
Eur. Phys. J. C (2021) 81:381

https://doi.org/10.1140/epjc/s10052-021-09158-w

Regular Article - Experimental Physics

MLPF: efficient machine-learned particle-flow reconstruction

using graph neural networks

Joosep Pata1,2,a, Javier Duarte3,b, Jean-Roch Vlimant2,c, Maurizio Pierini4,d, Maria Spiropulu2,e

1 National Institute of Chemical Physics and Biophysics (NICPB), Rävala pst 10, 10143 Tallinn, Estonia
2 California Institute of Technology, Pasadena, CA 91125, USA
3 University of California San Diego, La Jolla, CA 92093, USA
4 European Center for Nuclear Research (CERN), 1211 Geneva 23, Switzerland

Received: 5 February 2021 / Accepted: 19 April 2021 / Published online: 2 May 2021

© The Author(s) 2021

Abstract In general-purpose particle detectors, the particle-

flow algorithm may be used to reconstruct a comprehensive

particle-level view of the event by combining information

from the calorimeters and the trackers, significantly improv-

ing the detector resolution for jets and the missing trans-

verse momentum. In view of the planned high-luminosity

upgrade of the CERN Large Hadron Collider (LHC), it

is necessary to revisit existing reconstruction algorithms

and ensure that both the physics and computational perfor-

mance are sufficient in an environment with many simul-

taneous proton–proton interactions (pileup). Machine learn-

ing may offer a prospect for computationally efficient event

reconstruction that is well-suited to heterogeneous comput-

ing platforms, while significantly improving the reconstruc-

tion quality over rule-based algorithms for granular detec-

tors. We introduce MLPF, a novel, end-to-end trainable,

machine-learned particle-flow algorithm based on paralleliz-

able, computationally efficient, and scalable graph neural

network optimized using a multi-task objective on simu-

lated events. We report the physics and computational per-

formance of the MLPF algorithm on a Monte Carlo dataset

of top quark–antiquark pairs produced in proton–proton col-

lisions in conditions similar to those expected for the high-

luminosity LHC. The MLPF algorithm improves the physics

response with respect to a rule-based benchmark algo-

rithm and demonstrates computationally scalable particle-

flow reconstruction in a high-pileup environment.
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1 Introduction

Reconstruction algorithms at general-purpose high-energy

particle detectors aim to provide a holistic, well-calibrated

physics interpretation of the collision event. Variants of

the particle-flow (PF) algorithm have been used at the

CELLO [1], ALEPH [2], H1 [3], ZEUS [4,5], DELPHI [6],

CDF [7–9], D0 [10], CMS [11] and ATLAS [12] experi-

ments to reconstruct a particle-level interpretation of high-

multiplicity hadron collision events, given individual detec-

tor elements such as tracks and calorimeter clusters from

a multi-layered, heterogeneous, irregular-geometry detector.

The PF algorithm generally correlates tracks and calorime-

ter clusters from detector layers such as the electromagnetic

calorimeter (ECAL), hadron calorimeter (HCAL) and oth-

ers to reconstruct charged and neutral hadron candidates as

well as photons, electrons, and muons with an optimized effi-

ciency and resolution. Existing PF reconstruction implemen-

tations are tuned using simulation for each specific experi-

ment because detailed detector characteristics and geometry

are critical for the best possible physics performance.

Recently, there has been significant interest in adapting

the PF reconstruction approach for future high-luminosity

experimental conditions at the CERN Large Hadron Collider

(LHC) [13], as well as for proposed future collider experi-

ments such as the Future Circular Collider (FCC) [14,15]. PF

reconstruction is also a key driver in the detector design for

future lepton colliders [16–18]. While reconstruction algo-

rithms are often based on an imperative, rule-based approach,

the use of supervised machine learning (ML) to define recon-

struction parametrically based on data and simulation sam-

ples may improve the physics reach of the experiments by

allowing a more detailed reconstruction to be deployed given

a fixed computing budget. Reconstruction algorithms based

on ML may be well-suited to irregular, high-granularity
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detector geometries and for novel signal models, where it

may not be feasible to encode the necessary granularity in the

ruleset. A fully probabilistic particle-level interpretation of

the event from an ML-based reconstruction may also improve

the physics performance of downstream algorithms such as

jet tagging with more granular inputs. At the same time, ML-

solutions for computationally intensive problems may offer

a modern computing solution that may scale better with the

expected progress on ML-specific computing infrastructures,

e.g., at high-performance computing centers.

