handbook Volume 3. http://www.altera.com/
literature/hb/external-memory/emi ddr3up ug.pdf.

[4] Low-power versus standard ddr sdram. http://download.micron.com/pdf/
technotes/DDR/tn4615.pdf.

[5] The micron system-power calculator. http://www.micron.com/support/
dram/power calc.html.

[6] Reduced latency dram (rldram). http://www.micron.com/products/
ProductDetails.html?product=products/dram/MT49H16M16FM-33.

[7] SPEC CPU2006. http://www.spec.org/cpu2006.
[8] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and

S. K. Reinhardt. The m5 simulator: Modeling networked systems. IEEE
Micro, 26(4):52–60, 2006.

[9] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das. Application-aware
prioritization mechanisms for on-chip networks. In MICRO, pages 280–
291, 2009.

[10] A. Glew. MLP yes! ILP no! In Wild and Crazy Idea Session, ASPLOS,
1998.

[11] B. Jacob, S. Ng, and D. Wang. Memory systems: Cache, dram, disk.
In Elsevier, 2008.

[12] T. Kgil, D. Roberts, and T. Mudge. Improving nand flash based
disk caches. In Proceedings of the 35th International Symposium on
Computer Architecture, pages 327–338, 2008.

[13] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen. Single-isa heterogeneous multi-core architectures: The potential
for processor power reduction. In MICRO, pages 81–92, 2003.

[14] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power aware page
allocation. In Ninth Int’l Conf. on Arch. Support for Programming
Languages and Operating Systems, pages 105–116, 2000.

[15] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change
memory as a scalable dram alternative. In Proceedings of the 36th
International Symposium on Computer Architecture, 2009.

[16] O. Mutlu, H. Kim, and Y. N. Patt. Efficient runahead execution: Power-
efficient memory latency tolerance. IEEE Micro, 26(1):10–20, 2006.

[17] A. Nair and L. John. Simulation points for spec cpu 2006. In
Proceedings of the 26th International Conference on Computer Design,
ICCD, pages 397–403, 2008.

[18] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high perfor-
mance main memory system using phase-change memory technology.
In ISCA, pages 24–33, 2009.

[19] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. P. Jouppi. Rethinking dram design and organization
for energy-constrained multi-cores. In ISCA ’10, pages 175–186, 2010.

[20] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and
B. Jacob. Dramsim: A memory-system simulator. SIGARCH Computer
Architecture News, 33(4):100–107, 2005.

[21] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu.
Mini-rank: Adaptive dram architecture for improving memory power
efficiency. In Proceedings of the 2008 41st IEEE/ACM International
Symposium on Microarchitecture, pages 210–221, 2008.

[22] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu. Decoupled dimm: Building
high-bandwidth memory system using low-speed dram devices. In Int’l
Symp. on Computer Arch., June 2009.

