
MLS-PCA: A High Assurance Security Architecture for Future Avionics

Clark Weissman
Northrop Grumman Corporation

weissman@nrtc.northrop.com

Abstract1

DOD Joint Vision 2020 (JV2020) is the integrated
multi-service planning document for conduct among
coalition forces of future warfare. It requires the
confluence of a number of key avionics technical
developments: integrating the network-centric battlefield,
management of hundred thousands of distributed
processors, high assurance Multi Level Security (MLS) in
the battlefield, and low cost high assurance engineering.
This paper describes the results of a study and modeling
of a new security architecture, (MLS-PCA), that yields a
practical solution for JV2020 based upon DARPA
Polymorphic Computing Architecture (PCA) advances,
and a new distributed process-level encryption scheme.
The paper defines a functional model and a verified
formal specification of MLS-PCA, for high assurance,
with the constraints PCA software and hardware
morphware must support. Also, the paper shows a viable
mapping of the MLS-PCA model to the PCA hardware.
MLS-PCA is designed to support upwards of 500,000
CPUs predicted by Moore’s law to be available circa
2020. To test such speculation, the paper concludes with
a description of an in-progress proof-of-concept
implementation of MLS-PCA using a 100-node Grid
Computing system and an MLS distributed targeting
application.

1. Introductions and Motivation

DOD Joint Vision 2020 describes the future battle
space consisting of space, air, land, sea, and undersea
forces integrated via a global network of sensors,

1 MLS-PCA is the acronym for “Multi Level Secure - Polymorphic
Computer Architecture” the result of a study partially supported by
DARPA through the Air Force Research Laboratories, USAF under
agreement number F33615-01-C-1891, “Security/Trust as a
Polymorphic Computing Constraint”

command and control, communications, and integrated
strike warfare elements [1]. The Achilles heel of this
network-centric vision is the high assurance Multi Level
Security (MLS) that permits the myriad communications
that make JV2020 possible. MLS research and
development over the past two decades has defined the
requirements that must be satisfied for DOD systems [2,
3, 4, 5]. However, the high cost of developing and
certifying high assurance systems to these requirements
has been prohibitive and development time has been
excessively long. Innovative use of Polymorphous
Computing Architecture (PCA) to satisfy these MLS
requirements in a scheme at process-level granularity is a
novel R&D approach that simplifies system design, yet
provides flexible configurable MLS systems. Such
systems can meet security requirements to support
different secure data streams in battlefield network-centric
computing, as advocated in Joint Vision 2020. Many
additional security requirements can be satisfied
concurrently, including message integrity, authentication,
confidentiality, code mobility, and dynamic coalitions.
This paper describes a new security architecture to
employ the richness of processing logic expected by
2020, such as the DARPA Polymorphic Computing
Architecture (PCA) program [6].

The PCA program goals are to span a broad dynamic
application space by implementing a transparent reactive
layer between an embedded avionics application program
and the malleable micro-architecture elements on which it
will operate. This polymorphic layer will enable software
and hardware to be developed in a cooperative constraint
sensitive environment instead of in a failure prone
hardware first and software last paradigm. The PCA
program will implement a family of novel malleable
micro-architecture processing elements, i.e., PCA chips,
to include compute cores, caches, memory structures, data
paths, network interfaces, network fabrics with
incremental instructions, OS, and network protocols.
These elements will have the ability to reconfigure to
match changing mission and scenario demands. To
support the use of polymorphous computing systems, the

mailto:weissman@nrtc.northrop.com

program will create a model based software framework
for reactive monitoring, optimization, modeling, resource
negotiation and allocation, regeneration, and verification.

Our new security architecture, MLS-PCA, is the focus
of this paper, which covers the novel functional
architecture, a formal specification model, and an
examination of the security constraints that must be
imposed on the PCA software-morphing layer and on the
underlying chip hardware. The paper concludes with a
description of a proof-of-concept demonstration using
Grid Computing.

1.1 Character of Avionics

Legacy military avionics systems were developed
using a “federated architecture” in which each subsystem
was logically and physically separate. Each had its own
set of component parts, which could not be used to
support other subsystems in times of equipment failure.
This was the approach taken with the F-15, F-16 and F/A-
18, in the 1970s. In the early 1980s, the Department of
Defense put together the “Pave Pillar” architecture that
led to the Joint Integrated Avionics Working Group
(JIAWG) Advanced Avionics Architecture. The result of
this integrated avionics architecture was that
computational resources could be interconnected by high
speed networks to allow for more flexible usage of these
resources, e.g., re-assigning a processor to take over the
function of a failed processor. This also led to the ability
to share information, e.g., to utilize fusion methods to
merge radar and electro-optical information to create an
improved way to convey information to the pilot. The
pilot no longer had to mentally perform the integration
function from a variety of gauges and instruments.
Unfortunately, the sharing of information resources in a
classified avionics environment leads to another
challenge; either 1) operate at “System High”, with a
labor intensive burden of separating out the different
classification levels at the end of a mission, or 2) solve the
MLS problem. The combination of highly classified data
along with un-cleared (or lowly cleared) maintainers led
to a major Information Assurance nightmare. Methods
currently do not exist to provide high assurance separation
of the different security levels.

Future avionics systems will consist of a large number
of processors interconnected by LANs, fiber channels,
and local buses. Avionics application software –
navigation, flight controls, communication, displays,
targeting, and weapons control – will operate in a
distributed manner, with processes spread across
thousands of processors. Humans will play a variety of
roles in this environment including pilot, navigator,

ground controller, ground support, and mission planner.
There is also a trend toward autonomous vehicles, where
there is no authority to supervise security decisions. The
growing need to use multilevel systems in coalition
environments makes this a “show-stopper” issue!