ML-based reconstruction approaches using GNNs [19–

23] have been proposed for various tasks in particle physics [24],

including tracking [25–29], jet finding [30–32] and tag-

ging [33–36], calorimeter reconstruction [37], pileup miti-

gation [38], and PF reconstruction [39–41]. The clustering

of energy deposits in detectors with a realistic, irregular-

geometry detector using GNNs has been first proposed in

Ref. [37]. The ML-based reconstruction of overlapping sig-

nals without a regular grid was further developed in Ref. [39],

where an optimization scheme for reconstructing a variable

number of particles based on a potential function using an

object condensation approach was proposed. The clustering

of energy deposits from particle decays with potential over-

laps is an essential input to PF reconstruction. In Ref. [40],

various ML models including GNNs and computer-vision

models have been studied for reconstructing neutral hadrons

from multi-layered granular calorimeter images and track-

ing information. In particle gun samples, the ML-based

approaches achieved a significant improvement in neutral

hadron energy resolution over the default algorithm, which

is an important step towards a fully parametric, simulation-

driven reconstruction using ML.

In this paper, we build on the previous ML-based recon-

struction approaches by extending the ML-based PF algo-

rithm to reconstruct particle candidates in events with a large

number of simultaneous pileup (PU) collisions. In Sect. 2,

we propose a benchmark dataset that has the main compo-

nents for a particle-level reconstruction of charged and neu-

tral hadrons with PU. In Sect. 3, we propose a GNN-based

machine-learned particle-flow (MLPF) algorithm where the

runtime scales approximately linearly with the input size.

Furthermore, in Sect. 4, we characterize the performance of

the MLPF model on the benchmark dataset in terms of hadron

reconstruction efficiency, fake rate and resolution, comparing

it to the baseline PF reconstruction, while also demonstrat-

ing using synthetic data that MLPF reconstruction can be

computationally efficient and scalable. Finally, in Sect. 5 we

discuss some potential issues and next steps for ML-based

PF reconstruction.

2 Physics simulation

We use pythia 8 [42,43] and delphes 3 [44] from the

HepSim software repository [45] to generate a particle-level

dataset of 50,000 top quark–antiquark (tt) events produced

in proton–proton collisions at 14 Te V, overlaid with mini-

mum bias events corresponding to a PU of 200 on average.

The tt dataset is used for training the MLPF model. We addi-

tionally generate 5000 events composed uniquely of jets pro-

duced through the strong interaction, referred to as quantum

chromodynamics (QCD) multijet events, with the same PU

conditions for validation to evaluate the model in a different

physics regime from the training dataset. The dataset consists

of detector hits as the input, generator particles as the ground

truth and reconstructed particles from delphes for additional

validation. The QCD sample uses a minimum invariant pT of

20 Ge V, otherwise, the same generator settings are used as

for the tt sample. The delphes model corresponds to a CMS-

like detector with a multi-layered charged particle tracker, an

electromagnetic and hadron calorimeter. The full pythia 8

and delphes data cards are available on Zenodo along with

the dataset [46].

Although this simplified simulation does not include

important physics effects such as pair production,

Brehmsstrahlung, nuclear interactions, electromagnetic show-

ering or a detailed detector simulation, it allows the study of

overall per-particle reconstruction properties for charged and

neutral hadrons in a high-PU environment. Different recon-

struction approaches can be developed and compared on

this simplified dataset, where the expected performance is

straightforward to assess, including from the aspect of com-

putational complexity.

The inputs to PF are charged particle tracks and calorime-

ter clusters. We use these high-level detector inputs (ele-

ments), rather than low-level tracker hits or unclustered

calorimeter hits to closely follow how PF is implemented in

existing reconstruction chains, where successive reconstruc-

tion steps are decoupled, such that each step can be optimized

and characterized individually. In this toy dataset, tracks are

characterized by transverse momentum (pT),1 charge, and

the pseudorapidity and azimuthal angle coordinates (η, φ),

including extrapolations to the tracker edge (ηouter, φouter).

The track η and φ coordinates are additionally smeared

with a 1% Gaussian resolution to model a finite tracker res-

olution. Calorimeter clusters are characterized by electro-

1 As common for collider physics, we use a Cartesian coordinate system

with the z axis oriented along the beam axis, the x axis on the horizontal

plane, and the y axis oriented upward. The x and y axes define the

transverse plane, while the z axis identifies the longitudinal direction.

