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Abstract1 
 

DOD Joint Vision 2020 (JV2020) is the integrated 
multi-service planning document for conduct among 
coalition forces of future warfare. It requires the 
confluence of a number of key avionics technical 
developments: integrating the network-centric battlefield, 
management of hundred thousands of distributed 
processors, high assurance Multi Level Security (MLS) in 
the battlefield, and low cost high assurance engineering. 
This paper describes the results of a study and modeling 
of a new security architecture, (MLS-PCA), that yields a 
practical solution for JV2020 based upon DARPA 
Polymorphic Computing Architecture (PCA) advances, 
and a new distributed process-level encryption scheme. 
The paper defines a functional model and a verified 
formal specification of MLS-PCA, for high assurance, 
with the constraints PCA software and hardware 
morphware must support. Also, the paper shows a viable 
mapping of the MLS-PCA model to the PCA hardware. 
MLS-PCA is designed to support upwards of 500,000 
CPUs predicted by Moore’s law to be available circa 
2020. To test such speculation, the paper concludes with 
a description of an in-progress proof-of-concept 
implementation of MLS-PCA using a 100-node Grid 
Computing system and an MLS distributed targeting 
application. 

1. Introductions and Motivation 
 

DOD Joint Vision 2020 describes the future battle 
space consisting of space, air, land, sea, and undersea 
forces integrated via a global network of sensors, 

                                                           
1  MLS-PCA is the acronym for “Multi Level Secure - Polymorphic 
Computer Architecture”  the result of a study partially supported by 
DARPA through the Air Force Research Laboratories, USAF under 
agreement number F33615-01-C-1891, “Security/Trust as a 
Polymorphic Computing Constraint” 

command and control, communications, and integrated 
strike warfare elements [1]. The Achilles heel of this 
network-centric vision is the high assurance Multi Level 
Security (MLS) that permits the myriad communications 
that make JV2020 possible. MLS research and 
development over the past two decades has defined the 
requirements that must be satisfied for DOD systems [2, 
3, 4, 5]. However, the high cost of developing and 
certifying high assurance systems to these requirements 
has been prohibitive and development time has been 
excessively long. Innovative use of Polymorphous 
Computing Architecture (PCA) to satisfy these MLS 
requirements in a scheme at process-level granularity is a 
novel R&D approach that simplifies system design, yet 
provides flexible configurable MLS systems. Such 
systems can meet security requirements to support 
different secure data streams in battlefield network-centric 
computing, as advocated in Joint Vision 2020. Many 
additional security requirements can be satisfied 
concurrently, including message integrity, authentication, 
confidentiality, code mobility, and dynamic coalitions. 
This paper describes a new security architecture to 
employ the richness of processing logic expected by 
2020, such as the DARPA Polymorphic Computing 
Architecture (PCA) program [6].  

The PCA program goals are to span a broad dynamic 
application space by implementing a transparent reactive 
layer between an embedded avionics application program 
and the malleable micro-architecture elements on which it 
will operate. This polymorphic layer will enable software 
and hardware to be developed in a cooperative constraint 
sensitive environment instead of in a failure prone 
hardware first and software last paradigm. The PCA 
program will implement a family of novel malleable 
micro-architecture processing elements, i.e., PCA chips, 
to include compute cores, caches, memory structures, data 
paths, network interfaces, network fabrics with 
incremental instructions, OS, and network protocols. 
These elements will have the ability to reconfigure to 
match changing mission and scenario demands. To 
support the use of polymorphous computing systems, the 
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program will create a model based software framework 
for reactive monitoring, optimization, modeling, resource 
negotiation and allocation, regeneration, and verification. 

Our new security architecture, MLS-PCA, is the focus 
of this paper, which covers the novel functional 
architecture, a formal specification model, and an 
examination of the security constraints that must be 
imposed on the PCA software-morphing layer and on the 
underlying chip hardware. The paper concludes with a 
description of a proof-of-concept demonstration using 
Grid Computing. 

1.1 Character of Avionics 
 

Legacy military avionics systems were developed 
using a “federated architecture” in which each subsystem 
was logically and physically separate.  Each had its own 
set of component parts, which could not be used to 
support other subsystems in times of equipment failure. 
This was the approach taken with the F-15, F-16 and F/A-
18, in the 1970s. In the early 1980s, the Department of 
Defense put together the “Pave Pillar” architecture that 
led to the Joint Integrated Avionics Working Group 
(JIAWG) Advanced Avionics Architecture.  The result of 
this integrated avionics architecture was that 
computational resources could be interconnected by high 
speed networks to allow for more flexible usage of these 
resources, e.g., re-assigning a processor to take over the 
function of a failed processor.  This also led to the ability 
to share information, e.g., to utilize fusion methods to 
merge radar and electro-optical information to create an 
improved way to convey information to the pilot.  The 
pilot no longer had to mentally perform the integration 
function from a variety of gauges and instruments. 
Unfortunately, the sharing of information resources in a 
classified avionics environment leads to another 
challenge; either 1) operate at “System High”, with a 
labor intensive burden of separating out the different 
classification levels at the end of a mission, or 2) solve the 
MLS problem.  The combination of highly classified data 
along with un-cleared (or lowly cleared) maintainers led 
to a major Information Assurance nightmare.  Methods 
currently do not exist to provide high assurance separation 
of the different security levels.   