1.2 System High Won’t Work

Economics of general purpose computing has forced a
tradition of developing software to share the processor
resources. Operating systems, memory management,
stack management, context switching, and interrupt
vectoring are some examples of such sharing
mechanisms. When avionics applications process
different security levels of information, these sharing
mechanisms must be trusted not to leak classified
information between the processes. Trusted software is
costly to develop, complex to design, poor performing,
and difficult to certify its trustworthiness. As a result,
most avionics systems avoid trusted development by
operating at “System High,” the highest classification of
any data entering the system. In the future world of the
integrated battlefield, System High is not an acceptable
solution. Weapon systems, sensors, and people will create
multiple secure data streams at different security
sensitivities, which must be managed in a MLS manner to
permit battlefield flexibility of application of those assets,
and not over-classify information to System High. We
simply cannot clear all battlefield personnel to System
High. High assurance MLS is a necessary requirement
because of the hostile battle space environment consisting
of data as high as Top Secret with multiple compartments
serving friendly forces and includes uncleared, foreign
coalition partners, Red Cross, and humanitarian
personnel; the worst case by current standards [7, 8].

2. MLS Problem

Simply stated, there are few Commercial Off The
Shelf (COTS) solutions to satisfy the high assurance MLS
requirements. The traditional alternative is to scratch
build a high assurance trusted MLS system. That
alternative is not attractive because 1) the avionics
requirements are quite broad to meet all needs of the
JV2020 battle space, 2) Certification and Accreditation
(C&A) in DOD is in some disarray, with many competing
approaches [9, 10, 11, 12, 13, 14], 3) obtaining C&A is a
lengthy process that may not complete by time of need, 4)
systems may not satisfy real-time avionics needs, and 5)

traditional MLS approaches are too expensive. A new
approach is needed.

In July 1990, the National Security
Telecommunications and Information Systems Security
Committee (NSTISSC) was established for the purpose of
developing and promulgating national policies applicable
to the security of national security telecommunications
and information systems. In January 2000, NSTISSC
issued Policy No. 11, which addresses the national policy
governing the acquisition of information assurance and
information assurance-enabled information technology
products. Policy No.11 states that information assurance
shall be considered as a requirement for all systems used
to enter, process, store, display, or transmit national
security information. DOD has issued DOD Directive
8500.1, Information Assurance, and DOD Instruction
8500.2, Information Assurance Implementation, to
implement Policy No. 11 [15, 9, 10].

NSA and the Air Force have touted a trusted
Protection Kernel (PK) as a candidate approach. They are
supporting the development of a Common Criteria
Protection Profile; a first step toward C&A [16]. PK
divides a processor into isolated domains with controlled
inter-domain communication. A different security-level
process can run in each partition. There is prior research
encouraging this approach [17]. COTS PKs available
have weak security trust, and have never been applied to
secure avionics application.

3. Moore’s Law Predicts A Wealth of CPUs

A modern aircraft today has over 1000 computers on
board, and many more on the ground in support of the
vehicle mission. These are packaged into discrete
systems with shared power systems, interconnect busses,
and external communications. The computers perform
flight control management, navigation, stores
management, sensor processing, targeting, weapons
control, communications processing, and display
processing. Collectively, the high-level language software
for these functions is multiple millions of source lines of
code (SLOC), and rising with new developments.

For the past 30 years, computer hardware logic per
chip has been growing exponentially, doubling every 18
months. First formulated as Moore’s Law, the forecast in
2002 is for the exponential growth to continue with 12
logic doublings by 2020 (212 = 4,000 X), our target
timeframe [18]. The security challenge will be to build a
high assurance MLS system from the expected array of
400,000 processors. We will be in an era of logic –

processor/memory – richness. This paper proposes one
way to securely organize and employ this computational
richness.

4. MLS-PCA Characteristics

Key to avionics security is creating dynamic trusted
connections between processes, not between processors,
as was achieved in the Defense Data Net (DDN) [19], and
is typical with today’s network Virtual Private Network
(VPN) architecture. Cryptography is placed at the
junction of processors – host, router, server, firewall, and
gateway – or within the processor with unknown quality
encryption software, or as software mediated
cryptographic chips. Alas the rub, all these approaches
place the security base on untrusted software
intermediaries.

Future computing will have processor- and memory-
rich avionics designed as distributed processes in a plexus
of processors interconnected by networks. Our approach
is to move encryption to the process level to create trusted
application connections with unique trusted cryptographic
elements. The operative components of the architecture
are an Encryption Process Element (EPE) interposed
between an Avionics Application Process (AAP) and the
communication channel. A Network Security Element
(NSE) will control the Inter Process Communication
(IPC) via distribution of encryption and authentication
keys to the EPEs.

Figure 4. MLS-PCA Example Network

An AAP is hosted on its own processor. There is no
need to share the processor and its resources with another
AAP. There is no need for a complex resource manager or
Operating System. A simple network protocol stack and
loader is sufficient. Domains and domain management,
e.g., context saving, context switching, are unnecessary.
Memory management and sharing are eliminated as well
as process scheduling. The absence of these features
permits simpler hardware and CPU architectures, perfect
for high density, multiple processor chips now coming
online, i.e., DARPA PCA. And the greatest benefit for
security is the dedication of each processor to a single
security level, that of its loaded AAP process.

A small example of a MLS-PCA secure network is
shown in Figure 4. Note the pairing of each AAP-EPE,
including the NSE-EPE pair in bottom center of figure.

