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a b s t r a c t

Learning from imbalanced data is a problem which arises in many real-world scenarios, so does the need

to build classifiers able to predict more than one class label simultaneously (multilabel classification).

Dealing with imbalance by means of resampling methods is an approach that has been deeply studied

lately, primarily in the context of traditional (non-multilabel) classification.

In this paper the process of synthetic instance generation for multilabel datasets (MLDs) is studied and

MLSMOTE (Multilabel Synthetic Minority Over-sampling Technique), a new algorithm aimed to produce

synthetic instances for imbalanced MLDs, is proposed. An extensive review on how imbalance in the mul-

tilabel context has been tackled in the past is provided, along with a thorough experimental study aimed

to verify the benefits of the proposed algorithm. Several multilabel classification algorithms and other

multilabel oversampling methods are considered, as well as ensemble-based algorithms for imbalanced

multilabel classification. The empirical analysis shows that MLSMOTE is able to improve the classification

results produced by existent proposals.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Classification is one of the main supervised learning applica-

tions, an important field in Machine Learning [1]. The goal is to

train a model using a set of labeled data samples, obtaining a clas-

sifier able to label new, never seen before, unlabeled samples. The

datasets used in traditional classification have only one class per

instance. By contrast, in multilabel datasets (MLDs) [2] each

instance has more than one class assigned, and the total number

of different classes (labels) can be huge.

In many real world scenarios, such as text classification [3] and

fraud detection [4], the number of instances associated to some

classes is much smaller (greater) than the amount of instances

assigned to others. This problem, known as imbalanced learning,

has been widely studied over the last decade [5] in the context

of classic classification. It is also present in multilabel classification

(MLC), since labels are unevenly distributed in most MLDs. To deal

with imbalance in MLC, methods based on algorithmic adaptations

[6–8], the use of ensembles [9,10], and resampling techniques [11–

13] have been proposed.

Among the existent resampling techniques, those based on the

generation of new samples (oversampling) have shown [14] to

work better than others. The new samples can be clones of existent

ones, or be synthetically produced as in SMOTE (Synthetic Minority

Over-sampling Technique) [15]. Multilabel oversampling algo-

rithms based on the cloning approach have been proposed in

[12,13], being demonstrated its capability to deliver an improve-

ment in classification results. A synthetic approach to produce

new samples in MLDs is still to be faced. SMOTE is the most pop-

ular algorithm for this task in non-multilabel datasets, so it would

be a good starting point.

Imbalance in MLC has been faced mainly through algorithmic

adaptations and the use of ensembles, while the resampling

approach is the least examined path until now. Nevertheless it is

an interesting way and deserves to be taken into account, as the

results in [12] have shown. Since oversampling algorithms seem

to produce better results, designing a more advanced method to

produce new data samples could be worth the effort. This is the

motivation behind MLSMOTE (Multilabel Synthetic Minority

Over-sampling Technique), a novel multilabel oversampling algo-

rithm designed to create synthetic instances associated to minority

labels.

The popular SMOTE algorithm takes all the samples belonging

to the minority class, picks a random instance among the nearest
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neighbors of each one, and produces a new sample with the same

minority class. Both the number of nearest neighbors and the

amount of synthetic instances used for each minority sample can

be adjusted. In a multilabel context there will always be more than

one minority label, thus a strategy for choosing the appropriate

instances has to be established. Moreover, the synthetic instances

need a set of labels (labelsets) instead of being associated to an

individual class. Therefore, a method to generate these synthetic

labelsets has also to be settled.

The aim of this paper is to present MLSMOTE. As mentioned

above, its goal is to produce synthetic instances associated to

minority labels. In order to know which labels are minority,

MLSMOTE leans on the multilabel imbalance measures proposed

in [16]. The features of the synthetic instances are obtained by

interpolation of values belonging to nearest neighbors, as in

SMOTE. The labelsets of these new instances are also gathered

from nearest neighbors, taking advantage of label correlation infor-

mation in the neighborhood. For this task three different methods

were studied, the intersection of the labels which appear in the

neighbors, the union of those, and a third method based on a rank-

ing of label occurrences. An extensive experimentation, structured

in two different phases that will be detailed later, has been con-

ducted. From the analysis of this experimentation it can be con-

cluded that MLSMOTE, our multilabel synthetic minority

oversampling technique, accomplishes a general improvement in

classification results when compared with previous proposals with

the same purpose.

The rest of this paper is organized as follows. In Section 2 the

MLC and imbalanced learning problems are introduced. Section 3

provides a comprehensive review on the published approaches to

work with multilabel imbalanced datasets. Section 4 provides all

the details about the MLSMOTE algorithm, its parameters and

implementation. In Section 5 the experimental framework used

is defined, and the results obtained from experimentation are ana-

lyzed. Section 6 provides a final discussion and conclusions.

2. Preliminaries

The algorithm proposed in this paper has ties with two different

topics, multilabel classification and imbalanced learning. In this

section a brief introduction to both is provided, along with some

specific details regarding imbalanced learning in the multilabel

context.

2.1. Multilabel classification

In traditional classification the datasets are composed of a set of

input features and a unique value in the output attribute, the class

or label. In MLC [2] each sample may contain more than one value

(class) in the output feature. Thus, the output of the classifier is not

an individual label but a set of them. As stated in [2], a multilabel

classifier will usually generate its prediction using two different

methods. One is giving as output a bipartition, composed as a set

of true/false values for each label. Another is returning a label rank-

ing. In any case, most MLC solutions are built around one of two

different approaches:

� Data transformation methods aim to convert the original data-

set in order to use traditional classification algorithms to pro-

cess it. A complete taxonomy of transformation methods for

MLDs can be found in [17]. The two most popular ones are

called Binary Relevance (BR) [18] and Label Powerset (LP)

[19]. The former generates multiple binary datasets, one for

each label, while the latter produces only one multiclass data-

set, using as class the set of active labels in each sample.

� The goal of the method adaptation approach is to modify known

classification algorithms to make them able to work with MLDs.

There are many proposals in this field, from MLC trees like

ML-TREE [20] or a multilabel kNN called ML-kNN [21] to multi-

label neural networks [22,23] and SVMs [24]. There are also sev-

eral methods based on ensembles of classifiers, such as RAkEL

[25], CLR [26], HOMER [27], CC [28], and ECC [29], as well as

other approaches to the problem, such as the use of

Error-Correcting Codes [30].

In addition to new algorithms, MLC also demanded specific

measures to evaluate classification results, as well as measures

aimed to assess some MLDs peculiarities. In [2] the definition of

most of them can be found. A recent review on the

state-of-the-art multilabel learning algorithms, as well as evalua-

tion measures, can be found in [31]. The measures used in this

study will be defined later, in SubSection 2.3 (characterization

measures) and Section 5 (evaluation measures).

2.2. Imbalance in traditional classification

In general, most classifiers underperform when used with

imbalanced datasets. As stated in [32] the reason lies in their

design, aimed to reduce the global error rate. This is a design which

tends to benefit the most represented class in the dataset (majority

class), labeling new instances with this class at the expense of the

minority class. Moreover, imbalanced distribution of classes can

complicate other common problems, such as noisy labels [33].