Future avionics systems will consist of a large number 
of processors interconnected by LANs, fiber channels, 
and local buses. Avionics application software – 
navigation, flight controls, communication, displays, 
targeting, and weapons control – will operate in a 
distributed manner, with processes spread across 
thousands of processors. Humans will play a variety of 
roles in this environment including pilot, navigator, 

ground controller, ground support, and mission planner. 
There is also a trend toward autonomous vehicles, where 
there is no authority to supervise security decisions. The 
growing need to use multilevel systems in coalition 
environments makes this a “show-stopper” issue! 

1.2 System High Won’t Work 
 

Economics of general purpose computing has forced a 
tradition of developing software to share the processor 
resources. Operating systems, memory management, 
stack management, context switching, and interrupt 
vectoring are some examples of such sharing 
mechanisms. When avionics applications process 
different security levels of information, these sharing 
mechanisms must be trusted not to leak classified 
information between the processes. Trusted software is 
costly to develop, complex to design, poor performing, 
and difficult to certify its trustworthiness. As a result, 
most avionics systems avoid trusted development by 
operating at “System High,” the highest classification of 
any data entering the system. In the future world of the 
integrated battlefield, System High is not an acceptable 
solution. Weapon systems, sensors, and people will create 
multiple secure data streams at different security 
sensitivities, which must be managed in a MLS manner to 
permit battlefield flexibility of application of those assets, 
and not over-classify information to System High.  We 
simply cannot clear all battlefield personnel to System 
High. High assurance MLS is a necessary requirement 
because of the hostile battle space environment consisting 
of data as high as Top Secret with multiple compartments 
serving friendly forces and includes uncleared, foreign 
coalition partners, Red Cross, and humanitarian 
personnel; the worst case by current standards [7, 8]. 

 

2. MLS Problem 
 

Simply stated, there are few Commercial Off The 
Shelf (COTS) solutions to satisfy the high assurance MLS 
requirements. The traditional alternative is to scratch 
build a high assurance trusted MLS system. That 
alternative is not attractive because 1) the avionics 
requirements are quite broad to meet all needs of the 
JV2020 battle space, 2) Certification and Accreditation 
(C&A) in DOD is in some disarray, with many competing 
approaches [9, 10, 11, 12, 13, 14], 3) obtaining C&A is a 
lengthy process that may not complete by time of need, 4) 
systems may not satisfy real-time avionics needs, and 5) 



traditional MLS approaches are too expensive. A new 
approach is needed. 

In July 1990, the National Security 
Telecommunications and Information Systems Security 
Committee (NSTISSC) was established for the purpose of 
developing and promulgating national policies applicable 
to the security of national security telecommunications 
and information systems. In January 2000, NSTISSC 
issued Policy No. 11, which addresses the national policy 
governing the acquisition of information assurance and 
information assurance-enabled information technology 
products. Policy No.11 states that information assurance 
shall be considered as a requirement for all systems used 
to enter, process, store, display, or transmit national 
security information. DOD has issued DOD Directive 
8500.1, Information Assurance, and DOD Instruction 
8500.2, Information Assurance Implementation, to 
implement Policy No. 11 [15, 9, 10]. 

NSA and the Air Force have touted a trusted 
Protection Kernel (PK) as a candidate approach. They are 
supporting the development of a Common Criteria 
Protection Profile; a first step toward C&A [16].  PK 
divides a processor into isolated domains with controlled 
inter-domain communication. A different security-level 
process can run in each partition. There is prior research 
encouraging this approach [17]. COTS PKs available 
have weak security trust, and have never been applied to 
secure avionics application. 

 

3. Moore’s Law Predicts A Wealth of CPUs                                      
 

A modern aircraft today has over 1000 computers on 
board, and many more on the ground in support of the 
vehicle mission.  These are packaged into discrete 
systems with shared power systems, interconnect busses, 
and external communications. The computers perform 
flight control management, navigation, stores 
management, sensor processing, targeting, weapons 
control, communications processing, and display 
processing. Collectively, the high-level language software 
for these functions is multiple millions of source lines of 
code (SLOC), and rising with new developments. 