5. MLS-PCA Functional Model
Avionics components are usually well defined by the

mission and include air vehicle controls, navigation, (e.g.,
Global Positioning Satellite, GPS), inertial, targeting,
sensor (e.g., Infra Red, IR, radar), weapons control,
payload stores, communications, safety, and other
systems. Ground support functions include maintenance
and logistics, mission planning, mission analysis, and
training among others. These support functions affect the
avionics configuration. Mission planning determines
flight plan, weapons, radio frequencies, crypto keys,
weather, targets, etc. Plans so formulated are embodied in
software programs and databases that are dynamically
loaded into the air vehicle just before takeoff by some
Portable Memory Device (PMD) carried by the pilot or
crew.

5.1 Avionics Application Process, AAP

The avionics development includes infrastructure
components – processors, busses, communications
devices, etc. – under control of the appropriate application
software processes. We define these as Avionics
Application Processes, AAPs. Traditionally, AAPs are
integrated into one large system operating at the system
high classification of the vehicle, e.g., Top Secret Special
Access Required (TS-SAR). MLS-PCA will require
different thinking on the part of avionics developers.
Functions will be classified individually at the single level
of the highest data processed, often less than system high.
Thus AAPs are the untrusted “subjects” of the Bell-
LaPadula access control policy model [20], and will be at

a variety of security levels, mostly Unclassified or Secret.
Mission planning will select the required software for the
mission, and construct a table – the access matrix – of the
AAPs, which will specify their security levels, the data
and devices, i.e., the “objects,” they can access, and the
type of access permitted, i.e., their read, write, append,
and execute permissions. Furthermore, mission planning
will define the avionics system configuration of network
addresses, process ids, authenticators, and initial
cryptographic keys. This classified data is protected from
theft, unauthorized modification, and disclosure by
encrypting the PMD for its journey from the classified
mission-planning center to the classified air vehicle and
back again after the mission with mission results.

 An AAP is considered a homogenous process at a
single security level. In reality, it may be many processes,
but packaged for MLS-PCA as a single process. For real-
time systems, an AAP traditionally is scheduled to run at
a precise time interval by an event trigger, or by a call
from another AAP. For MLS-PCA, the AAP will own its
processor exclusively and need not be scheduled. It will
always run, but only produce results when events dictate.
When necessary, an AAP will interact with another
authorized (by the access matrix) AAP. MLS-PCA will
establish a cryptographically “trusted connection”
between the two AAPs. Multiple AAPs can share a
trusted connection as part of a “coalition.” AAP trusted
connections could last the entire mission, and often will in
the well-defined world of avionics. Finally, the trusted
connection can extend beyond the boundary of the
avionics “box,” or the air vehicle when properly
configured. The trusted connection is only limited by the
communications and imagination of the system developer.

5.2 Encryption Processing Element, EPE

Each AAP will be protected by an “attached” front-end
guard element, the EPE. The EPE guards the attached
process by performing message encryption/decryption of
all IPC traffic. There is no bypass of the EPE. This is a
security constraint on the architecture, the guarantee that a
cryptographic computing element front ends each
computational element. An EPE may be a software
element or encryption hardware. There can be thousands
of EPEs at any given time. An EPE does additional tasks
related to protecting keys as a way of enforcing security
policy. For example, all keys are distributed “wrapped,”
i.e., encrypted. The EPE must unwrap keys to use them.
The wrapper key must be distributed in an “out of band”
procedure, possibly carried in a physical “ignition” key
generated by mission planning, and inserted into an
avionics port by the pilot, or built into each EPE

processor’s nonvolatile memory by mission control. The
choice is mission dictated and hardware configured.

In summary, each AAP has one EPE. The EPE is the
only access between the AAP and the communications
network and functions as a gateway to ensure that
messages can be sent only to authorized recipients and
that all messages are encrypted.

5.3 Network Security Element, NSE

The NSE distributes encryption keys to the EPEs,
enforcing access control of communication paths, i.e.,
permissions between AAP pairs. The NSE is the security
policy element for all internal and external
communication, permitting the avionics interoperability
with external battlefield assets. Within the control of the
NSE is an access matrix of authorized permissions for
each AAP. The permissions are stored as a database, with
a unique key corresponding to each dimension of the
security policy. For example, there can be a key for each
security level and each compartment of the Mandatory
Access Control (MAC) security lattice. There can be a
common key for each user (uid) or process (pid) in a
coalition, or a key for each AAP pair allowed to connect
as part of Discretionary Access Control (DAC). There can
be keys for each mission function, and there can be one-
time session keys for each newly created trusted
connection. NSE creates a trusted connection, by sending
a session key to the attached EPEs. That session key is the
XORed result of all the policy keys – the MAC, DAC,
and other keys – for the connection based on the
maximum authorized permission of the paired application
processes. The NSE access matrix is authorized and
established by mission planning and transported to the
avionics system on a PMD at mission initiation. Dynamic
updates are permitted by authorized roles in the mission,
e.g., pilot, and/or ground control.

At mission initialization, system required trusted
connections are established between security
infrastructure elements – NSE, EPE (cf. Section 5.6.2).
They exist to allow the NSE to distribute keys securely to
EPEs. Information regarding AAPs is required for setting
the NSE access database at mission initialization. A
human role is defined by associating a user (uid) with a
process (pid) in the access control matrix. For each pid
and uid there is a set of credentials that defines the
security permissions, the coalitions, and the roles played
by all entities. There is a need for Identification and
Authorization (I&A) whenever connections are
established. The NSE will perform the I&A task
inasmuch as it already has the I&A data from mission
planning. The NSE can be implemented as a set of

distributed processes executing on multiple processors
within the avionics architecture for redundancy and
performance, similar to any of the avionics applications.