Three main approaches [34] have been proposed to face the

imbalance problem. Data resampling follows the preprocessing

approach, rebalancing the class distribution by deletion [35] or cre-

ation [15] of instances. Resampling techniques are

classifier-independent solutions to the imbalanced learning prob-

lem, albeit some proposals for specific classifiers exist [36], and

have shown their general effectiveness [14]. The other two

approaches, algorithmic adaptations [37] and cost sensitive classi-

fication [38], are classifier dependent. The goal of the former is to

modify existent classifiers taking into account the imbalanced nat-

ure of the datasets. The latter combines the design of adapted clas-

sifiers with some data preprocessing techniques. The present study

is focused in the first approach. A general introduction and addi-

tional details about these approaches can be found in [39]. In some

cases, resampling techniques are used along with ensembles of

classifiers to tackle the imbalance problem. A general overview

on ensemble methods is provided in [40]. The use of ensembles

in imbalanced classification was recently reviewed in [41], and

some specific algorithms are proposed in [42].

Most resampling algorithms consider one majority (minority)

class only. Thus, undersampling techniques remove instances from

the most frequent class only, whereas oversampling methods cre-

ate instances from the least frequent one only. SMOTE works this

way, generating new samples associated to the least frequent class.

Firstly, the set of instances belonging to the minority class is

obtained. For each instance in this set, SMOTE gathers a small

batch of nearest neighbors. Typically the size of this group is 5.

For each synthetic instance to produce, one of these neighbors is

randomly picked. The features of the new sample are interpolated

along the line which connects the reference and the neighbor

instances. The class of the synthetic sample is always the minority

class.

2.3. Imbalance in multilabel classification

The total number of distinct labels tends to be quite large in

nearly all MLDs. The most usual cases are in the range from several

dozens to a few hundreds of labels. There also are some extreme
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cases, with some MLDs having less than ten labels and others

which use more than a thousand of them.

Despite the large set of labels appearing in many MLDs, each

one of their samples is usually associated to a very small subset

of them. As can be seen in Table 3 (see Section 5), for the MLDs

used in our experimentation the average number of labels per sam-

ple, measure known as Cardinality (Card), is always below 5 with

the exception of cal500. Intuitively, it is easy to deduct that some

of the labels appear in many samples while others are scarcely rep-

resented. In general, the larger is the number of different labels, the

higher will be the likelihood that some of them are underrepre-

sented (overrepresented). Fig. 1 is a representation of the percent-

age of samples in which the 40 most common labels in each MLD

appear. That most MLDs have two or three very frequent labels,

whereas the rest of them are barely represented, can be observed.

Overall, it can be seen that most labels are present in less than 5%

of the instances. It must be taken into account that many of these

MLDs have more than 40 labels. Those not appearing in Fig. 1 are

much less frequent. Therefore, that a high imbalance among the

labels exists can be visually inferred.

This imbalance ratio can be assessed with two of the measures

proposed in [16] for this task. IRLbl is a measure obtained for each

label in the dataset. It is defined as shown in Eq. (1) and assesses

the individual label imbalance ratio. As can be seen in Eq. (2),

MeanIR is obtained by averaging the IRLbl for all labels. In these

equations D stands for the MLD, L for the full set of labels, Ll for

the lth label in this set, and Y i for the labelset associated to the

ith instance in D. Both measures can be easily obtained with the

mldr R package [43].

IRLblðlÞ ¼
argmax

LjLj

l0¼L1

PjDj
i¼1 hðl

0
;Y iÞ

� �

PjDj
i¼1 hðl;Y iÞ

;hðl;Y iÞ ¼
1 l 2 Y i

0 l R Y i

�

ð1Þ

MeanIR ¼
1

jLj

X

LjLj

l¼L1

ðIRLblðlÞÞ: ð2Þ

The previous fact leads to a fundamental difference between

imbalanced MLDs with respect to imbalance in traditional

datasets, there is not only one minority (majority) class but

a group of minority (majority) labels. Therefore, any algorithm

designed to tackle imbalance in MLDs should take into account

that it must consider several labels as targets, rather than only

one.

Another intrinsic characteristic of imbalanced MLDs, which

does not exist in traditional datasets, is the joint appearance of

minority and majority labels in the same samples [44]. This casu-

istic adds another obstacle to the learning from imbalanced

MLDs process. Furthermore, it makes it harder to find solutions

based on resampling techniques. Fig. 2 shows how the labels in

the tmc2007 dataset interact. The size of each arc is proportional

to the frequency of the represented label. The innermost ring

shows the color code associated to each label, and also indicates

the number of instances in which it appears. The outermost ring

provides a relative scale, along with the color codes corresponding

to other labels present in the same set of instances. Color coded

links depict the interactions among labels. The thickness of each

link is proportional to the number of instances involved in each

interaction. That more than a half of the instances in which the

C22 label, one of the minority labels, appears are also associated

to the C02 label, which is the most frequent label, can be noticed.

The same circumstance affects to other minority labels in this MLD,

as well as most of the remainder MLDs used frequently in the

literature.
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Fig. 1. Frequency of the 40 most common labels in each dataset.
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3. Related work: learning from imbalanced MLDs

Many published works claim the intrinsically imbalanced nat-

ure of MLDs, a fact experimentally stated in [12] by means of speci-

fic measures. In this section, the several published ways to

accomplish classification with imbalanced MLDs are depicted,

organized according to three well-known approaches: algorithmic

adaptations, ensemble-based methods and resampling techniques.

3.1. MLC algorithmic adaptation proposals

Several solutions based on algorithmic adaptations have been

proposed in late years to deal with imbalanced MLDs, among

them:

� In [6] the authors face a highly imbalanced multilabel problem,

as is the prediction of human proteins localizations. Their

method, based on non-parametric probabilistic models, combi-

nes the use of covariance matrices to obtain label correlations

and weighted coefficients associated to each label to fix the

imbalance problem.

� The proposal in [7] is an adaptation of MIMLRBF [45], a

multi-instance-multilabel classification algorithm based on

radial basis artificial neural networks (RBFN). The proposed

algorithm optimizes the original one to work with imbalanced

MLDs in two ways. The number of units in the hidden layer is

not constant, as in MIMLRBF, but calculated taking into account

the number of samples per label. Additionally, the weights con-

necting this hidden layer with the output layer are adjusted

applying an individual bias for each label.

� Also based on ANN, in [8] an iterative enrichment process is

proposed. The authors initialize the ANN by clustering part of

the data, after which a resampling over each cluster is per-

formed in order to balance them in the euclidean space. Once

initialized, the training consists in an enrichment method which

removes samples and aggregates new data samples to improve

the equilibrium of the network.

� In [46] a Min–Max-Modular network [47] is used in order to

divide the classification task in several smaller tasks. Different

strategies are tested to ensure that the imbalance in these smal-

ler problems is lower than in the original one. The decomposi-

tion of the task in several smaller ones is faced randomly,

through clustering, or using Principal Component Analysis

[48]. The classification subproblems are always binary, and they

are processed with SVM algorithms.

All these methods have been designed to be algorithm depen-

dent, and their applications are mostly very specific to the domains

described in the referenced papers.