The azimuthal angle φ is computed with respect to the x axis. The polar

angle θ is used to compute the pseudorapidity η = − log(tan(θ/2)). The

transverse momentum (pT) is the projection of the particle momentum

on the (x , y) plane. We fix units such that c = ℏ = 1.
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Fig. 1 A simulated tt event from the MLPF dataset with 200 PU inter-

actions. The input tracks are shown in gray, with the trajectory curvature

being defined by the inner and outer η, φ coordinates. Electromagnetic

(hadron) calorimeter clusters are shown in blue (orange), with the size

corresponding to cluster energy for visualization purposes. We also

show the locations of the generator particles (all types) with red cross

markers. The radii and thus the x, y-coordinates of the tracker, ECAL

and HCAL surfaces are arbitrary for visualization purposes

magnetic or hadron energy E and η, φ coordinates. In this

simulation, an event has N = (4.9 ± 0.3) × 103 detector

inputs on average.

The targets for PF reconstruction are stable generator-level

particles that are associated to at least one detector element,

as particles that leave no detector hits are generally not recon-

structable. Generator particles are characterized by a particle

identification (PID) which may take one of the following

categorical values: charged hadron, neutral hadron, photon,

electron, or muon. In case multiple generator particles all

deposit their energy completely to a single calorimeter clus-

ter, we treat them as reconstructable only in aggregate. In

this case, the generator particles are merged by adding the

momenta and assigning it the PID of the highest-energy sub-

particle. In addition, charged hadrons are indistinguishable

outside the tracker acceptance from neutral hadrons, there-

fore we label generated charged hadrons with |η| > 2.5 to

neutral hadrons. We also set a lower energy threshold on

reconstructable neutral hadrons to E > 9.0 Ge V based on

the delphes rule-based PF reconstruction, ignoring neutral

hadrons that do not pass this threshold. A single event from

the dataset is visualized in Fig. 1, demonstrating the input

multiplicity and particle distribution in the event. The dif-

ferential distributions of the generator-level particles in the

simulated dataset are shown in Fig. 2.

We also store the PF candidates reconstructed by delphes

for comparison purposes. The delphes rule-based PF algo-

rithm is described in detail in Ref. [44]. Charged and neutral

hadrons are identified based on track and hadron calorime-

Fig. 2 The pT (upper) and η (lower) distributions of the generator

particles in the simulated tt dataset with PU, split by particle type

ter cluster overlaps and energy subtraction. Photons are

identified based on electromagnetic calorimeter clusters not

matched to tracks. In addition, we note that electrons and

muons are identified by delphes based on the generator par-

ticle associated to the corresponding track, therefore, for elec-

tron and muon tracks we add the corresponding generator-

level identification as an input feature to the MLPF training to

demonstrate that given the appropriate detector inputs, these

less common particles can also be identified by the algorithm.

Each event is now fully characterized by the set of gen-

erator particles Y = {y j } (target vectors), the set of detector

inputs X = {xi } (input vectors), with

y j = [PID, pT, E, η, φ, q] , (1)

xi = [type, pT, EECAL, EHCAL, η, φ, ηouter, φouter, q] ,

(2)

PID ∈ {charged hadron, neutral hadron, γ, e±, µ±} (3)

type ∈ {track, cluster} . (4)
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For input tracks, only the type, pT, η, φ, ηouter, φouter, and q

features are filled. Similarly, for input clusters, only the type,

EECAL, EHCAL, η and φ entries are filled. Unfilled features

for both tracks and clusters are set to zero. In future iterations

of MLPF, it may be beneficial to represent input elements of

different types with separate data matrices to improve the

computational efficiency of the model. Precomputing addi-

tional features such as track trajectory intersection points

with the calorimeters may further improve the performance

of PF reconstruction based on machine learning.

Functionally, the detector is modelled in simulation by a

function S(Y ) = X that produces a set of detector signals

from the generator-level inputs for an event. Reconstruc-

tion imperfectly approximates the inverse of that function

R ≃ S−1(X) = Y . In the following section, we approximate

the reconstruction as set-to-set translation and implement a

baseline MLPF reconstruction using GNNs.