5.4 Security Policy Enforced by Encryption

The enforcement mechanism of the MLS-PCA model
is the allocation of an encryption key for the trusted
connection between two AAPs – the session key, Ksession.
The NSE computes the session key for each open request
by an AAP to access another, based on the applicable
security policy. Typically, there are multiple applicable
policies – MAC, DAC, and Mission.

MLS-PCA treats AAPs as untrusted subjects, and
treats trusted connections (TCs) as the security objects.
TCs are simplex (unidirectional), i.e., AAPi can write
messages to AAPj (who reads messages from the
connection). If AAPj wishes to respond to AAPi, AAPj
must open a separate simplex connection to AAPi. Most
dialogs between AAPs will be “duplex” by creating two
simplex connections. Simplex connections allow blind
write-up, or Append, e.g., AAPi may write to AAPj, when
the security level SLj >= SLi (dominates).

Mandatory Access Control, MAC, is the classic DOD
policy of a subject’s clearance dominating an object’s
classification. This is best realized in the Bell-LaPadula
[20] policy. MLS-PCA uses Bell-LaPadula and labels all
subjects and objects. There is a MAC key, for each
classification level, Ksl, and each security compartment,
Kcomp .

Discretionary Access Control, DAC, further limits
subject-object access. DAC is like a “wiring diagram” of
mission functions (AAPs). DAC is conceptualized as a
matrix of subjects vs. objects, with a matrix cell’s content
containing the DAC encryption key, Kd. The DAC matrix
is sparsely populated because the AAPs tend to cluster by
function. For avionics purposes, a coalition is a collection
of subjects who meet the requisite MAC requirements and
are members of a community of interest of the MLS-PCA
model. These subjects create a multi-party trusted
connection by joining a coalition and leaving the coalition
as necessary. MLS-PCA effects a coalition by treating
coalitions as objects in the DAC matrix and creating a
common key Kcoal used by all coalition subjects. For each
subject in a coalition, its coalition key, Kcoal, is contained
in the DAC matrix coalition cell. Thus, DAC policy key
Kdac is defined as Kdac = (Kd or Kcoal), i.e., either the DAC
key or the coalition key for a given object.

The MLS-PCA model is applicable to a wide family of
avionics applications in a dynamic battle space
environment. Missions can cover surveillance, targeting,
shooter, and communications. MLS-PCA takes the view

that an avionics mission is composed of a set of AAPs
that constitute the mission functionality. The mission can
then be represented by the DAC policy above. For multi-
mission scenarios we need another (3rd) dimension to the
DAC matrix that shows the DAC connectivity for each
mission, i.e., another layer in the DAC matrix.

Overall then, the MLS-PCA security policy is reflected
in the following:

Ksession = Ksl ⊗ Kcomp

⊗ Kdac
2
 ;

where, Kdac = (Kd or Kcoal) ⊗ Kmission

and ⊗ is XOR

This scheme provides great flexibility in MLS-PCA to

match security policy to the needs of the avionics
application. Most missions are static with fixed AAP
communication patterns as one might find in an
autonomous Unpopulated Air Vehicle (UAV). In such a
static environment, we might do away with the NSE and
have access policy keys pre-placed during initialization at
the EPEs by mission control.

5.5 Crypto Issues

The MLS-PCA model is silent on how the encryption
function is mechanized – in software or hardware. It is
only concerned that it be correct, always invoked, and
always bound to its AAP. It is the “reference monitor” for
the architecture [2].

The model is also silent on the encryption algorithm to
be employed. We only assume it will have management
features compatible with DOD Type I and Type II
encryption, and commercial algorithms such as Triple
Data Encryption Standard (DES), and the Advanced
Encryption Standard (AES). Choice will be made at the
time of specific application. We do specify a Public Key
Infrastructure (PKI) scheme for secure key distribution
during system boot (cf. Section 5.6). Key management is
intimately tied to security policy as discussed in Section
5.4.

Every secure system must have a means of revoking
access upon discovering hostile, or runaway behavior of a
subject. This means revoking a trusted connection
immediately. Revocation is achieved by erasing the guilty
AAP connection by “zeroizing” the session key for the
connection, Ksession.3 Zeroizing is a command sent from

2 Added security can be achieved by applying a non-invertible function
to Ksession to foil a rogue process impersonating an EPE from obtaining
Ksession and deducing the component keys.
3 “Zeroize” does not mean setting a key of all zeros. It means replacing a
key with a random value not known by any other EPE, thereby making
encrypted text using the zeroized key undecipherable.

the NSE to the EPE guarding the guilty AAP. Since the
NSE and EPE are trusted processes the key erase action
occurs near instantaneously breaking the AAP trusted
connection. The AAP cannot thwart the zeroize action
because it is not a party to the private infrastructure
command between the NSE and EPE. Also, unlike zeroize
of traditional encryption boxes, the zeroize command can
be acknowledged and states synchronized after action
taken by the EPE, which has a separate trusted connection
with the NSE. The model also uses zeroize of Kcoal at a
specific EPE to remove a subject (i.e., AAP) from a
coalition.

5.6 Initialize and Bootstrap of MLS-PCA

The NSE and the EPE is the Trusted Computing Base
(TCB) for the MLS-PCA scheme. There are two possible
implementation configurations for the MLS-PCA model
to protect the TCB: the first has the EPE in hardware;
second, has the EPE as a loadable software process. Our
view of the first consideration is the EPE process is a
hardware subroutine of the CPU chip, somewhat like
floating point hardware. We are looking at the proposed
PCA hardware chips for MIT’s Raw [21] and Stanford’s
Smart Memories [22] for how the model maps into the
hardware. Generally speaking the hardware configuration
is an easier initialization implementation because most of
the initial parameters are “wired” into the hardware, e.g.,
network addresses, or process logic. The unique hardware
initialization issues are a resource allocation consideration
when there exist lots of CPUs, memory, and buses on a
chip, i.e., a Raw chip has 16 CPUs; Smart Memories has
64 CPUs. The software EPE initialization issues are
classical security and integrity issues, the harder solution
of the two configurations.