3.2. Ensemble based proposals

Classification techniques relying on ensembles of classifiers

have shown their strength in the MLC field, with algorithms such

Fig. 2. Concurrence among labels in the tmc2007 MLD.
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as RAkEL [25], ECC [29], and HOMER [27] among the best perform-

ers. This same approach has been also applied to solve the imbal-

ance problem:

� The proposal made in [9] builds an heterogeneous ensemble

(EML from now on) using RAkEL [25], ECC [29], CLR [26],

MLkNN [21], and IBLR [49] as underlying MLC algorithms. The

authors state that the use of ensembles will be positive to work

with imbalanced MLDs. Some of the algorithms used in the pro-

posed ensemble are ensembles of classifiers by themselves. The

authors test several procedures to obtain a final prediction com-

bining the individual ones, applying different thresholds and

weights to each classifier by means of cross validation.

� Originally designed to face imbalance in traditional classifica-

tion, the algorithm proposed in [10] is also useful for imbal-

anced MLC through the creation of ensembles with BR

classifiers. The proposal, called BR-IRUS, grounds its strategy

on training several classifiers for each label, using in each round

all the minority samples but only a small random subset of the

majority ones. This way several boundaries surrounding the

minority space are obtained.

A major weakness of these proposals is usually their efficiency,

as they demand the training of a large number of classifiers. This

number would depend on the MLD’s total number of labels, and

some MLDs have several hundreds of them. Additionally they are

algorithm-dependent solutions at some extent, since there is no

freedom to chose among the existent MLC algorithms.

3.3. Resampling techniques proposals

Contrasting with the methods covered previously, the ones

mentioned here belong to the classifier-independent algorithms

group. This means they are not tied to any MLC algorithm, but

are based on the preprocessing of the MLDs aiming to produce

new, more balanced versions of them. Therefore, the application

range of these methods is broader than the classifier-dependent

ones. The following are some published proposals in this field:

� The proposal in [11] is an undersampling algorithm for multil-

abel text classification. The authors follow a one-vs-all way,

generating an individual binary dataset for each label. All the

samples which belong to a certain label are marked as positive,

whereas the remainder ones will be marked as negative no mat-

ter what labels they contain. The number of the majority class

instances in each binary dataset, which is usually the negative

class, is reduced aiming to lower the bias of the classifiers.

The proposed solution could be also considered a transforma-

tion method, since its output is intended to be processed with

binary classification algorithms instead of MLC algorithms.

� Two undersampling and two oversampling algorithms are pre-

sented in [12], one of them based on some specific measures

introduced in [16] and directed to assess the imbalance level in

MLDs. As in other studies [14], the conducted experimentation

discovers that the oversamplingmethods perform usually better

than the undersampling ones. The two proposed oversampling

methods, called LP-ROS and ML-ROS, are random oversampling

algorithms, and both work by cloning instances associated to

minority cases. What makes them different are the procedures

followed to decide which cases are considered as minority.

LP-ROS considers each label combination as class identifier,

while ML-ROS individually evaluates the imbalance level of each

label. Eventually, the latter approach proved to be the most suc-

cessful. Despite the apparent simplicity of the random oversam-

pling techniques, ML-ROS achieved a significant overall

improvement of classification results with many MLDs.

� In [13], the authors analyze different strategies aimed to apply

the original SMOTE algorithm to MLDs. They do it by means

of three ways for selecting the seed instances, i.e. the instances

which will be taken as reference to locate their nearest neigh-

bors. Only one minority label is considered, what changes is

the method used to choose the instances which belong to that

label. The first method gives to SMOTE all the instances in

which the minority label appears, following a one-vs-all

approach as in the BR transformation method. The second

way selects instances in which only the minority label is pre-

sent, restricting the set of seed samples to those which are

single-labeled. In the third strategy the seed samples are pro-

cessed in batches, as many as different labelsets there are with

the minority label in them. Eventually the latter method, which

uses the UG strategy (SmoteUG from now on), proved to gener-

ate better results, whereas the other two produced a general

degradation in classification performance.

Although ML-ROS [12] is a basic random oversampling algo-

rithm, it is able to generate new instances for several minority

labels. By contrast the analysis conducted in [13] relies in a more

sophisticated oversampling algorithm such as SMOTE, but taking

into account only one minority label. Thus, it ignores the intrinsic

nature of MLDs. The following section shows how MLSMOTE

obtains the best of these two approaches.

4. MLSMOTE multilabel synthetic instance generation

Instead of producing synthetic samples only from one class,

MLSMOTE individually processes the set of instances in which each

minority label appear. Each minority sample will be the seed for a

new synthetic sample. These new instances need a set of features,

as well as a synthetic labelset indicating which of the labels

appearing in the reference sample and its neighbors will also be

present in the synthetic instance. Thus, there are four main aspects

to solve:

1. Minority instances selection: The algorithm assumes that most

MLDs will have more than one minority label. Therefore, a cri-

terion to know which labels are minority ones has to be

established.

2. Nearest neighbor search: Once an instance belonging to a

minority label has been selected, the algorithm has to search

its nearest neighbors.

3. Feature set generation: Having selected one of the neighbors,

the set of features for the synthetic instance is obtained through

interpolation techniques.

4. Synthetic labelset production: Finally, given the multilabel nat-

ure of the problem at glance, a synthetic labelset has to be gen-

erated for the new instance.

The following subsections detail each one of the previously

mentioned main aspects.

4.1. Minority instances selection

The generation of synthetic samples starts by selecting a minor-

ity instance as reference point. Hence, determining which

instances will be considered as minority ones is needed.

MLSMOTE relies in two aforementioned measures, IRLbl, defined

in Eq. (1), and MeanIR, defined in Eq. (2).

The criterion followed to consider a label l as minority is that

IRLbl(l) >MeanIR. In other words, that the frequency of the label l

is below the average frequency of all labels in the MLD. This way

the threshold used to cut the set of labels into two subsets,
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minority and majority labels, directly comes out of the MLD,

instead of setting an ad hoc level or number of labels to be consid-

ered as minority.

Using these two measures, lines 3–6 in Algorithm 1 obtain for

each minority label, those whose IRLbl is above MeanIR, a bag with

all the instances in which it appears. Each sample in the bag will be

taken as origin to search for nearest neighbors. It should be noted

that the same instance could be selected several times, as it could

be associated to more than one minority label.

4.2. Neighbor set selection

Once a minority instance has been chosen (sample in line 8 in

Algorithm 1), the next step will be to select a set with its nearest

neighbors. The size of this set is established by the k parameter.

The process begins by obtaining the distances between sample

and the other instances in minBag. The distance between two sam-

ples is measured aggregating the differences amid their corre-

sponding features. For numeric attributes the euclidean distance

is used, while for the nominal ones we rely on the Value

Difference Metric (VDM) [50].

The number of nearest neighbors considered, assigned to k, is 5

by default, as recommended in the original implementation of

SMOTE [15]. One of them is randomly picked (refNeigh in line 13

of Algorithm 1), and will be acting as the reference neighbor.

4.3. Feature set and label set generation

Having reached line 15 there are two samples selected, sample

and refNeigh. The feature values of the synthetic instance will be

interpolated (lines 24–31 in Algorithm 2) along the line which con-

nects these two samples, for numeric attributes, or taking into

account all the nearest neighbors, for nominal attributes.