3 ML-based PF reconstruction

For a given set of detector inputs X , we want to predict a set

of particle candidates Y ′ that closely approximates the target

generator particle set Y . The target and predicted sets may

have a different number of elements, depending on the quality

of the prediction. For use in ML using gradient descent, this

requires a computationally efficient, differentiable set-to-set

metric ||Y − Y ′|| ∈ R to be used as the loss function.

We simplify the problem numerically by first zero-

padding the target set Y such that |Y | = |X |. This turns

the problem of predicting a variable number of particles into

a multi-classification prediction by adding an additional “no

particle” to the classes already defined by the target PID and

is based on Ref. [39]. Furthermore, for PF reconstruction, the

target generator particles are often geometrically and ener-

getically close to well-identifiable detector inputs. In physics

terms, a charged hadron is reconstructed based on a track,

while a neutral hadron candidate can always be associated to

at least one primary source cluster, with additional correc-

tions taken from other nearby detector inputs. Therefore, we

choose to preprocess the inputs such that for a given arbitrary

ordering of the detector inputs X = [. . . , xi , . . . ] (sets of vec-

tors are represented as matrices with some arbitrary order-

ing for ML training), the target set Y is arranged such that

if a target particle can be associated to a detector input, it is

arranged to be in the same location in the sequence. This data

preprocessing step speeds up model convergence, but does

not introduce any additional assumptions to the model. Since

the target set now has a predefined size, we may compute

the loss function which approximates reconstruction quality

element-by-element:

||Y − Y ′|| ≡
∑

j∈event

L(y j , y′
j ) , (5)

L(y j , y′
j ) ≡ CLS(c j , c′

j ) + αREG(p j , p′
j ) , (6)

where the target values and predictions y j = [c j ; p j ] are

decomposed such that the multi-classification is encapsu-

lated in the scores and one-hot encoded classes c j , while

the momentum and charge regression values in p j . We

use CLS to denote the multi-classification loss, while REG

denotes the regression loss for the momentum components

weighted appropriately by a coefficient α. This combined

per-particle loss function serves as a baseline optimization

target for the ML training. Further physics improvements

may be reached by extending the loss to take into account

event-level quantities, either by using an energy flow dis-

tance as proposed in Refs. [47–49], or using a particle-

based [50–53] generative adversarial network (GAN) [54]

to optimize the reconstruction network in tandem with an

adversarial classifier that is trained to distinguish between

the target and reconstructed events, given the detector

inputs.

3.1 Graph neural network implementation

Given the set of detector inputs for the event X = {xi }, we

adopt a message passing approach for reconstructing the PF

candidates Y = {y j }. First, we need to construct a train-

able graph adjacency matrix F(X |w) = A for the given

set of input elements, represented with the graph building

block in Fig. 3. The input set is heterogeneous, containing

elements of different type (tracks, ECAL clusters, HCAL

clusters) in different feature spaces. Therefore, defining a

static neighborhood graph in the feature space in advance is

not straightforward. A generic approach to learnable graph

construction using kNN in an embedding space, known as

GravNet, has been proposed in Ref. [37], where the authors

demonstrated that a learnable, dynamically-generated graph

structure significantly improves the physics performance of

an ML-based reconstruction algorithm for calorimeter clus-

tering. Similar dynamic graph approaches have also been

proposed in Ref. [23].

However, naive kNN graph implementations in com-

mon ML packages such as TensorFlow or Pytorch-

Geometric have O(n2) time complexity: for each set ele-

ment out of n = |X |, we must order the other n − 1 elements

by distance and pick the k closest. More efficient kNN graph

construction is possible with, for example, k-dimensional

trees [55], but so far, we are not aware of an implementa-

tion that interfaces with common, differentiable ML tools.

For reconstruction, given equivalent physics performance,

both computational efficiency (a low overall runtime) and
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Fig. 3 Functional overview of

the end-to-end trainable MLPF

setup with GNNs. The event is

represented as a set of detector

elements xi . The set is

transformed into a graph by the

graph building step, which is

implemented here using an

locality sensitive hashing (LSH)

approximation of kNN. The

graph nodes are then encoded

using a message passing step,

implemented using graph

convolutional nets. The encoded

elements are decoded to the

output feature vectors y j using

elementwise feedforward

networks

scalability (subquadratic time and memory scaling with the

input size) are desirable.