5.6.1 Assumptions. For any given classified avionics
environment, the classified data and applications (AAPs)
will be created and configured in a classified and trusted
ground-based support system, a Mission Planning Center
(MPC). The MPC is an MLS trusted facility that plans
the mission, assembles the avionics mission software
AAPs from trusted configuration files, and defines the
mission configuration parameters (i.e., AAPs, NSE, EPEs,
flight plan, radio frequencies, encryption keys, security
levels of AAPs, weapons and fuel stores, and other items).
The mission vehicle information systems will contain
only unclassified data when “parked,” be it an aircraft,
UAV, or ship. The mission configuration parameters will
be written to a PMD to be loaded into the vehicle just
prior to the mission. The PMD will be encrypted to

protect the pre- and post-mission information stored on
the PMD.

There is a well known problem in trusted systems we
call the “fixed point theorem.” Encryption keys can be
wrapped in other encryption keys for protection during
transmission and storage outside of the crypto component.
However, at some fixed point there is a secret clear text
key pre-placed to permit the boot process to unfold in a
staged and protected manner. In MLS-PCA the fixed
point is a physical “ignition key” inserted into the system,
and a pre-placed PKI private key in non-volatile memory
of the NSE processor board, similar to the Trusted
Computing Platform Alliance scheme [23]. The ignition
key is used to begin the unwrapping of encrypted keys
using a physically protected token. To decrypt the PMD,
the ignition key will be carried to the vehicle by the pilot
(or mission commander for pilot less vehicles) and
inserted in the cockpit prior to takeoff. The ignition key,
like the PMD, is created by the MPC. We anticipate NSA
as responsible for the PMD encryption/decryption logic
and wiring of the ignition key reader and PMD.

Figure 5.6: EPE Initialization Protocol

Typically, there will be one NSE and thousands of

AAP-EPE pairs. The NSE may be redundant or
distributed for reliability. The boot logic for the system
will have the NSE loaded first, followed by prioritized
EPE-AAP pairs loaded from the PMD. The mission will
drive all the initialization parameters. MPC will determine
the load priorities, locations of all devices and processes

(i.e., their net addresses, Adn and Ade), their
identifications (Idn, Ide), and the PKI private key and
public key of the NSE (Nv and Np, respectively). MPC
will also build a table of permissions and classifications
for all AAPs, the Bell-LaPadula access matrix, for the
mission. Lastly, the NSE will know all these initial
conditions by loading the access matrix from the PMD;
the EPEs will know some of these data by parameter
loading by MPC or NSE for each EPE-AAP pair code
loaded – Np, Adn, Ade, Idn.

5.6.2 EPE-NSE Initialization Protocol. There can be a
priority of operation of the mission functions reflected in
the order of AAP initialization. The NSE will know that
priority. For an AAP to run it must first be bound to an
EPE. Since both AAP and EPE are software processes,
they should run on adjacent processors. Also, there is
nothing unique about an EPE; any EPE can be bound to a
unique AAP. The NSE reads the PMD and creates an
EPE, loading and/or assigning parameters to bind it to an
AAP. The EPE is then executed while the NSE creates

another EPE. The EPE’s first action is to generate a
random key (Er). Since all EPEs are identical, Er must be
based on some changing system variable to avoid
repeating Er among different EPE invocations. Its next
action is to create and send a Hello message to the NSE,
giving the Hello message identification, its net address
(Ade), random key (Er), and an integrity checksum, all
wrapped in the public key (Np) of the NSE. This foils
unauthorized reading of the Hello message by possible
Trojans hidden in the architecture. The NSE saves these

State Space

EPE NSE

@ Start: N p, E r, Idn, Ade, Adn Nv, Idn, Adn

@ End 1: N p, E r, Idn, Ade, Adn N v, Idn, Adn, N s,
E r, Ade

@ End 2: N p, E r, Idn, Ade, Nv, Idn, Adn N s,
Adn,, Ide, N s E r, Ade , Ide

@ End 3: N p, E r, Idn, Ade, Nv, Idn, Adn

Adn , Ide, N s N s, E r, Ade , Ide

W here:

N p = NSE Public Key N s = NSE-EPE Session Key
E r = EPE Random Key Ide = EPE Id, Idn = NSE Id
N v = NSE Private Key Ade = EPE Address
Adn = NSE Address

1

2

3

NSEEPE M essage

(Hello, Er, Ade, Ck)N p

NSE Reply: (N s, Idn, Ide, Ck)Er

EPE Ack: (Ide, Ck)N s

State Space

EPE NSE

@ Start: N p, E r, Idn, Ade, Adn Nv, Idn, Adn

@ End 1: N p, E r, Idn, Ade, Adn N v, Idn, Adn, N s,
E r, Ade

@ End 2: N p, E r, Idn, Ade, Nv, Idn, Adn N s,
Adn,, Ide, N s E r, Ade , Ide

@ End 3: N p, E r, Idn, Ade, Nv, Idn, Adn

Adn , Ide, N s N s, E r, Ade , Ide

W here:

N p = NSE Public Key N s = NSE-EPE Session Key
E r = EPE Random Key Ide = EPE Id, Idn = NSE Id
N v = NSE Private Key Ade = EPE Address
Adn = NSE Address