Regarding the label set of the new instance, the method used

until now in other oversampling proposals has been the cloning

of the seed instance labelset. This technique completely disregards

the information related to label correlations. Rather than build a

global correlation model, as we did in [51], MLSMOTE tries to take

advantage of the data about correlation that can be obtained from

the neighborhood. Three possibilities were considered and empir-

ically assessed:

� Intersection: Only the labels which appear in the reference sam-

ple and all its neighbors will be in the synthetic labelset.

� Union: All the labels which appear in the reference sample or

any of its neighbors will be in the synthetic labelset.

� Ranking: A counting of the number of occurrences of each label

in the reference sample and its neighbors is made, including in

the synthetic labelset those present in half or more of the

instances considered, as usual in most voting schemes.

At first, a preference for one of them did not exist. Therefore, the

interest is in performing an all-against-all comparison to decide

which is the best one. To do this, the MLDs mentioned in

Section 5 were preprocessed with MLSMOTE using the three possi-

ble configurations. Then, the obtained datasets were used with the

MLC algorithms indicated in the same Section 5 and average test

results were retrieved. Two evidences can be drawn from those

results. The first is that, with few exceptions, the intersection

method for labelset generation is the worst performer. The second

is the difficulty to know which of the other two methods is per-

forming best, since both achieve many best cases and there are also

many ties.

To select the most appropriate labelset generation method the

Friedman test was applied. This test rejected the null-hypothesis,

indicating that some statistical differences exist. Table 1 shows

the average rankings obtained by each method for the three con-

sidered measures. As can be seen, the ranking method always

obtains the lowest values, which means that it is positioned ahead

of the others. To know the statistical significance of the differences

in ranking the Bergmann’s procedure was followed, obtaining the

p-values shown in Table 2. The ranking-based method achieves sig-

nificant differences against the intersection in both measures.

Although the difference between Ranking and Union methods

could not be considered statistically significant, the average rank-

ing of the former is always the best. This leads to conclude that

MLSMOTE performs better when the ranking method is used to

generate the labelsets. Therefore, this will be the labelset genera-

tion method used from here on.

Therefore, the ranking approach proved to be the most effective,

and it was implemented as shown in lines 35–38 in Algorithm 2.

The synthetic sample is eventually added to the MLD (line 17 in

Algorithm 1), and the algorithm will then process the remainder

instances of the same minority label first, and after that the rest

of minority labels. Aiming to achieve the best possible balance,

the IRLbl for each label is reassessed at the beginning of each cycle

(line 4 in Algorithm 1). This way, if a minority label reaches the

MeanIR value while processing, it will be excluded from the syn-

thetic sample generation procedure.

Algorithm 1. MLSMOTE algorithm’s pseudo-code.

Inputs:
D . Dataset to oversample

k . Number of nearest neighbors

1: L  labelsInDataset(D) . Full set of labels

2: MeanIR  calculateMeanIR(D; L)

3: for each label in L do

4: IRLbllabel  calculateIRperLabel(D; label)

5: if IRLbllabel > MeanIR then
6: . Bags of minority labels samples

7: minBag  getAllInstancesOfLabel(label)

8: for each sample in minBag do
9: distances  calcDistance(sample, minBag)

10: sortSmallerToLargest(distances)

11: . Neighbor set selection

12: neighbors  getHeadItems(distances, k)

13: refNeigh  getRandNeighbor(neighbors)

14: . Feature set and labelset generation

15: synthSmpl  newSample(sample,

16: refNeigh, neighbors)

17: D ¼ D + synthSmpl

18: end for
19: end if
20: end for

Table 1

Friedman rankings for the labelset generation methods.

Algorithm MacroFM MicroFM

Ranking 1.8077 1.7385

Union 1.9231 1.9231

Intersection 2.2692 2.3385

Table 2

Adjusted p-values produced by Bergmann’s procedure.

Hypothesis MacroFM MicroFM

Ranking vs Intersection 0.0255 0.0019

Union vs Intersection 0.0485 0.0179

Ranking vs Union 0.5107 0.2926
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Algorithm 2. Function: Generation of new synthetic instances.

21: function NEWSAMPLE(sample, refNeigh, neighbors)

22: synthSmpl  new Sample . New empty instance

23: . Feature set assignment

24: for each feat in synthSmpl do
25: if typeOf(feat) is numeric then
26: diff  refNeigh.feat � sample.feat

27: offset  diff ⁄ randInInterval(0,1)

28: value  sample.feat + offset

29: else
30: value  mostFreqVal(neighbors,feat)

31: end if
32: syntSmpl.feat  value

33: end for
34: . Label set assignment

35: lblCounts  counts(sample.labels)

36: lblCounts +  counts(neighbors.labels)

37: labels  lblCounts > (k + 1)/2

38: synthSmpl.labels  labels

39: return synthSmpl

40: end function

4.4. MLSMOTE pseudo-code

Algorithm 1 shows the pseudo-code of the proposed MLSMOTE

algorithm. The inputs to the algorithm are D, the MLD to be pro-

cessed, and k, the number of neighbors to use. The output will be

D including the synthetic samples generated by MLSMOTE.

The main body of the algorithm spans from line 3 to line 20, a

loop that goes across all the labels in the dataset. For each label

its IRLbl is obtained, and if it is above the MLD MeanIR the label

is considered as minority. In this case all the samples in which

the label appears are taken as seed instances, looking for their

nearest neighbors and generating a synthetic sample.

Algorithm 2 shows the function which is in charge of generating

new synthetic instances. This function needs as inputs the seed

sample, its k nearest neighbors, and a random neighbor (one of

the previous k neighbors) that will be taken as reference to inter-

polate the features values. As can be seen, the function can be

divided in two parts. The first one (lines 24–33) produces the fea-

ture values of the synthetic sample, while the second one (lines

35–38) generates the synthetic labelset.

4.5. MLSMOTE formal definition

Let L be the set of labels inD. 8k 2 L; IRLblk is defined.F ¼
Qn

i¼1 F i

being the input feature space. Each instance in D can be expressed

as ðf ;OÞ 2 F � PðLÞ. Taking M ¼ fk 2 L : IRLblk > MeanIRg, and

8k 2 M; Sk ¼ fðf ;OÞ 2 D : k 2 Og. Assuming that, for k 2 L; NNk is a

function that takes a sample and returns its nearest neighbors con-

taining k, let D0 be the enlarged MLD with the synthetic instances

included, defined as D0 ¼ D [ fðUkðsÞ;KkðsÞÞ : s 2 Sk; k 2 Mg, where:

Uk : Sk!F

ðf ;OÞ#h given by hi¼
rfiþð1�rÞgi=r2½0;1�;ðg;O

0Þ2NNkðsÞ F i is numeric;

argmax
v2Fi

jfðg;O0Þ2NNkðsÞ :gi¼vgj F i is notnumeric:

8

<

:

ð3Þ

and

Kk : Sk!PðLÞ

ðf ;OÞ# l2 L :

jfðg;O0Þ 2NNkðsÞ :l2O
0gj> jNNkðsÞj�1

2
^l 2O

or

jfðg;O0Þ 2NNkðsÞ :l2O
0gj> jNNkðsÞjþ1

2

8

>

<

>

:

9

>

=

>

;

ð4Þ

4.6. MLSMOTE computational complexity

MLSMOTE iterates all the samples in the processed MLD m

times, being m the number of minority labels and thus m < jLj.