For the past 30 years, computer hardware logic per 
chip has been growing exponentially, doubling every 18 
months. First formulated as Moore’s Law, the forecast in 
2002 is for the exponential growth to continue with 12 
logic doublings by 2020 (212  = 4,000 X), our target 
timeframe [18]. The security challenge will be to build a 
high assurance MLS system from the expected array of 
400,000 processors. We will be in an era of logic – 

processor/memory – richness. This paper proposes one 
way to securely organize and employ this computational 
richness. 

 

4. MLS-PCA Characteristics 
 

Key to avionics security is creating dynamic trusted 
connections between processes, not between processors, 
as was achieved in the Defense Data Net (DDN) [19], and 
is typical with today’s network Virtual Private Network 
(VPN) architecture.  Cryptography is placed at the 
junction of processors – host, router, server, firewall, and 
gateway – or within the processor with unknown quality 
encryption software, or as software mediated 
cryptographic chips. Alas the rub, all these approaches 
place the security base on untrusted software 
intermediaries. 

Future computing will have processor- and memory-
rich avionics designed as distributed processes in a plexus 
of processors interconnected by networks. Our approach 
is to move encryption to the process level to create trusted 
application connections with unique trusted cryptographic 
elements. The operative components of the architecture 
are an Encryption Process Element (EPE) interposed 
between an Avionics Application Process (AAP) and the 
communication channel. A Network Security Element 
(NSE) will control the Inter Process Communication 
(IPC) via distribution of encryption and authentication 
keys to the EPEs.  

 

 
 
 

Figure 4. MLS-PCA Example Network 
 



An AAP is hosted on its own processor. There is no 
need to share the processor and its resources with another 
AAP. There is no need for a complex resource manager or 
Operating System. A simple network protocol stack and 
loader is sufficient. Domains and domain management, 
e.g., context saving, context switching, are unnecessary. 
Memory management and sharing are eliminated as well 
as process scheduling. The absence of these features 
permits simpler hardware and CPU architectures, perfect 
for high density, multiple processor chips now coming 
online, i.e., DARPA PCA. And the greatest benefit for 
security is the dedication of each processor to a single 
security level, that of its loaded AAP process.   

A small example of a MLS-PCA secure network is 
shown in Figure 4. Note the pairing of each AAP-EPE, 
including the NSE-EPE pair in bottom center of figure. 

 
 

5. MLS-PCA Functional Model 
Avionics components are usually well defined by the 

mission and include air vehicle controls, navigation, (e.g., 
Global Positioning Satellite, GPS), inertial, targeting, 
sensor (e.g., Infra Red, IR, radar), weapons control, 
payload stores, communications, safety, and other 
systems. Ground support functions include maintenance 
and logistics, mission planning, mission analysis, and 
training among others. These support functions affect the 
avionics configuration. Mission planning determines 
flight plan, weapons, radio frequencies, crypto keys, 
weather, targets, etc. Plans so formulated are embodied in 
software programs and databases that are dynamically 
loaded into the air vehicle just before takeoff by some 
Portable Memory Device (PMD) carried by the pilot or 
crew. 

5.1 Avionics Application Process, AAP 
 

The avionics development includes infrastructure 
components – processors, busses, communications 
devices, etc. – under control of the appropriate application 
software processes. We define these as Avionics 
Application Processes, AAPs. Traditionally, AAPs are 
integrated into one large system operating at the system 
high classification of the vehicle, e.g., Top Secret Special 
Access Required (TS-SAR). MLS-PCA will require 
different thinking on the part of avionics developers. 
Functions will be classified individually at the single level 
of the highest data processed, often less than system high. 
Thus AAPs are the untrusted “subjects” of the Bell-
LaPadula access control policy model [20], and will be at 

a variety of security levels, mostly Unclassified or Secret. 
Mission planning will select the required software for the 
mission, and construct a table – the access matrix – of the 
AAPs, which will specify their security levels, the data 
and devices, i.e., the “objects,” they can access, and the 
type of access permitted, i.e., their read, write, append, 
and execute permissions.  Furthermore, mission planning 
will define the avionics system configuration of network 
addresses, process ids, authenticators, and initial 
cryptographic keys. This classified data is protected from 
theft, unauthorized modification, and disclosure by 
encrypting the PMD for its journey from the classified 
mission-planning center to the classified air vehicle and 
back again after the mission with mission results. 