We build on the GravNet approach [37] by using an

approximate kNN graph construction algorithm based on

locality sensitive hashing (LSH) to improve the time com-

plexity of the graph building algorithm. The LSH approach

has been recently proposed [56] for approximating and thus

speeding up ML models that take into account element-to-

element relations using an optimizable n × n matrix known

as self-attention [57]. The method divides the input into bins

using a hash function, such that nearby elements are likely

to be assigned to the same bin. The bins contain only a small

number of elements, such that constructing a kNN graph in

the bin is significantly faster than for the full set of elements,

and thus not strongly affected by the quadratic scaling of the

kNN algorithm.

In the kNN+LSH approach, the n input elements xi are

projected into a dK -dimensional embedding space by a train-

able, elementwise feed-forward network FFN(xi |w) = zi ∈
R

dK . As in Ref. [56], we now assign each element into

one of dB bins indexed by integers bi using h(zi ) = bi ∈
[1, . . . , dB], where h(x) is a hash function that assigns nearby

x to the same bin with a high probability. We define the

hash function as h(x) = arg max[x P;−x P] where [u; v]
denotes the concatenation of two vectors u and v and P is a

random projection matrix of size [dK , dB/2] drawn from the

normal distribution at initialization.

We now build dB kNN graphs based on the embedded

elements zi in each of the LSH bins, such that the full sparse

graph adjacency Ai j in the inputs set X is defined by the sum

of the subgraphs. The embedding function can be optimized

with backpropagation and gradient descent using the values

of the nonzero elements of Ai j . Overall, this graph build-

ing approach has O(n log n) time complexity and does not

require the allocation of an n2 matrix at any point. The LSH

step generates dB disjoint subgraphs in the full event graph.

This is motivated by physics, as we expect subregions of the

detector to be reconstructable approximately independently.

The existing PF algorithm in the CMS detector employs a

similar approach by producing disjoint PF blocks as an inter-

mediate step of the algorithm [11].

Having built the graph dynamically, we now use a variant

of message passing [20,22,58,59] to create hidden encoded

states G(xi , Ai j |w) = hi of the input elements taking into

account the graph structure. As a first baseline, we use a

variant of graph convolutional network (GCN) that combines

local and global node-level information [60–62]. This choice

is motivated by implementation and evaluation efficiency in

establishing a baseline. This message passing step is repre-

sented in Fig. 3 by the GCN block. Finally, we decode the

encoded nodes H = {hi } to the target outputs with an ele-

mentwise feed-forward network that combines the hidden

state with the original input element D(xi , hi |w) = y′
i using

a skip connection.

We have a joint graph building, but separate graph convo-

lution and decoding layers for the multi-classification and the

momentum and charge regression subtasks. This allows each

subtask to be retrained separately in addition to a combined

end-to-end training should the need arise. The classification

and regression losses are combined with constant empirical

weights such that they have an approximately equal con-

tribution to the full training loss. We use categorical cross-
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Fig. 4 The MLPF reconstruction compared to the truth-level pT distri-

bution for the QCD validation sample and the tt sample used for training.

The differences between the MLPF and truth distributions are a mea-

sure of the prediction error. Charged hadrons, electrons, and muons are

identified based on tracks with no misidentification or loss of efficiency,

hence the prediction error is negligible for both samples. For neutral

hadrons and photons, the tail is reconstructed at a lower efficiency for

tt as compared to QCD, which could arise from overrepresentation of

low-pT particles in the unweighted tt training sample

entropy for the classification loss, which measures the simi-

larity between the true label distribution c j and the predicted

labels c′
j . For the regression loss, we use componentwise

mean-squared error between the true and predicted momenta,

where the losses for the individual momentum components

(pT, η, sin φ, cos φ, E) are scaled by normalization factors

such that the components have approximately equal contri-

butions to the total loss. It may be beneficial to use specific

multi-task training strategies such as gradient surgery [63]

to further improve the performance across all subtasks and

to reduce the reliance on ad-hoc scale factors between the

losses in a multi-task setup.

The multi-classification prediction outputs for each node

are converted to particle probabilities with the softmax oper-

ation. We choose the PID with the highest probability for

the reconstructed particle candidate, while ensuring that the

probability meets a threshold that matches a fake rate work-

ing point defined by the baseline delphesPF reconstruction

algorithm.