Only the s samples in which the processed minority label appears

are taken as seeds. Usually s� N. For each seed its nearest neigh-

bors among those s instances are searched, and a synthetic

instance is generated. Therefore the computational complexity of

MLSMOTE would be Oðms2Þ.

In the next Section MLSMOTE will be experimentally compared

with other oversampling algorithms, such as LP-ROS, ML-ROS and

SmoteUG, previously described in Section 3.3. The computational

complexity of these methods is as follows:

� LP-ROS: This algorithm generates clones of samples corre-

sponding to the less frequent labelsets in an MLD.

Theoretically the number of different labelsets could be 2jLj,

but in practice this number is usually limited by N, the number

of samples in the MLD. Since this methods generates P% of new

instances, its complexity would be bounded by OðNPÞ.

� ML-ROS: The inner workings of these method are pretty similar

to those followed by MLSMOTE. Firstly themminority labels are

found, and then the s samples in the MLD in which they appear

are cloned. The number of clones is determined by the P param-

eter, as in LP-ROS. Hence, its computational complexity would

be OðmsPÞ.

� SmoteUG: Although this method is also based on SMOTE, it only

takes into account one minority label. Thereforemwill be 1. The

algorithms searches for all the labelsets in which this minority

label appears, and then looks for the instances containing each

labelset. Any label in an MLD could appear in 2jLj�1 labelsets, and

the number of instances is bounded by N. Since each seed sam-

ple will be compared to the remaining instances in the MLD, to

get the nearest neighbors, the theoretical complexity of this

method would be Oð2jLj�1N2Þ.

5. Experimental study

In order to assess the benefits of MLSMOTE, an extensive exper-

imental study was conducted. It is structured in two stages, using

in all of them the same set of MLDs. These phases aim to answer

two esencial questions, Is MLSMOTE able to improve the original

classification results produced by MLC algorithms? and, How it

performs against other published proposals? The two steps were

conducted as follows:

� First, the influence of MLSMOTE on imbalance levels

(Section 5.2) and the improvement produced by MLSMOTE over

classification results (Section 5.3) are empirically assessed.

Classification results after preprocessing are compared with

those obtained from the MLDs without resampling, and how

MLSMOTE influences each MLC algorithm is analyzed.

� Second, in Section 5.4, the results produced by MLSMOTE are

compared against thoseobtainedwith othermultilabel oversam-

pling algorithms, such as LP-ROS, ML-ROS and SmoteUG,1 all of

them defined in Section 3.3, as well as against those produced by

the BR-IRUS and EML algorithms mentioned in Section 3.2, which

are specifically designed to face the imbalance problem.

In the next subsection the experimental framework used is

described, while the following subsections analyze in detail the

results obtained in each one of these stages.

1 The EML [9], BR-IRUS [10], and SmoteUG [13] algorithms were carefully

implemented following the descriptions given in their respective papers.
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5.1. Experimental framework

The effectiveness of a resampling method such as MLSMOTE,

which generates synthetic instances taking into account features

and labels of other instances, should be very influenced by the

MLDs’ characteristics. Thus, testing the proposed algorithm against

several MLDs with different traits is essential. Most of the MLDs

used in a handful of published studies have been included in this

experimentation. Their characteristics, including imbalance mea-

sures, are shown in Table 3. The MLDs’ origin is offered in the right-

most column.

Each MLD was preprocessed with MLSMOTE, LP-ROS, ML-ROS

and SmoteUG. All datasets were given as input to five MLC algo-

rithms, applying a 2 � 5 folds cross validation scheme. Five

well-known MLC algorithms were used to test the effect of the

rebalancing produced by MLSMOTE. These are BR [19] (the basic

binary relevance transformation), IBLR-ML [49] (an improvement

of MLkNN [21]), HOMER [27] and RAkEL [25] (ensembles of LP clas-

sifiers) and CLR [26] (a pair-wise binary classifier). C4.5 was used

as underlying classifier where needed, and default parameters

were chosen for every classifier. The goal is to analyze the impact

that MLSMOTE has over the most used transformation method

(BR), one instance-based MLC classifier (IBLR-ML), and three of

the MLC classifiers considered as state-of-the-art. Average results

were obtained for each algorithm-dataset combination.

The outputs predicted for each classifier-dataset combination,

always over test partitions, were assessed with two different eval-

uation measures. In this study context, assuming that some labels

are in minority against the others, label-based evaluation measures

are the most adequate. There are two ways to calculate this type of

measures, known as macro-averaging and micro-averaging, shown

in Eqs. (5) and (6). As stated in [63], macro-averaged measures are

more sensitive to the performance of minority labels than

micro-averaging.

MacroM ¼
1

jLj

X

jLj

i¼1

evalMðTPi; FPi; TNi; FNiÞ ð5Þ

MicroM ¼ evalM
X

jLj

i¼1

TPi;
X

jLj

i¼1

FPi;
X

jLj

i¼1

TNi;
X

jLj

i¼1

FNi

 !

ð6Þ

Almost all evaluation measures, including accuracy, precision

and recall, can be calculated following the two previous

approaches. For the sake of space, F-measure (7), the harmonic

mean of precision (8) and recall (9), was used. Therefore two mea-

sures are obtained for each run, MacroFM and MicroFM, as specific

measures for imbalanced multilabel classification, where evalM is

considered as the F-measure in Eq. (7), Y i being the set of true

labels and hðxiÞ the predicted ones for the ith sample of the MLD D

F �measure ¼ 2 �
Precision � Recall

Precisionþ Recall
: ð7Þ

Precision ¼
1

jDj

X

jDj

i¼1

jY i \ hðxiÞj

jhðxiÞj
: ð8Þ

Recall ¼
1

jDj

X

jDj

i¼1

jY i \ hðxiÞj

jY ij
: ð9Þ

The significance of results obtained in each phase is established

by the appropriate statistical tests. Two different situations can be

found:

� When the analysis implies results from only two sources, for

instance results before and after preprocessing, the Wilcoxon

[64] non-parametric sign rank test is used. This is analogous

to the parametric paired T-test.

� For multiple comparisons the statistical analysis is performed in

two steps. Firstly the Friedman test is used to rank the methods,

and to establish if any statistical differences exist. Secondly, a

multiple comparison using Benjamini and Hochberg’s FDR pro-

cedure [65] is completed. This test is a step-up procedure to

control the false discovery rate in multiple comparison

scenarios.

The tests were executed using the wilcoxsign_test and

pairwise.table functions in R coin and stats statistical pack-

ages, and exact p-values are reported.

5.2. How MLSMOTE influences the imbalance levels

After applying MLSMOTE to the MLDs, the imbalance levels for

each one were reassessed. The goal is to analyze how MLSMOTE

has influenced the label distributions in the MLDs. Table 4 shows

for each MLD the MaxIR and MeanIR measures before and after

applying MLSMOTE, as well as the percentage of change for these

measures in each case. It should be noted that the values shown

in Table 4 were obtained from the training partitions used in

experimentation, since MLSMOTE is applied only to training parti-

tions, whereas the imbalance data previously shown in Table 3 cor-

respond to the full datasets.