1

2

3

NSEEPE M essage

(Hello, Er, Ade, Ck)N p

NSE Reply: (N s, Idn, Ide, Ck)Er

EPE Ack: (Ide, Ck)N s

1

2

3

NSEEPE M essage

(Hello, Er, Ade, Ck)N p

NSE Reply: (N s, Idn, Ide, Ck)Er

EPE Ack: (Ide, Ck)N s

parameters and assigns the next priority AAP to this EPE
by assigning an identity (Ide) to the EPE; Ide can be the
identity of the bound AAP. It includes its own Idn to
confirm to the EPE its identity, gives a newly created
NSE-EPE session key (Ns) based on the security level of
the bound AAP, adds an integrity checksum, and wraps
the whole message in the EPE’s Er. This provides critical
information securely to the EPE to whom it is bound,
including the session key for further NSE dialogs, the
identity confirmation of the NSE, and an indication that a
false NSE is not spoofing it. The last message by the EPE
is an acknowledgement to synchronize state with the
NSE. This complete initialization sequence and state
space is shown graphically in Figure 5.6.

6. Certification and Accreditation, C&A

With the demise of DOD 5200.28-STD [3] and the
NIAP practice defined only through Common Criteria
(CC) Evaluation Assurance Level 4 (EAL4), high
assurance (EAL5-7) is without a C&A support
organization. Only a DOD user agency can assume
responsibility, and only for its application [11, 15].
Because MLS-PCA is years away from its first
application, we have adopted the CC EAL7 C&A as the
driving security assurance requirements, particularly the
formal specification and verification [4].

Table 6.1: MLS-PCA Formal Spec Characteristics

6.1 Formal Specification
The functional model for MLS-PCA is described in

Section 5. Early in the DARPA PCA program we studied
available formal language systems [24] and selected
MIT’s Alloy for its state machine expressiveness,
available tool suite, and its constraint checking approach
to spec verification [25]. The MLS-PCA formal spec is
now complete and verified. Its salient features are
summarized in Table 6.1. Details of the formal
specification can be found in the companion paper,

“Using Alloy to Formally Specify MLS-PCA Trusted
Security Architecture” [26].

6.2 MLS-PCA Verification

The Alloy Constraint Checker does not prove a spec is
correct, rather it assures the user the spec is consistent
with its assertions, constraints and initial values. It
logically checks the spec to show the existence of values
of state variables that satisfy all spec transforms,
constraints, and conditions. If there are no values of state
variables that meet these conditions, the spec is “over
constrained.” If there are contradictions among the states,
constraints, and values, the spec is “under constrained.”
Finding the right balance between these extremes is the
art of writing a formal spec. The Alloy Constraint
Checker provides the engineering balance to verification
between no checking and formal proof. The tools are fast
and quite useable [27].

6.3 MLS-PCA Flaws Found by Verification

One of the earliest flaws found by the Alloy Constraint
Checker we subsequently called “fate sharing” – death of
an EPE and its bound AAP. Before repair, the spec
allowed an AAP process to die and be replaced by
another. The Alloy Checker found a case where a
message destined for an old Secret AAP arrived and was
delivered to a new unclassified AAP now bound to the
EPE; a clear violation of the no write-down constraint.
The repair was fate sharing of AAP-EPE.

Another flaw found dealt with messages arriving out of
order. An NSE sends two messages to an EPE: rekey then
revoke a trusted connection. If the messages arrive out of
order, the new key would in effect re-establish the just
revoked connection. MLS-PCA will guarantee messages
arrive in order to assure state synchrony and prevent
replay attacks.

The last example arises from the distributed nature of
the MLS-PCA model. Distributed systems have potential
state synchrony problems due to message delays. The
Alloy Constraint Analyzer found a case where the
operation that changes DAC permissions invalidated the
DAC invariant, that says “a communication path is in
existence only if the DAC policy allows it.” The problem
was the delay in synchronizing the DAC change with the
EPE state – an example of the classical problem of when
does a revocation become effective? Normally this
invariant check is used to determine if an operation is
under-constrained. Here, it is the invariant that is over-
constrained. The solution was to relax the DAC invariant

Feature Quantity
Signatures (i.e., Domains) 63
Relations (i.e., State Variables) 64
Operations (i.e., Transforms) 39
Predicates (i.e., Conditionals) 38
Facts (i.e., Definitions) 28
Invariants (i.e., Constraints) 18

and apply it only to new connections. The new rule is “ A
connection path may be created only if the DAC policy
allows it.”

7. Conclusion: Proof of Concept
The proof is in the pudding, and our pudding is an

MLS-PCA proof of concept demonstration. But how do
you demonstrate thousands of networked processors
nearly two decades before they exist? We wish to write
code from the formal specs for the NSE, EPE, and a vital
application of AAPs. Simulation would not admit code,
and lashing together many microprocessors is too
expensive. Using hundreds of PCA chips is years in the
future when they first become available from DARPA.
That was our dilemma early on. We found a way using
Grid Computing [28].

7.1 Grid Computing: Simulating 1000s of CPUs

The DARPA contract under which MLS-PCA was
developed was limited just to the formal modeling effort.
However, Northrop Grumman Corporation found the
modeling results of great interest and chose to sponsor a
prototype using CY 2003 Independent R&D (IRAD).