The predicted graph structure is an intermediate step in

the model and is not used in the loss function explicitly – we

only optimize the model with respect to reconstruction qual-

ity. However, using the graph structure in the loss function

when a known ground truth is available may further improve

the optimization process. In addition, access to the predicted

graph structure may be helpful in evaluating the interpretabil-

ity of the model.

The set of networks for graph building, message passing

and decoding has been implemented with TensorFlow 2.3

and can be trained end-to-end using gradient descent. The

inputs are zero-padded to n = 6400 elements. Additional

elements beyond 6400 are truncated for efficient training and

performance evaluation, amounting to about 0.007% of the

total number of elements in the tt simulation sample. The

truncated elements are always calorimeter towers as the order

of the elements is set by the delphes simulation. For infer-

ence during data taking, truncation should be avoided. The

LSH bin size chosen to be 128 such that the number of bins

dB = 50 and the number of nearest neighbors k = 16. We
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Fig. 5 True and predicted particle multiplicity for MLPF and

delphesPF for charged (upper) and neutral hadrons (lower) in simu-

lated QCD multijet events with PU. Both models show a high degree of

correlation (r ) between the generated and predicted particle multiplicity,

with the MLPF model reconstructing the neutral particle multiplicities

with improved resolution (σ ) and a lower bias (µ)

use two hidden layers for each encoding and decoding net

with 256 units each, with two successive graph convolutions

between the encoding and decoding steps. Exponential lin-

ear activations (ELU) [64] are used for the hidden layers and

linear activations are used for the outputs. Overall, the model

has approximately 1.5 million trainable weights and 25,000

constant weights for the random projections. For optimiza-

tion, we use the Adam [65] algorithm with a learning rate of

5 × 10−6 for 300 epochs, training over 4 × 104 events, with

104 events used for testing. The events are processed in mini-

batches of five simultaneous events per graphics processing

unit (GPU), we train for approximately 48 h using five RTX

Fig. 6 Particle identification confusion matrices in simulated QCD

multijet events with PU, with gen-level particles as the ground truth,

showing the baseline rule-based delphesPF (upper) and the MLPF

(lower) outputs. The rows have been normalized to unit probability,

corresponding to normalizing the dataset according to the generated

PID

2070S GPUs using data parallelism on 40,000 simulated tt

events. We report the results of the multi-task learning prob-

lem in the next section. The code and dataset to reproduce the

training are made available on the Zenodo platform [46,66].

4 Results

In Fig. 4, we show the pT distributions for the MLPF recon-

struction and generator-level truth for both simulated QCD

multijet and tt events. Although the MLPF model was trained
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Fig. 7 The efficiency of reconstructing charged hadron candidates as

a function of the generator particle pseudorapidity η in simulated QCD

multijet events with PU. Since the simulation does not contain fake

tracks, the charged hadron reconstruction is driven entirely by tracking

efficiency and is the same for MLPF and the rule-based PF

on tt, we observe a slight underprediction at high transverse

momentum for photons and neutral hadrons, which could

arise from the much greater numbers of low-pT particles rel-

ative to high-pT particles in this unweighted sample. Further

work is needed to improve the performance in the high-pT

tail of the distribution. We find that the model generalizes

well to the QCD sample that was not used in the training,

demonstrating that the MLPF-based reconstruction is trans-

ferable across different physics samples.

For the following results, we focus on the charged and neu-

tral hadron performance in QCD events, as hadrons make

up the bulk of the energy content of the jets and thus are

the primary target for PF reconstruction. We do not report

detailed performance characteristics for photons, electrons,

and muons at this time because of the limitations of the

delphes dataset and the rule-based PF algorithm. A real-

istic study of photon and electron disambiguation, in par-

ticular, requires a more detailed dataset that includes addi-

tional physics effects, as discussed in Sect. 2. In Fig. 5, we

present the charged and neutral hadron multiplicities from

both the baseline rule-based PF and MLPF algorithms as a

function of the target multiplicities. The particle multiplici-

ties from the MLPF model correlate better with the generator-

level target than the rule-based PF algorithm, demonstrat-

ing that the multi-classification model successfully recon-

structs variable-multiplicity events. In general, we do not

observe significant differences in the physics performance

of the MLPF algorithm between the QCD and tt samples in

the phase space where we have validated it.