As can be observed in Table 4, the MaxIR has slightly increased

(+0.29% to +3.04%) in four of the MLDs, while the remainder ones

have experimented a remarkable reduction. This implies that the

ratio between the most frequent label and the less frequent one

has been improved in almost all MLDs. The MeanIR, the average

imbalance level for all labels, has decreased for all MLDs with the

exception of emotions. This dataset is not actually imbalanced, as

Table 3

Characteristics of the datasets used in the experimentation.

Dataset Card Number of Imbalance ratio Ref.

Samples Features Labels Max Mean

bibtex 2.402 7395 1836 159 20.43 12.50 [52]

cal500 26.044 502 68 174 88.80 20.58 [53]

corel5k 3.522 5000 499 374 1120.00 189.57 [54]

corel16k 2.867 13766 500 161 126.80 34.16 [55]

emotions 1.869 593 72 6 1.78 1.48 [56]

enron 3.378 1702 753 53 913.00 73.95 [57]

genbase 1.252 662 1186 27 171.00 37.31 [58]

mediamill 4.376 43907 120 101 1092.55 256.40 [59]

medical 1.245 978 1449 45 266.00 89.50 [60]

scene 1.074 2407 294 6 1.46 1.25 [19]

slashdot 1.181 3782 1079 22 194.67 19.46 [61]

tmc2007 2.158 28596 49060 22 41.98 17.13 [62]
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its original MeanIR denotes. For the most imbalanced MLDs the

improvement is between �14% to �43%.

Generally speaking, from these results it can be drawn that

MLSMOTE produces an amelioration on imbalance levels.

Notwithstanding, the change in imbalance level will not necessar-

ily implies better classification results. The decisive factor for

obtaining better predictions will be how these new instances

change the model built by the classifier. This is the fact assessed

in the following section.

5.3. MLSMOTE vs base results comparison

The next step will be the analysis of results produced by the

MLC classifiers before and after MLSMOTE is applied. Therefore,

in this case there are only two sets of results, one produced by

the classifiers from the MLDs without resampling and another

one obtained from the same classifiers using the MLDs after being

processed by MLSMOTE. All these results are shown in Table 5

(MacroFM) and Table 6 (MicroFM).

In order to assess the statistical significance of the analyzed

results, the Wilcoxon statistical test was applied stating that

MacroFM/MicroFM is higher after preprocessing as alternative

hypothesis. The z-score and p-value outputs of these tests are

shown in Table 7. From its analysis the following facts can be

deducted:

� The observed p-values denote that CLR, BR and RAkEL algo-

rithms, as well as IBLR when MacroFM is used, significantly

improved their results after applying MLSMOTE. CLR is the most

benefited classifier (lowest p-value and z-score). As can be seen

in Table 5 (MacroFM), for CLR the results have been improved in

all cases, whereas in Table 6 (MicroFM) there is only one case

without improvement. The behavior of BR and RAkEL after

applying MLSMOTE is very similar, and all p-values are under

the 0.1 threshold.

� Although the behavior of IBLR when evaluated with MicroFM

has experimented a slight enhancement, it hardly can be

Table 4

Imbalance level changes after preprocessing the MLDs.

Dataset MaxIR MeanIR

Before After %D Before After %D

bibtex 22.81 15.66 �31.32 12.54 12.08 �3.68

cal500 133.19 118.74 �10.85 21.27 20.90 �1.78

corel5k 896.00 923.20 3.04 168.78 142.16 �15.77

corel16k 134.73 69.55 �48.38 34.32 25.67 �25.22

emotions 1.78 1.71 �4.21 1.48 1.52 2.80

enron 657.05 674.05 2.59 72.77 62.58 �14.01

genbase 136.80 137.20 0.29 32.41 28.95 �10.68

mediamill 1122.32 564.55 �49.70 257.46 159.15 �38.18

medical 212.80 214.90 0.99 72.17 69.56 �3.62

scene 1.46 1.25 �14.44 1.25 1.20 �4.21

slashdot 202.73 99.76 �50.79 20.03 11.24 �43.88

tmc2007 42.01 23.50 �44.06 17.14 12.34 �28.00

Table 5

Results before and after applying MLSMOTE – MacroFM.

Dataset BR CLR HOMER IBLR RAkEL

Before After Before After Before After Before After Before After

bibtex 0.3368 0.3456 0.3342 0.3429 0.3042 0.2989 0.2140 0.2479 0.3368 0.3456

cal500 0.2934 0.3124 0.3323 0.3474 0.3316 0.3139 0.2772 0.2783 0.2934 0.3124

corel16k 0.1336 0.1347 0.1003 0.1040 0.1363 0.1408 0.1141 0.0971 0.1277 0.1288

corel5k 0.1774 0.1790 0.1330 0.1330 0.1916 0.1923 0.1059 0.1130 0.1774 0.1790

emotions 0.5712 0.5841 0.5982 0.6107 0.5642 0.5733 0.6487 0.6511 0.5712 0.5841

enron 0.4029 0.3936 0.4198 0.4272 0.3790 0.3740 0.3458 0.3580 0.4029 0.3936

genbase 0.9890 0.9895 0.9848 0.9853 0.9780 0.9839 0.9655 0.9688 0.9890 0.9895

mediamill 0.2774 0.2737 0.2276 0.2308 0.2404 0.2424 0.2806 0.2862 0.2774 0.2737

medical 0.8166 0.8166 0.7942 0.7942 0.7942 0.7786 0.6404 0.6404 0.8166 0.8166

scene 0.6314 0.6328 0.6400 0.6407 0.6113 0.6212 0.7427 0.7456 0.6314 0.6328

slashdot 0.4038 0.4044 0.3982 0.3982 0.3996 0.3885 0.2382 0.1852 0.4038 0.4044

tmc2007 0.6015 0.6165 0.6073 0.6242 0.5968 0.6003 0.4668 0.4924 0.6015 0.6165

Best values are highlighted in bold.

Table 6

Results before and after applying MLSMOTE – MicroFM.

Dataset BR CLR HOMER IBLR RAkEL

Before After Before After Before After Before After Before After

bibtex 0.4021 0.4097 0.3371 0.3484 0.3568 0.3546 0.2628 0.2701 0.4021 0.4097

cal500 0.3488 0.3662 0.2977 0.3619 0.3978 0.3744 0.3184 0.3388 0.3488 0.3662

corel16k 0.1156 0.1156 0.0846 0.0832 0.1866 0.1878 0.0504 0.0484 0.1145 0.1145

corel5k 0.1096 0.1105 0.0706 0.0707 0.1744 0.1702 0.0542 0.0535 0.1096 0.1102

emotions 0.5845 0.5958 0.6072 0.6174 0.5766 0.5818 0.6730 0.6756 0.5845 0.5958

enron 0.5334 0.5324 0.5596 0.5606 0.5265 0.5199 0.4561 0.4660 0.5334 0.5324

genbase 0.9867 0.9873 0.9852 0.9858 0.9820 0.9827 0.9768 0.9771 0.9867 0.9873

mediamill 0.5622 0.5618 0.5928 0.5938 0.5493 0.5482 0.5987 0.6000 0.5622 0.5618

medical 0.8006 0.8006 0.7965 0.7965 0.7994 0.7955 0.6324 0.6324 0.8006 0.8006

scene 0.6190 0.6231 0.6254 0.6275 0.6010 0.6132 0.7366 0.7398 0.6190 0.6231

slashdot 0.4598 0.5339 0.4416 0.4449 0.4429 0.4436 0.2042 0.1470 0.4598 0.5339

tmc2007 0.7063 0.7071 0.7228 0.7248 0.6982 0.6956 0.6447 0.6378 0.7063 0.7071

Best values are highlighted in bold.