 An AAP is considered a homogenous process at a 
single security level. In reality, it may be many processes, 
but packaged for MLS-PCA as a single process. For real-
time systems, an AAP traditionally is scheduled to run at 
a precise time interval by an event trigger, or by a call 
from another AAP. For MLS-PCA, the AAP will own its 
processor exclusively and need not be scheduled. It will 
always run, but only produce results when events dictate. 
When necessary, an AAP will interact with another 
authorized  (by the access matrix) AAP. MLS-PCA will 
establish a cryptographically “trusted connection” 
between the two AAPs.  Multiple AAPs can share a 
trusted connection as part of a “coalition.” AAP trusted 
connections could last the entire mission, and often will in 
the well-defined world of avionics. Finally, the trusted 
connection can extend beyond the boundary of the 
avionics “box,” or the air vehicle when properly 
configured. The trusted connection is only limited by the 
communications and imagination of the system developer. 

5.2 Encryption Processing Element, EPE 
 

Each AAP will be protected by an “attached” front-end 
guard element, the EPE. The EPE guards the attached 
process by performing message encryption/decryption of 
all IPC traffic. There is no bypass of the EPE. This is a 
security constraint on the architecture, the guarantee that a 
cryptographic computing element front ends each 
computational element. An EPE may be a software 
element or encryption hardware. There can be thousands 
of EPEs at any given time. An EPE does additional tasks 
related to protecting keys as a way of enforcing security 
policy. For example, all keys are distributed “wrapped,” 
i.e., encrypted. The EPE must unwrap keys to use them. 
The wrapper key must be distributed in an “out of band” 
procedure, possibly carried in a physical “ignition” key 
generated by mission planning, and inserted into an 
avionics port by the pilot, or built into each EPE 



processor’s nonvolatile memory by mission control. The 
choice is mission dictated and hardware configured. 

In summary, each AAP has one EPE. The EPE is the 
only access between the AAP and the communications 
network and functions as a gateway to ensure that 
messages can be sent only to authorized recipients and 
that all messages are encrypted. 

5.3 Network Security Element, NSE 
 

The NSE distributes encryption keys to the EPEs, 
enforcing access control of communication paths, i.e., 
permissions between AAP pairs. The NSE is the security 
policy element for all internal and external 
communication, permitting the avionics interoperability 
with external battlefield assets. Within the control of the 
NSE is an access matrix of authorized permissions for 
each AAP. The permissions are stored as a database, with 
a unique key corresponding to each dimension of the 
security policy. For example, there can be a key for each 
security level and each compartment of the Mandatory 
Access Control (MAC) security lattice. There can be a 
common key for each user (uid) or process (pid) in a 
coalition, or a key for each AAP pair allowed to connect 
as part of Discretionary Access Control (DAC). There can 
be keys for each mission function, and there can be one-
time session keys for each newly created trusted 
connection. NSE creates a trusted connection, by sending 
a session key to the attached EPEs. That session key is the 
XORed result of all the policy keys – the MAC, DAC, 
and other keys – for the connection based on the 
maximum authorized permission of the paired application 
processes. The NSE access matrix is authorized and 
established by mission planning and transported to the 
avionics system on a PMD at mission initiation. Dynamic 
updates are permitted by authorized roles in the mission, 
e.g., pilot, and/or ground control. 

At mission initialization, system required trusted 
connections are established between security 
infrastructure elements – NSE, EPE (cf. Section 5.6.2). 
They exist to allow the NSE to distribute keys securely to 
EPEs. Information regarding AAPs is required for setting 
the NSE access database at mission initialization. A 
human role is defined by associating a user (uid) with a 
process (pid) in the access control matrix. For each pid 
and uid there is a set of credentials that defines the 
security permissions, the coalitions, and the roles played 
by all entities. There is a need for Identification and 
Authorization (I&A) whenever connections are 
established. The NSE will perform the I&A task 
inasmuch as it already has the I&A data from mission 
planning. The NSE can be implemented as a set of 

distributed processes executing on multiple processors 
within the avionics architecture for redundancy and 
performance, similar to any of the avionics applications. 

5.4 Security Policy Enforced by Encryption 
 

The enforcement mechanism of the MLS-PCA model 
is the allocation of an encryption key for the trusted 
connection between two AAPs – the session key, Ksession. 
The NSE computes the session key for each open request 
by an AAP to access another, based on the applicable 
security policy. Typically, there are multiple applicable 
policies – MAC, DAC, and Mission.  

MLS-PCA treats AAPs as untrusted subjects, and 
treats trusted connections (TCs) as the security objects. 
TCs are simplex (unidirectional), i.e., AAPi can write 
messages to AAPj (who reads messages from the 
connection). If AAPj wishes to respond to AAPi, AAPj 
must open a separate simplex connection to AAPi. Most 
dialogs between AAPs will be “duplex” by creating two 
simplex connections. Simplex connections allow blind 
write-up, or Append, e.g., AAPi may write to AAPj, when 
the security level SLj >= SLi  (dominates). 