The Northrop Grumman Corporation R&D private
network consists of hundreds of user workstations of
Windows PCs, Sun Solaris machines, and Silicon
Graphics workstations. If we ran just 10 AAPs per
workstation, we can have a 1000 node distributed MLS-
PCA implementation via a Grid Computing architecture.
The net is essentially available two shifts a day plus
weekends. We wrote the NSE and EPE code in C++ from
the formal specs. We run the code under Windows with
an IP protocol stack, and build trusted connections with
IPSec, 256-bit key AES software encryption, and HMAC-
SHA-256 authentication for the EPE. We recognize the
vulnerability of MLS-PCA to attacks on the Windows
OS; however, the objective of this implementation is to
shake out the model, demonstrate its soundness, and
collect basic performance data. Later, we will drop
Windows and replace it with a high assurance TCB to
boot and run NSE, EPE and AAP code. We have also
selected a meaningful MLS-PCA demonstration
application.

7.2 Targeting Application

MLS-PCA computing demands a different paradigm
for designing applications. Rather than construct large
monolithic functional modules of hardware and software,

as is current practice, our model demands functions be
composed of small code segments, i.e., processes, each of
which operates at a single security level within its own
processor, and communicates with related processes via
Inter Process Communication. The art of designing such
distributed software is just beginning to take shape in
various research efforts, e.g., DARPA’s “agent-based
systems”[29]. Northrop Grumman Corporation has an
extensive R&D effort in multi-sensor target detection.
These algorithm-based applications have MLS properties
and can profit from the parallelism inherent in the
distributed MLS-PCA model and Grid Computing.

A typical target radar or infrared image can be as large
as 9,000 x 9,000 pixels. This is too large for processing
algorithms on anything short of a high performance server
or special digital signal processor; certainly beyond the
capabilities of a current PC. Our Grid Computing demo
will divide the image into 100 smaller 1,000 x 1,000 pixel
sub-images or cells, allowing for cell overlap to avoid
missing features that span a cell boundary, and pass each
cell on to a Grid processor. A Grid processor is capable of
applying a search algorithm to detect potential targets in
the cell. We are simulating data for different target types.
When a potential target is detected and identified in the
cell, the algorithm will report the potential target to a
central controller that will eliminate duplicate reports. The
central controller will report each potential target to one
of four target controllers, one for each of four types, also
running as separate processors on the Grid. Target
controller types are at different simulated security levels:
unclassified, confidential, secret, and top secret. The cell
processors will all run at a simulated unclassified security
level. A cell processor will write up to the central
controller’s higher security level, and the central
controller will write up to the appropriate target
controllers. MLS-PCA is designed explicitly via the
simplex trusted paths to permit authorized Append
connections. The target controllers will display the reports
from all the cells, and show the distribution of found
targets on a composite system high display.

7.3 Performance Goals

The objective of the demonstration is to show the
feasibility of building MLS systems on the MLS-PCA
architecture. It will provide us with a vehicle for gathering
performance data on the critical choke points in the
architecture, the boot procedure, the initialization
mechanisms, and oversights in the design. The
demonstration will achieve:

• Simulated MLS operation in a distributed network

• Distributed application of a typical avionics function,
i.e., targeting

• High value of formal specification
• Proof of concept for MLS-PCA

o Operation of live NSE, EPE, and AAP code
and IPC

o Boot of MLS-PCA
o Performance data on MLS-PCA operation

• Program interest from a real avionics application

There was insufficient testing to report our findings by

publication date. However, the coding and checkout of the
NSE and EPE went well and quickly, completed in four-
months. The NSE is 3371 Source Lines of Code (SLOC)
compiling to 344K binary, and the EPE is 2679 SLOC
compiling to 580K binary, not counting libraries used.
The non-optimized code is small enough to be handled by
any of the Grid PCs, and even the limited PCA memory
available with first generation chips. The applications
AAPs are the long lead-time elements. A future
companion paper will report the specific findings of the
Proof of Concept Demonstration.

8. References

[1] “Joint Vision 2020”, JCS, J5, June 2000.

Available at
http://www.dtic.mil/jointvision/jvpub2.htm.

[2] J. P. Anderson, “Computer Security Technology

Planning Study”, 1972, In ESD-TR-73-51.

[3] “Department of Defense Trusted Computer System

Evaluation Criteria (TCSEC)”, DOD 5200.28-STD,
December 1985. Available at
http://www.fas.org/irp/nsa/rainbow.htm

[4] “Common Criteria for Information Technology

Security Evaluation”, ISO/IEC 15408, Version 2.1,
CCIMB-99-031, August 1999. Available at
http://www.radium.ncsc.mil/tpep/library/ccitse/ccitse.
html.

[5] Rainbow Series of books on evaluating Trusted

Computer Systems according to National Security
Agency (NSA) expounding on the Orange Book
(TCSEC). Available at
http://www.fas.org/irp/nsa/rainbow.htm

[6] “Polymorphic Computing Architecture Mission”

Available at http://www.darpa.mil/ipto/research/pca/

[7] “Computer Security Requirements – Guidance for
Applying the DOD TCSEC in Specific
Environments”, June 1985, CSC-STD-003-85.
Available at
http://www.fas.org/irp/nsa/rainbow.htm

[8] “Technical Rationale Behind CSC-STD-003-85:

Computer Security Requirements”, June 1985, CSC-
STD-004-85. Available at
http://www.fas.org/irp/nsa/rainbow.htm

[9] “Information Assurance”, October 2002, DOD

Directive 8500.1.
Available at http://www.dtic.mil/whs/directives

[10] “Information Assurance (IA) Implementation”,
 February 2003, DOD Instruction 8500.2,

Available at http://www.dtic.mil/whs/directives

[11] “National Industrial Security Program Operating

Manual, NISPOM”, DOD 5220.22-M, December
1993. Available at
http://www.dss.mil/infoas/index.htm

•
[12] “Protecting Sensitive Compartmented Information

within Information Systems”, Director of Central
Intelligence Directive 6/3, June 1999. Available at
http://www.fas.org/irp/offdocs/DCID_6-
3_20Policy.htm

[13] “DOD Information Technology Security Certification
and Accreditation Process, DITSCAP”, December
1997, DOD 5200.40,. Available at
http://www.dss.mil/infoas/index.htm

[14] “National Information Assurance Partnership, NIAP”,

NIST, 1997. Available at http://niap.nist.gov/

[15] “National Security Telecommunications and

Information Systems Security Committee, NSTISSC,
Policy #11”. July 2002. Available at
http://niap.nist.gov/cc-scheme/nstissp_11.pdf

[16] “Partitioning Kernel Protection Profile, Preliminary

Draft V0.3”, NSA C12, October 2002.