In Fig. 6, we compare the per-particle multi-classification

confusion matrix for both reconstruction methods. We

Fig. 8 The efficiency (upper) and fake rate (lower) of reconstructing

neutral hadron candidates as a function of the generator particle energy

in simulated QCD multijet events with PU. The MLPF model shows

comparable performance to the delphesPF benchmark, with a some-

what lower fake rate at a similar efficiency

see overall a similar classification performance for both

approaches. The charged hadron identification performance

is driven by track efficiency and is the same for MLPF and the

rule-based PF. The neutral hadron identification efficiency

is slightly higher for MLPF (0.91 vs 0.88), since hadron

calorimeter cluster energies that are not matched to tracks

must be determined algorithmically for neutral hadron recon-

struction. The electron–photon misidentification is driven

by the parametrized tracking efficiency, as electromagnetic

calorimeter clusters without an associated track are recon-

structed as photons. Electron and muon identification per-

formance is shown simply for completeness, as it is driven

by the use of generator-level PID values for those tracks.

Improved Monte Carlo generation, subsampling, or weight-

ing may further improve reconstruction performance for par-

ticles or kinematic configurations that occur rarely in a phys-
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Table 1 Particle reconstruction efficiency and fake rate, multiplicity N , pT (E) and η resolutions for charged (neutral) hadrons, comparing the

rule-based PF baseline and the proposed MLPF method. Bolded values indicate better performance

Metric Charged hadrons Neutral hadrons

Rule-based PF MLPF Rule-based PF MLPF

Efficiency 0.953 0.953 0.883 0.908

Fake rate 0.000 0.000 0.071 0.068

pT (E) resolution 0.213 0.137 0.350 0.323

η resolution 0.240 0.245 0.050 0.058

N resolution 0.004 0.004 0.014 0.013

Fig. 9 The pT and η resolution of the delphesPF benchmark and the

MLPF model for charged hadrons in simulated QCD multijet events

with PU. The pT resolution is comparable for both algorithms, with

the angular resolution being driven by the smearing of the track (η, φ)

coordinates

Fig. 10 The energy and η resolution of the delphesPF benchmark and

the MLPF model for neutral hadrons in simulated QCD multijet events

with PU. Both reconstruction algorithms show comparable performance
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Fig. 11 Average runtime of the MLPF GNN model with a varying

input event size (upper) and the relative inference time when varying

the number of events evaluated simultaneously, i.e. batch size (lower),

normalized to batch size 1. For a simulated event equivalent to 200 PU

collisions, we see a runtime of around 50 ms, which scales approx-

imately linearly with respect to the input event size. We see a weak

dependence on batch size, with batching having a minor positive effect

for low-pileup events. The runtime for each event size is averaged over

100 randomly generated events over three independent runs. The tim-

ing tests were done using an Nvidia RTX 2060S GPU and an Intel

i7-10700@2.9GHz CPU. We assume a linear scaling between PU and

the number of detector elements

ical simulation. In this set of results, we apply no weighting

on the events or particles in the event.

In Fig. 7, we see that the η-dependent charged hadron effi-

ciency (true positive rate) for the MLPF model is somewhat

higher than for the rule-based PF baseline, while the fake

rate (false positive rate) is equivalently zero, as the delphes

simulation includes no fake tracks. From Fig. 8, we observe

a similar result for the energy-dependent efficiency and fake

rate of neutral hadrons. Both algorithms exhibit a turn-on

at low energies and show a constant behaviour at high ener-

gies, with MLPF being comparable or slightly better than the

rule-based PF baseline.

Furthermore, we see on Figs. 9 and 10 that the energy,

energy (pT) and angular resolution of the MLPF algorithm

are generally comparable to the baseline for neutral (charged)

hadrons.

Overall, these results demonstrate that formulating PF

reconstruction as a multi-task ML problem of simultane-

ously identifying charged and neutral hadrons in a high-PU

environment and predicting their momentum may offer com-

parable or improved physics performance over hand-written

algorithms in the presence of sufficient simulation samples

and careful optimization. The performance characteristics for

the baseline and the proposed MLPF model are summarized

in Table 1.