Mandatory Access Control, MAC, is the classic DOD 
policy of a subject’s clearance dominating an object’s 
classification. This is best realized in the Bell-LaPadula 
[20] policy. MLS-PCA uses Bell-LaPadula and labels all 
subjects and objects. There is a MAC key, for each 
classification level, Ksl, and each security compartment, 
Kcomp . 

Discretionary Access Control, DAC, further limits 
subject-object access. DAC is like a “wiring diagram” of 
mission functions (AAPs). DAC is conceptualized as a 
matrix of subjects vs. objects, with a matrix cell’s content 
containing the DAC encryption key, Kd. The DAC matrix 
is sparsely populated because the AAPs tend to cluster by 
function. For avionics purposes, a coalition is a collection 
of subjects who meet the requisite MAC requirements and 
are members of a community of interest of the MLS-PCA 
model. These subjects create a multi-party trusted 
connection by joining a coalition and leaving the coalition 
as necessary. MLS-PCA effects a coalition by treating 
coalitions as objects in the DAC matrix and creating a 
common key Kcoal used by all coalition subjects. For each 
subject in a coalition, its coalition key, Kcoal, is contained 
in the DAC matrix coalition cell. Thus, DAC policy key 
Kdac is defined as Kdac = (Kd or Kcoal ), i.e., either the DAC 
key or the coalition key for a given object. 

The MLS-PCA model is applicable to a wide family of 
avionics applications in a dynamic battle space 
environment. Missions can cover surveillance, targeting, 
shooter, and communications. MLS-PCA takes the view 



that an avionics mission is composed of a set of AAPs 
that constitute the mission functionality. The mission can 
then be represented by the DAC policy above. For multi-
mission scenarios we need another (3rd) dimension to the 
DAC matrix that shows the DAC connectivity for each 
mission, i.e., another layer in the DAC matrix. 

Overall then, the MLS-PCA security policy is reflected 
in the following: 

 
Ksession  = Ksl  ⊗  Kcomp  

                                                          

⊗ Kdac 
2
 ;                      

where, Kdac = (Kd or Kcoal ) ⊗ Kmission     

and ⊗ is XOR 
 
This scheme provides great flexibility in MLS-PCA to 

match security policy to the needs of the avionics 
application. Most missions are static with fixed AAP 
communication patterns as one might find in an 
autonomous Unpopulated Air Vehicle (UAV).  In such a 
static environment, we might do away with the NSE and 
have access policy keys pre-placed during initialization at 
the EPEs by mission control. 

5.5 Crypto Issues 
 

The MLS-PCA model is silent on how the encryption 
function is mechanized – in software or hardware. It is 
only concerned that it be correct, always invoked, and 
always bound to its AAP. It is the “reference monitor” for 
the architecture [2]. 

The model is also silent on the encryption algorithm to 
be employed. We only assume it will have management 
features compatible with DOD Type I and Type II 
encryption, and commercial algorithms such as Triple 
Data Encryption Standard (DES), and the Advanced 
Encryption Standard (AES). Choice will be made at the 
time of specific application. We do specify a Public Key 
Infrastructure (PKI) scheme for secure key distribution 
during system boot (cf. Section 5.6). Key management is 
intimately tied to security policy as discussed in Section 
5.4. 

Every secure system must have a means of revoking 
access upon discovering hostile, or runaway behavior of a 
subject. This means revoking a trusted connection 
immediately. Revocation is achieved by erasing the guilty 
AAP connection by “zeroizing” the session key for the 
connection, Ksession.3 Zeroizing is a command sent from 

 
2 Added security can be achieved by applying a non-invertible function 
to Ksession to foil a rogue process impersonating an EPE from obtaining 
Ksession  and deducing the component keys. 
3 “Zeroize” does not mean setting a key of all zeros. It means replacing a 
key with a random value not known by any other EPE, thereby making 
encrypted text using the zeroized key undecipherable. 

the NSE to the EPE guarding the guilty AAP. Since the 
NSE and EPE are trusted processes the key erase action 
occurs near instantaneously breaking the AAP trusted 
connection. The AAP cannot thwart the zeroize action 
because it is not a party to the private infrastructure 
command between the NSE and EPE. Also, unlike zeroize 
of traditional encryption boxes, the zeroize command can 
be acknowledged and states synchronized after action 
taken by the EPE, which has a separate trusted connection 
with the NSE. The model also uses zeroize of Kcoal at a 
specific EPE to remove a subject (i.e., AAP) from a 
coalition. 