Table 7

Wilcoxon statistical tests analyzing differences after applying MLSMOTE.

MacroFM MicroFM

z-score p-value z-score p-value

BR �1.76640 0.04199 �2.16562 0.01465

CLR �2.85499 0.00195 �2.55246 0.00342

HOMER 0.39223 0.66138 0.94136 0.83032

IBLR �1.37387 0.09473 �0.82432 0.22314

RAkEL �1.76640 0.04199 �2.16562 0.01465
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considered statistically significant if we set the p-value thresh-

old to the usual 0.1 or 0.05. However, this black or white

approach to p-values interpretation can be broadened to shades

of gray. Statistical non-significance does not imply equivalence.

MLSMOTE is performing well with both evaluation measures for

IBLR. In fact, classification results for MacroFM have improved

in 10 out of 12 MLDs, and for MicroFM in 8 out of 12.

� Finally, according to Wilcoxon test results, HOMER is not bene-

fiting from the resampling. Although for MacroFM the results

are better in 7 out of 12 MLDs, for MicroFM the ratio is the

opposite.

Overall, this first experimental stage determines that MLSMOTE

is able to accomplish a general improvement in classification

results when used along with CLR, RAkEL, BR and, to a less extent,

IBLR. Even though there is not statistical significance when

MicroFM is used, MLSMOTE in general has a positive influence over

IBLR. Finally, MLSMOTE is not advisable if HOMER is going to be

used as classifier, since the applied oversampling tends to deterio-

rate its predictions.

Delving into the classifiers behavior, IBLR and HOMER share a

common characteristic, both take advantage of local information

to do their work. IBLR uses the nearest neighbors to make its pre-

diction, whereas HOMER relies in the same technique in order to

cluster instances and obtain subsets of labels. In fact, HOMER

and RAkEL are very closer algorithms, since both train several mul-

ticlass classifiers using subsets of labels. The main difference is in

the method used to built these labels subsets. Where HOMER uses

local information to accomplish this task, RAkEL does it randomly.

From the analysis of results that the synthetic samples produced

by MLSMOTE have a more positive influence over classifiers such

as BR, CLR and RAkEL, whose behavior is not biased by the selec-

tion of only a few nearest instances, can be concluded.

5.4. MLSMOTE vs other imbalanced MLC proposals

Our goal in the second phase of experimentation is to compare

the performance of MLSMOTE against other published proposals to

face imbalance in MLC. In subSection 3.2 the EML and BR-IRUS

algorithms were introduced, as ensemble-based approaches to

the imbalanced MLC task. In subSection 3.3 three already pub-

lished multilabel oversampling algorithms were also referenced.

All of them generate new instances, albeit following different

strategies. Table 8 summarizes these methods characteristics, stat-

ing how many minority labels are taken into account, and how the

new instances features and labelset are generated.

EML and BR-IRUS are able to produce classification predictions

by themselves, but MLSMOTE, ML-ROS, LP-ROS and SmoteUG are

not. Since they are resampling algorithms, their output has to be

given to an existent MLC. For this reason the first step will be to

determine which MLC algorithms presents the best behavior for

each resampling method. After that, classification results produced

by all configurations will be compared.

5.4.1. Selecting the best classifier for each resampling method

Aiming to learn how the MLC algorithms behave while working

with each resampling method, classification results produced by

them after preprocessing the MLDs were ranked by the Friedman

statistical test and the average rank for each algorithm was

obtained (see Tables 9 and 10). The results obtained by the same

classifiers before preprocessing have been also included. From

these tables observation it can be derived the following:

� Unsurprisingly, BR is the classifier that achieves better results

before preprocessing and also after applying some of the resam-

pling methods, including SmoteUG and MLSMOTE. As stated in

[66], BR is a not so simple approach to multilabel classification,

being able to produce good classification results and being a

competitive option against other MLC classifiers.

� The classifier with the best behavior for LP-ROS and ML-ROS

oversampling algorithms is CLR, which appears better ranked

than BR for the two evaluation measures with the exception

of ML-ROS/MicroFM.

� HOMER and IBLR are the worst classifiers in all cases, both

before and after resampling the MLDs.

Table 8

Oversampling methods to compare.

Algorithm # Min. labels Features Labelset

LP-ROS [16] NA Cloned Cloned

ML-ROS [12] Several Cloned Cloned

SmoteUG [13] 1 Synthetic Cloned

MLSMOTE Several Synthetic Synthetic

Table 9

Average rankings for each classifier before and after applying resampling (MacroFMeasure).

Before resampling MLSMOTE ML-ROS LP-ROS SmoteUG

Rank Classifier Rank Classifier Rank Classifier Rank Classifier Rank Classifier

2.3750 BR 2.4167 BR 2.5000 CLR 1.7500 CLR 2.2917 BR

2.4583 RAkEL 2.4167 RAkEL 2.5417 BR 2.7083 BR 2.4583 RAkEL

2.8750 CLR 2.6667 CLR 2.6250 RAkEL 2.7917 RAkEL 2.5833 CLR

3.3750 HOMER 3.5000 HOMER 3.4167 HOMER 3.8333 HOMER 3.5000 HOMER

3.9167 IBLR 4.0000 IBLR 3.9167 IBLR 3.9167 IBLR 4.1667 IBLR

Table 10

Average rankings for each classifier before and after applying resampling (MicroFMeasure).

Before resampling MLSMOTE ML-ROS LP-ROS SmoteUG

Rank Classifier Rank Classifier Rank Classifier Rank Classifier Rank Classifier

2.3750 BR 2.3750 BR 2.3750 BR 2.4167 CLR 2.3750 BR

2.4583 RAkEL 2.4583 RAkEL 2.4583 RAkEL 2.5833 BR 2.4583 RAkEL

3.0000 CLR 2.7500 CLR 2.7083 CLR 2.5833 RAkEL 2.8333 CLR

3.2500 HOMER 3.4167 HOMER 3.3750 HOMER 3.5833 HOMER 3.4167 HOMER

3.9167 IBLR 4.0000 IBLR 4.0833 IBLR 3.8333 IBLR 3.9167 IBLR
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5.4.2. Classification results comparison

The final experimental stage compares the five previous pro-

posals with MLSMOTE, aiming to elucidate how it performs against

them. EML and BR-IRUS are MLC classifiers by themselves, but all

the other methods, including MLSMOTE, need a classifier to work

with the preprocessed MLDs. The best classifier for each resam-

pling method has been chosen, following the rankings discussed

above. Classification results produced by these six methods are

presented in Tables 11 and 12. Best values for each measure are

highlighted in bold.