We also characterize the computational performance of

the GNN-based MLPF algorithm. In Fig. 11, we see that

the average inference time scales roughly linearly with the

input size, which is necessary for scalable reconstruction at

high PU. We also note that the GNN-based MLPF algo-

rithm runs natively on a GPU, with the current runtime at

around 50 ms/event on a consumer-grade GPU for a full

200 PU event. The algorithm is simple to port to comput-

ing architectures that support common ML frameworks like

TensorFlow without significant investment. This includes

GPUs and potentially even field-programmable gate arrays

(FPGAs) or ML-specific processors such as the GraphCore

intelligence processing units (IPUs) [67] through specialized

ML compilers [68–70]. These coprocessing accelerators can

be integrated into existing CPU-based experimental software

frameworks as a scalable service that grows to meet the tran-

sient demand [71–73].

5 Discussion and outlook

We have developed a ML algorithm for PF reconstruction in a

high-pileup environment for a general-purpose multilayered

particle detector based on transforming input sets of detec-

tor elements to the output set of reconstructed particles. The

MLPF implementation with GNNs is based on graph build-

ing with a LSH approximation for kNN, dubbed LSH+kNN,

and message passing using graph convolutions. Based on

benchmark particle-level tt and QCD multijet datasets gen-

erated using pythia 8 and delphes 3, the MLPF GNN

reconstruction offers comparable performance to the base-

line rule-based PF algorithm in delphes, demonstrating that

a purely parametric ML-based PF reconstruction can reach

or exceed the physics performance of existing reconstruc-

tion algorithms, while allowing for greater portability across

various computing architectures at a possibly reduced cost.

The inference time empirically scales approximately linearly

with the input size, which is useful for efficient evaluation

in the high-luminosity phase of the LHC. In addition, the

ML-based reconstruction model may offer useful features

for downstream physics analysis like per-particle probabil-

ities for different reconstruction interpretations, uncertainty
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estimates, and optimizable particle-level reconstruction for

rare processes including displaced signatures.

The MLPF model can be further improved with a more

physics-motivated optimization criterion, i.e. a loss function

that takes into account event-level, in addition to particle-

level differences. While we have shown that a per-particle

loss function already converges to an adequate physics per-

formance overall, improved event-based losses such as the

object condensation approach or energy flow may be use-

ful. In addition, an event-based loss may be defined using an

adversarial classifier that is trained to distinguish the target

particles from the reconstructed particles.

Reconstruction algorithms need to adapt to changing

experimental conditions – this may be addressed in MLPF by

a periodic retraining on simulation that includes up-to-date

running condition data such as the beam-spot location, dead

channels, and latest calibrations. In a realistic MLPF training,

care must be taken that the reconstruction qualities of rare

particles and particles in the low-probability tails of distribu-

tions are not adversely affected and that the reconstruction

performance remains uniform. This may be addressed with

detailed simulations and weighting schemes. In addition, for

a reliable physics result, the interpretability of the recon-

struction is essential. The reconstructed graph structure can

provide information about causal relations between the input

detector elements and the reconstructed particle candidates.

In order to develop a usable ML-based PF reconstruc-

tion algorithm, a realistic high-pileup simulated dataset that

includes detailed interactions with the detector material

needs to be used for the ML model optimization. The model

should be optimized and validated on a mix of realistic high-

PU events to learn global properties of reconstruction, as

well as on a set of particle gun samples to ensure that local

properties of particle reconstruction are learned in a gen-

eralizable way. To evaluate the reconstruction performance,

efficiencies, fake rates, and resolutions for all particle types

need to be studied in detail as a function of particle kinemat-

ics and detector conditions. Furthermore, high-level derived

quantities such as pileup-dependent jet and missing trans-

verse momentum resolutions must be assessed for a more

complete characterization of the reconstruction performance.

With ongoing work in ML-based track and calorimeter clus-

ter reconstruction upstream of PF [26,29,52,74–76] and ML-

based reconstruction of high-level objects including jets and

jet classification probabilities downstream of PF [33–35,77–

81], care must be taken that the various steps are optimized

and interfaced coherently.

Finally, the MLPF algorithm is inherently parallelizable

and can take advantage of hardware acceleration of GNNs via

graphics processing units (GPUs), field-programmable gate

arrays (FPGAs) or emerging ML-specific processors. Cur-

rent experimental software frameworks can easily integrate

coprocessing accelerators as a scalable service. By harness-

ing heterogeneous computing and parallelizable, efficient

ML, the burgeoning computing demand for event reconstruc-

tion tasks in the high-luminosity LHC era can be met while

maintaining or even surpassing the current physics perfor-

mance.
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