5.6 Initialize and Bootstrap of MLS-PCA 
 

The NSE and the EPE is the Trusted Computing Base 
(TCB) for the MLS-PCA scheme. There are two possible 
implementation configurations for the MLS-PCA model 
to protect the TCB: the first has the EPE in hardware; 
second, has the EPE as a loadable software process. Our 
view of the first consideration is the EPE process is a 
hardware subroutine of the CPU chip, somewhat like 
floating point hardware. We are looking at the proposed 
PCA hardware chips for MIT’s Raw [21] and Stanford’s 
Smart Memories [22] for how the model maps into the 
hardware. Generally speaking the hardware configuration 
is an easier initialization implementation because most of 
the initial parameters are “wired” into the hardware, e.g., 
network addresses, or process logic. The unique hardware 
initialization issues are a resource allocation consideration 
when there exist lots of CPUs, memory, and buses on a 
chip, i.e., a Raw chip has 16 CPUs; Smart Memories has 
64 CPUs. The software EPE initialization issues are 
classical security and integrity issues, the harder solution 
of the two configurations.  

 
5.6.1 Assumptions.  For any given classified avionics 
environment, the classified data and applications (AAPs) 
will be created and configured in a classified and trusted 
ground-based support system, a Mission Planning Center 
(MPC).  The MPC is an MLS trusted facility that plans 
the mission, assembles the avionics mission software 
AAPs from trusted configuration files, and defines the 
mission configuration parameters (i.e., AAPs, NSE, EPEs, 
flight plan, radio frequencies, encryption keys, security 
levels of AAPs, weapons and fuel stores, and other items). 
The mission vehicle information systems will contain 
only unclassified data when “parked,” be it an aircraft, 
UAV, or ship. The mission configuration parameters will 
be written to a PMD to be loaded into the vehicle just 
prior to the mission. The PMD will be encrypted to 



protect the pre- and post-mission information stored on 
the PMD.  

There is a well known problem in trusted systems we 
call the “fixed point theorem.” Encryption keys can be 
wrapped in other encryption keys for protection during 
transmission and storage outside of the crypto component. 
However, at some fixed point there is a secret clear text 
key pre-placed to permit the boot process to unfold in a 
staged and protected manner. In MLS-PCA the fixed 
point is a physical “ignition key” inserted into the system, 
and a pre-placed PKI private key in non-volatile memory 
of the NSE processor board, similar to the Trusted 
Computing Platform Alliance scheme [23]. The ignition 
key is used to begin the unwrapping of encrypted keys 
using a physically protected token. To decrypt the PMD, 
the ignition key will be carried to the vehicle by the pilot 
(or mission commander for pilot less vehicles) and 
inserted in the cockpit prior to takeoff. The ignition key, 
like the PMD, is created by the MPC. We anticipate NSA 
as responsible for the PMD encryption/decryption logic 
and wiring of the ignition key reader and PMD. 

 
Figure 5.6: EPE Initialization Protocol 

 
Typically, there will be one NSE and thousands of 

AAP-EPE pairs. The NSE may be redundant or 
distributed for reliability. The boot logic for the system 
will have the NSE loaded first, followed by prioritized 
EPE-AAP pairs loaded from the PMD. The mission will 
drive all the initialization parameters. MPC will determine 
the load priorities, locations of all devices and processes 

(i.e., their net addresses, Adn and Ade), their 
identifications (Idn, Ide), and the PKI private key and 
public key of the NSE (Nv and Np, respectively). MPC 
will also build a table of permissions and classifications 
for all AAPs, the Bell-LaPadula access matrix, for the 
mission. Lastly, the NSE will know all these initial 
conditions by loading the access matrix from the PMD; 
the EPEs will know some of these data by parameter 
loading by MPC or NSE for each EPE-AAP pair code 
loaded – Np, Adn, Ade, Idn.  

 
5.6.2 EPE-NSE Initialization Protocol. There can be a 
priority of operation of the mission functions reflected in 
the order of AAP initialization. The NSE will know that 
priority. For an AAP to run it must first be bound to an 
EPE. Since both AAP and EPE are software processes, 
they should run on adjacent processors. Also, there is 
nothing unique about an EPE; any EPE can be bound to a 
unique AAP. The NSE reads the PMD and creates an 
EPE, loading and/or assigning parameters to bind it to an 
AAP. The EPE is then executed while the NSE creates 

another EPE. The EPE’s first action is to generate a 
random key (Er). Since all EPEs are identical, Er must be 
based on some changing system variable to avoid 
repeating Er among different EPE invocations.  Its next 
action is to create and send a Hello message to the NSE, 
giving the Hello message identification, its net address 
(Ade), random key (Er), and an integrity checksum, all 
wrapped in the public key (Np) of the NSE. This foils 
unauthorized reading of the Hello message by possible 
Trojans hidden in the architecture. The NSE saves these 

State Space

EPE NSE
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parameters and assigns the next priority AAP to this EPE 
by assigning an identity (Ide) to the EPE; Ide can be the 
identity of the bound AAP. It includes its own Idn to 
confirm to the EPE its identity, gives a newly created 
NSE-EPE session key (Ns) based on the security level of 
the bound AAP, adds an integrity checksum, and wraps 
the whole message in the EPE’s Er. This provides critical 
information securely to the EPE to whom it is bound, 
including the session key for further NSE dialogs, the 
identity confirmation of the NSE, and an indication that a 
false NSE is not spoofing it. The last message by the EPE 
is an acknowledgement to synchronize state with the 
NSE. This complete initialization sequence and state 
space is shown graphically in Figure 5.6. 
 