[17] J. Rushby, “A Trusted Computing Base for Embedded

Systems,” Proceedings of the 7th Department of
Defense/NBS Computer Security Conference, 1984,
 pp 294-311.

[18] “Definition” Available at

http://www.webopedia.com/TERM/M/Moores_Law.ht
ml

http://www.dtic.mil/jointvision/jvpub2.htm
http://www.fas.org/irp/nsa/rainbow.htm
http://www.radium.ncsc.mil/tpep/library/ccitse/ccitse.html
http://www.radium.ncsc.mil/tpep/library/ccitse/ccitse.html
http://www.fas.org/irp/nsa/rainbow.htm
http://www.darpa.mil/ipto/research/pca/
http://www.fas.org/irp/nsa/rainbow.htm
http://www.fas.org/irp/nsa/rainbow.htm
http://www.dtic.mil/whs/directives
http://www.dtic.mil/whs/directives
http://www.dss.mil/infoas/index.htm
http://www.fas.org/irp/offdocs/DCID_6-3_20Policy.htm
http://www.fas.org/irp/offdocs/DCID_6-3_20Policy.htm
http://www.dss.mil/infoas/index.htm
http://niap.nist.gov/
http://niap.nist.gov/cc-scheme/nstissp_11.pdf
http://www.webopedia.com/TERM/M/Moores_Law.html
http://www.webopedia.com/TERM/M/Moores_Law.html

[19] C. Weissman, “BLACKER: Security for the DDN,
Examples of A1 Security Engineering”, Presented at
1988 IEEE Symposium on Security and Privacy,
Proceedings Conference IEEE Symposium on Security
and Privacy, Oakland CA, 1992, pp 286. Available at
http://www.computer.org/proceedings/sp/2825/282502
86abs.htm

[20] D. E. Bell, and L. LaPadula, “Secure Computer

Systems: Unified Exposition and Multics
Interpretation”, Technical Report ESD-TR-75-306,
ESD/AFSC, Hanscom AFB, Bedford, MA, 1975.
Available at http://csrc.nist.gov/publications/history/

[21] M. Taylor, “The Raw Prototype Design Document

V4.11”, Department of Electrical Engineering, MIT,
2002. Available at:

 http://www.cag.lcs.mit.edu/raw/documents/RawSpec9
9.pdf

[22] K. Mai, et al, “Smart Memories: A Modular

Reconfigurable Architecture,” Computer Systems
Laboratory, Stanford University, 2000. Available at:
http://mos.stanford.edu/papers/km_isca_00.pdf

[23] “Trusted Computing Platform Alliance Main

Specification V1.1b,” February 2002.
Available at: http://www.trustedcomputing.org/

[24] B. Hashii, “Formal Specification Languages and

Theorem Provers”, Northrop Grumman Corporation,
El Segundo, CA, December 2001

[25] D. Jackson, and J. M. Wing, “Lightweight Formal

Methods”, IEEE Computer, April 1996, pp 21-22

[26] B. Hashii, “Using Alloy to Formally Specify MLS-

PCA Trusted Security Architecture”, Northrop
Grumman Corporation, El Segundo, CA, July 2003

[27] D. Jackson, “Micromodels of Software: Modeling &

Analysis with Alloy”, MIT Lab for Computer Science,
November 2001. Available at
http://sdg.lcs.mit.edu/alloy/book.pdf.

[28] Grid Computing Center. Available at

http://www.gridcomputing.com/

[29] “Intelligent Software Agents Lab,” Available at

http://www.cs.cmu.edu/~softagents

http://www.computer.org/proceedings/sp/2825/28250286abs.htm
http://www.computer.org/proceedings/sp/2825/28250286abs.htm
http://csrc.nist.gov/publications/history/
http://www.cag.lcs.mit.edu/raw/documents/RawSpec99.pdf
http://www.cag.lcs.mit.edu/raw/documents/RawSpec99.pdf
http://mos.stanford.edu/papers/
http://www.trustedcomputing.org/
http://sdg.lcs.mit.edu/alloy/book.pdf
http://www.gridcomputing.com/
http://www.cs.cmu.edu/~softagents

	Introductions and Motivation
	Character of Avionics
	System High Won’t Work

	MLS Problem
	Moore’s Law Predicts A Wealth of CPUs
	MLS-PCA Characteristics
	MLS-PCA Functional Model
	Avionics Application Process, AAP
	Encryption Processing Element, EPE
	Network Security Element, NSE
	Security Policy Enforced by Encryption
	Crypto Issues
	Initialize and Bootstrap of MLS-PCA

	Certification and Accreditation, C&A
	6.1 Formal Specification
	MLS-PCA Verification
	MLS-PCA Flaws Found by Verification

	Conclusion: Proof of Concept
	Grid Computing: Simulating 1000s of CPUs
	Targeting Application
	Performance Goals

	References