At first sight, that BR-IRUS and LP-ROS are clearly the methods

producing the worst results can be observed. Furthermore,

MLSMOTE achieves the highest number of wins (11), followed by

EML (6) and SmoteUG and ML-ROS (5). Regarding the statistical

analysis, once the Friedman test confirms that some statistical dif-

ference exists among the algorithms, pairwise comparisons are

performed using Benjamini and Hochberg’s procedure. The best

ranked method, which for the two considered measures is

MLSMOTE, is taken as control algorithm. The rankings produced

by the Friedman test and corresponding p-values are shown in

Tables 13 and 14. As can be seen in the those tables, MLSMOTE

is clearly working better than the other five proposals, as always

achieves the best ranking position. That a clear statistical differ-

ence between MLSMOTE with respect to BR-IRUS, LP-ROS and

SmoteUG exists can be concluded. MLSMOTE also outperforms

EML with significant differences when MacroFM is used. With

MicroFM MLSMOTE achieves a better ranking than EML, but with-

out statistically significant differences. Despite the p-values

reported for ML-ROS, the ranking and number of best values indi-

cate than, in average, MLSMOTE is also superior to it.

It must be noted that MicroFM is a evaluation measure very

influenced by correct classification of majority labels. On the other

hand, MacroFM is more sensitive to the minority ones. Therefore,

the previous statistical results allow to conclude that MLSMOTE

is benefiting the classification of minority labels more than EML,

even though globally the results produced by EML are very good.

This fact can be confirmed in the results shown in Tables 11 and

12. EML obtains best values with MLDs such as cal500, emotions

and scene, whose common characteristic is their lowMeanIR, while

MLSMOTE works better with MLDs having higher imbalance levels,

such as corel5k, corel16k and medical.

Another factor to be taken into account is the computing

resources needed to run each solution, specifically memory and

running time. As was pointed out in Section 3.2, both BR-IRUS

Table 11

Classification results MLSMOTE vs other proposals (MacroFM).

Dataset MLSMOTE + BR ML-ROS + CLR LP-ROS + CLR SmoteUG + BR EML BR-IRUS

bibtex 0.3456 0.3386 0.2927 0.3375 0.1265 0.0462

cal500 0.3124 0.3202 0.3236 0.2934 0.1291 0.2178

corel16k 0.1347 0.1033 0.1059 0.1347 0.0181 0.0349

corel5k 0.1790 0.1355 0.1366 0.1774 0.0133 0.0226

emotions 0.5841 0.6062 0.5684 0.5724 0.6893 0.5160

enron 0.3936 0.4220 0.3819 0.4029 0.1241 0.1028

genbase 0.9895 0.9800 0.9732 0.9890 0.7608 0.8664

mediamill 0.2737 0.2322 0.2020 0.2861 0.1728 0.0556

medical 0.8166 0.7865 0.6920 0.8166 0.2770 0.3958

scene 0.6328 0.6387 0.5930 0.6314 0.7546 0.3673

slashdot 0.4044 0.4061 0.3410 0.4044 0.3560 0.1142

tmc2007 0.6165 0.6332 0.5731 0.5933 0.5122 0.1370

Table 12

Classification results MLSMOTE vs other proposals (MicroFM).

Dataset MLSMOTE + BR ML-ROS + CLR LP-ROS + CLR SmoteUG + BR EML BR-IRUS

bibtex 0.4097 0.3457 0.2972 0.4024 0.2888 0.0331

cal500 0.3662 0.3348 0.3510 0.3488 0.4106 0.2238

corel16k 0.1156 0.0894 0.1060 0.1156 0.0544 0.0367

corel5k 0.1105 0.0764 0.0804 0.1096 0.0712 0.0205

emotions 0.5958 0.6152 0.5755 0.5860 0.7015 0.5178

enron 0.5324 0.5552 0.5038 0.5334 0.5542 0.1030

genbase 0.9873 0.9854 0.9782 0.9867 0.9854 0.6576

mediamill 0.5618 0.6006 0.5524 0.5686 0.6277 0.0633

medical 0.8006 0.7866 0.6970 0.8006 0.7581 0.1392

scene 0.6231 0.6240 0.5784 0.6190 0.7468 0.3658

slashdot 0.5339 0.4456 0.3232 0.4644 0.4942 0.1062

tmc2007 0.7071 0.7250 0.6298 0.7046 0.7065 0.1456

Table 13

Average ranking produced by Friedman statistical test and p-values (MacroFM).

Pos Algorithm Rank p-value

1 MLSMOTE + BR 2.04167 ⁄⁄

2 ML-ROS + CLR 2.33333 0.24452

3 SmoteUG + BR 2.54167 0.11719

4 LP-ROS + CLR 3.83333 0.00146

5 EML 4.66667 0.01968

6 BR-IRUS 5.58333 0.00092

Table 14

Average ranking produced by Friedman statistical test and p-values (MicroFM).

Pos Algorithm Rank p-value

1 MLSMOTE + BR 2.08333 ⁄⁄

2 EML 2.79167 0.86243

3 SmoteUG + BR 2.83333 0.05310

4 ML-ROS + CLR 2.87500 0.28280

5 LP-ROS + CLR 4.41667 0.00061

6 BR-IRUS 6.00000 0.00061
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and EML have to train multiple classifiers, using all or part of the

training data. Thus, the memory needed increases, as do the time

used to build the classifiers. On the contrary, the results reported

above for MLSMOTE are obtained by a single MLC algorithm,

trained once. Overall, the solution based on MLSMOTE produces

better classification results than the other approaches, while using

less resources.

Overall, MLSMOTE seems to be the most forceful option to face

imbalanced multilabel classification. Despite the good position for

EML when using MicroFM (2nd best), it falls to fifth position with

MacroFM. Something similar happens to ML-ROS, which achieves

2nd position when using MacroFM, but it falls to fourth with

MicroFM. MLSMOTE obtains the best result for both measures.

6. Concluding remarks

In this paper MLSMOTE, a multilabel synthetic minority over-

sampling technique, has been presented, along with three strate-

gies for synthetic labelset generation. A review on how the

imbalance problem in the multilabel classification has been faced

in the past is provided, and how MLSMOTE differs from previous

approaches has been discussed.

From the conducted experimentation we can conclude that

MLSMOTE, using Rank as labelset generation method, achieves a

statistically significant improvement against the results obtained

without preprocessing for the best performers MLC algorithms,

such as BR, RAkEL and CLR. Using this recommended configuration,

MLSMOTE is able to reduce the imbalance level in MLDs, thus

improving the predictions made by the MLC algorithms. These

results has been endorsed by the proper statistical tests.

Although the results produced by IBLR have also improved, in gen-

eral MLSMOTE would not be advisable for MLC algorithms relying

on local information, such as IBLR and HOMER.

Furthermore, MLSMOTE has been compared with other multil-

abel oversampling algorithms, as well as against imbalance-aware

MLC algorithms. The experimentation results show that MLSMOTE

outperforms all other oversampling methods, accomplishing a sta-

tistically significant difference against most of them. Regarding the

ensemble-based MLC algorithms, MLSMOTE performed far better

than BR-IRUS. Compared with the EML method, which could be

considered the best one in its category, MLSMOTE performed

slightly better when assessed using MicroFM, and was remarkably

superior using the MacroFM evaluation measure. It must be high-

lighted the remarkable advantage of MLSMOTE over EML while

working with highly imbalanced MLDs. This fact encourage us to

recommend the use of MLSMOTE with this kind of datasets.
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