 

6. Certification and Accreditation, C&A 
 

With the demise of DOD 5200.28-STD [3] and the 
NIAP practice defined only through Common Criteria 
(CC) Evaluation Assurance Level 4 (EAL4), high 
assurance (EAL5-7) is without a C&A support 
organization. Only a DOD user agency can assume 
responsibility, and only for its application [11, 15]. 
Because MLS-PCA is years away from its first 
application, we have adopted the CC EAL7 C&A as the 
driving security assurance requirements, particularly the 
formal specification and verification [4]. 
 
Table 6.1: MLS-PCA Formal Spec Characteristics 

6.1 Formal Specification 
The functional model for MLS-PCA is described in 

Section 5. Early in the DARPA PCA program we studied 
available formal language systems [24] and selected 
MIT’s Alloy for its state machine expressiveness, 
available tool suite, and its constraint checking approach 
to spec verification [25]. The MLS-PCA formal   spec  is  
now  complete and verified. Its salient features are 
summarized in Table 6.1. Details of the formal 
specification can be found in the companion paper, 

“Using Alloy to Formally Specify MLS-PCA Trusted 
Security Architecture” [26]. 

6.2 MLS-PCA Verification 
 

The Alloy Constraint Checker does not prove a spec is 
correct, rather it assures the user the spec is consistent 
with its assertions, constraints and initial values. It 
logically checks the spec to show the existence of values 
of state variables that satisfy all spec transforms, 
constraints, and conditions. If there are no values of state 
variables that meet these conditions, the spec is “over 
constrained.” If there are contradictions among the states, 
constraints, and values, the spec is “under constrained.” 
Finding the right balance between these extremes is the 
art of writing a formal spec. The Alloy Constraint 
Checker provides the engineering balance to verification 
between no checking and formal proof. The tools are fast 
and quite useable [27]. 

6.3  MLS-PCA Flaws Found by Verification 
 

One of the earliest flaws found by the Alloy Constraint 
Checker we subsequently called “fate sharing” – death of 
an EPE and its bound AAP. Before repair, the spec 
allowed an AAP process to die and be replaced by 
another. The Alloy Checker found a case where a 
message destined for an old Secret AAP arrived and was 
delivered to a new unclassified AAP now bound to the 
EPE; a clear violation of the no write-down constraint. 
The repair was fate sharing of AAP-EPE. 

Another flaw found dealt with messages arriving out of 
order. An NSE sends two messages to an EPE: rekey then 
revoke a trusted connection. If the messages arrive out of 
order, the new key would in effect re-establish the just 
revoked connection. MLS-PCA will guarantee messages 
arrive in order to assure state synchrony and prevent 
replay attacks. 

The last example arises from the distributed nature of 
the MLS-PCA model. Distributed systems have potential 
state synchrony problems due to message delays. The 
Alloy Constraint Analyzer found a case where the 
operation that changes DAC permissions invalidated the 
DAC invariant, that says “a communication path is in 
existence only if the DAC policy allows it.” The problem 
was the delay in synchronizing the DAC change with the 
EPE state – an example of the classical problem of when 
does a revocation become effective? Normally this 
invariant check is used to determine if an operation is 
under-constrained. Here, it is the invariant that is over-
constrained. The solution was to relax the DAC invariant 

Feature Quantity 
Signatures (i.e., Domains) 63 
Relations (i.e., State Variables) 64 
Operations  (i.e., Transforms)  39 
Predicates  (i.e., Conditionals) 38 
Facts  (i.e., Definitions) 28 
Invariants  (i.e., Constraints) 18 



and apply it only to new connections. The new rule is “ A 
connection path may be created only if the DAC policy 
allows it.” 

 

7. Conclusion: Proof of Concept 
The proof is in the pudding, and our pudding is an 

MLS-PCA proof of concept demonstration. But how do 
you demonstrate thousands of networked processors 
nearly two decades before they exist? We wish to write 
code from the formal specs for the NSE, EPE, and a vital 
application of AAPs. Simulation would not admit code, 
and lashing together many microprocessors is too 
expensive. Using hundreds of PCA chips is years in the 
future when they first become available from DARPA. 
That was our dilemma early on. We found a way using 
Grid Computing [28].  

7.1 Grid Computing: Simulating 1000s of CPUs 
 

The DARPA contract under which MLS-PCA was 
developed was limited just to the formal modeling effort. 
However, Northrop Grumman Corporation found the 
modeling results of great interest and chose to sponsor a 
prototype using CY 2003 Independent R&D (IRAD).  

The Northrop Grumman Corporation R&D private 
network consists of hundreds of user workstations of 
Windows PCs, Sun Solaris machines, and Silicon 
Graphics workstations. If we ran just 10 AAPs per 
workstation, we can have a 1000 node distributed MLS-
PCA implementation via a Grid Computing architecture. 
The net is essentially available two shifts a day plus 
weekends. We wrote the NSE and EPE code in C++ from 
the formal specs. We run the code under Windows with 
an IP protocol stack, and build trusted connections with 
IPSec, 256-bit key AES software encryption, and HMAC-
SHA-256 authentication for the EPE. We recognize the 
vulnerability of MLS-PCA to attacks on the Windows 
OS; however, the objective of this implementation is to 
shake out the model, demonstrate its soundness, and 
collect basic performance data. Later, we will drop 
Windows and replace it with a high assurance TCB to 
boot and run NSE, EPE and AAP code. We have also 
selected a meaningful MLS-PCA demonstration 
application. 

7.2 Targeting Application 
 

MLS-PCA computing demands a different paradigm 
for designing applications. Rather than construct large 
monolithic functional modules of hardware and software, 

as is current practice, our model demands functions be 
composed of small code segments, i.e., processes, each of 
which operates at a single security level within its own 
processor, and communicates with  related processes via 
Inter Process Communication. The art of designing such 
distributed software is just beginning to take shape in 
various research efforts, e.g., DARPA’s “agent-based 
systems”[29]. Northrop Grumman Corporation has an 
extensive R&D effort in multi-sensor target detection. 
These algorithm-based applications have MLS properties 
and can profit from the parallelism inherent in the 
distributed MLS-PCA model and Grid Computing. 

A typical target radar or infrared image can be as large 
as 9,000 x 9,000 pixels. This is too large for processing 
algorithms on anything short of a high performance server 
or special digital signal processor; certainly beyond the 
capabilities of a current PC. Our Grid Computing demo 
will divide the image into 100 smaller 1,000 x 1,000 pixel 
sub-images or cells, allowing for cell overlap to avoid 
missing features that span a cell boundary, and pass each 
cell on to a Grid processor. A Grid processor is capable of 
applying a search algorithm to detect potential targets in 
the cell. We are simulating data for different target types.  
When a potential target is detected and identified in the 
cell, the algorithm will report the potential target to a 
central controller that will eliminate duplicate reports. The 
central controller will report each potential target to one 
of four target controllers, one for each of four types, also 
running as separate processors on the Grid.  Target 
controller types are at different simulated security levels: 
unclassified, confidential, secret, and top secret. The cell 
processors will all run at a simulated unclassified security 
level. A cell processor will write up to the central 
controller’s higher security level, and the central 
controller will write up to the appropriate target 
controllers. MLS-PCA is designed explicitly via the 
simplex trusted paths to permit authorized Append 
connections. The target controllers will display the reports 
from all the cells, and show the distribution of found 
targets on a composite system high display.  

7.3 Performance Goals 
 

The objective of the demonstration is to show the 
feasibility of building MLS systems on the MLS-PCA 
architecture. It will provide us with a vehicle for gathering 
performance data on the critical choke points in the 
architecture, the boot procedure, the initialization 
mechanisms, and oversights in the design. The 
demonstration will achieve: 

 
• Simulated MLS operation in a distributed network 



• Distributed application of a typical avionics function, 
i.e., targeting 

• High value of formal specification 
• Proof of concept for MLS-PCA 

o Operation of live NSE, EPE, and AAP code 
and IPC 

o Boot of MLS-PCA 
o Performance data on MLS-PCA operation 

• Program interest from a real avionics application 
 
There was insufficient testing to report our findings by 

publication date. However, the coding and checkout of the 
NSE and EPE went well and quickly, completed in four-
months. The NSE is 3371 Source Lines of Code (SLOC) 
compiling to 344K binary, and the EPE is 2679 SLOC 
compiling to 580K binary, not counting libraries used.  
The non-optimized code is small enough to be handled by 
any of the Grid PCs, and even the limited PCA memory 
available with first generation chips. The applications 
AAPs are the long lead-time elements. A future 
companion paper will report the specific findings of the 
Proof of Concept Demonstration. 
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