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Abstract

The emerging pathogen Cryptococcus gattii causes life-threatening disease in immuno-

competent and immunocompromised hosts. Of the four major molecular types (VGI-VGIV),

the molecular type VGIII has recently emerged as cause of disease in otherwise healthy

individuals, prompting a need to investigate its population genetic structure to understand if

there are potential genotype-dependent characteristics in its epidemiology, environmental

niche(s), host range and clinical features of disease. Multilocus sequence typing (MLST) of

122 clinical, environmental and veterinary C. gattii VGIII isolates from Australia, Colombia,

Guatemala, Mexico, New Zealand, Paraguay, USA and Venezuela, and whole genome

sequencing (WGS) of 60 isolates representing all established MLST types identified four

divergent sub-populations. The majority of the isolates belong to two main clades, corre-

sponding either to serotype B or C, indicating an ongoing species evolution. Both major

clades included clinical, environmental and veterinary isolates. The C. gattii VGIII
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population was genetically highly diverse, with minor differences between countries, isola-

tion source, serotype and mating type. Little to no recombination was found between the

two major groups, serotype B and C, at the whole and mitochondrial genome level. C. gattii

VGIII is widespread in the Americas, with sporadic cases occurring elsewhere, WGS

revealed Mexico and USA as a likely origin of the serotype B VGIII population and Colombia

as a possible origin of the serotype C VGIII population. Serotype B isolates are more virulent

than serotype C isolates in a murine model of infection, causing predominantly pulmonary

cryptococcosis. No specific link between genotype and virulence was observed. Antifungal

susceptibility testing against six antifungal drugs revealed that serotype B isolates are more

susceptible to azoles than serotype C isolates, highlighting the importance of strain typing

to guide effective treatment to improve the disease outcome.

Author Summary

Cryptococcus gattii, which is classically divided into four major molecular types (VGI-

VGIV), and two serotypes B and C, is the second most important cause of cryptococcosis.

The rising incidence of human and animal cryptococcosis cases caused by molecular type

VGIII highlights the need for increased vigilance. In this study, we characterized a large set

of C. gattii VGIII isolates. Genetic analysis revealed four diverging sub-populations, which

were primarily associated with serotype B or C, and very likely originated from endemic

regions in Colombia, Mexico and the USA. Differences in virulence and antifungal suscep-

tibility between serotypes may result in different disease outcomes since serotype B isolates

were more virulent in mice than serotype C isolates, but serotype C isolates were less sus-

ceptible to azoles, the primary treatment for uncomplicated cryptococcosis. Identification

of cryptococcal serotype and molecular type in clinical practice has the potential to guide

treatment regimens and hence reduce morbidity and mortality in both sporadic cases and

those associated with outbreaks. Our study significantly contributes to the understanding

of the epidemiology, genetics and pathogenesis of Cryptococcus and cryptococcosis.

Introduction

The encapsulated basidiomycetous yeast Cryptococcus gattii is the second most important etio-

logical agent of cryptococcosis, next to its sibling species C. neoformans. Both species can cause

central nervous system and pulmonary manifestations [1]. However, C. gattii has a more lim-

ited geographical distribution and is recovered less frequently [2,3]. Initially considered preva-

lent only in tropical and subtropical regions, C. gattii emerged in a temperate climatic zone on

Vancouver Island, British Columbia, Canada in 1999 and has since extended to the Pacific

Northwest and other locations within the USA [4,5]. Despite the fact that the global burden of

C. gattiimay still be unrecognized [3], the increasing isolation of uncommon molecular types

and extension of their geographic spread defines C. gattii as an emerging fungal pathogen.

C. gattii is comprised of two serotypes, B and C. Among them, four major molecular types,

(VGI/AFLP4, VGII/AFLP6, VGIII/AFLP5 and VGIV/AFLP7) have been consistently recog-

nized by various molecular techniques, including PCR-fingerprinting [6,7], restriction frag-

ment length polymorphism (RFLP) analysis [8], amplified fragment length polymorphism

(AFLP) analysis [9] and multilocus sequence typing (MLST) [10]. More recently, a fifth AFLP
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type (AFLP10) was described based on a single isolate [11]. These molecular types have been

proposed for some time to be recognized as either varieties [12] or, more recently, as distinct

species [13]. However, for the purpose of the current study they will be treated as distinct

molecular types. Among C. gattii, the molecular type VGII, serotype B, has caused most of the

outbreak-related cases, via clonal dispersion of three sub-genotypes, VGIIa, VGIIb and VGIIc

[14–17]. Independent cases of infections caused by the molecular types VGI, VGIII and VGIV

have been reported less frequently. VGI is the most prevalent molecular type in Australia and

Papua New Guinea, where it is considered endemic [18,19]. VGIII is found predominantly in

clinical and environmental sources in Mexico, Colombia and the USA [20–24], and VGIV

has been mainly reported from India, African and a number of South American countries

[8,25,26].

The number of C. gattii infections due to strains of the major molecular type VGIII is not

only increasing in the endemic areas in South and Central America but also in the USA, where

it is now a major cause of human and animal disease, with increasing cases reported from the

Southeastern parts, especially California [17,27–29]. A total of 42 cases of human disease alone

have been recorded since 2010, with the obtained genotypes being highly similar to the ones

seen in both veterinary and environmental isolates. In contrast to the above-mentioned clonal

VGII population, VGIII isolates have been highly diverse as shown by MLST analysis. This

diversity has been attributed to the existence of both mating types α and a amongst clinical,

veterinary and environmental VGIII isolates, which provides indirect evidence of sexual repro-

duction and dynamic recombination [17,27]. Furthermore, in South America and India, C. gat-

tii VGIII has been isolated from the environment, although a specific association between its

occurrence in the environment in these countries and cases of cryptococcosis has yet to be

explored [22,30,31]. In a recent study, however, VGIII isolates recovered from arboreal sources

in Southern California were genetically related to those causing human cases in similar loca-

tions, suggesting that these environmental isolates were the source of human infections [32].

Besides the C. gattii VGIII infections reported amongst HIV positive patients from Southern

California and Mexico [20,21,33], the same molecular type has been recovered from immuno-

competent human and veterinary patients. Several cases, including fatal infections, have been

reported in patients without predisposing risk factors in Brazil, Colombia, Cuba, Mexico and

the USA [17,23,24,34–39]. The emergence of C. gattii infections in immunocompetent patients

is a source of public health concern as cryptococcosis is not usually suspected in this group and

significant delays in diagnosis are associated with adverse outcomes. In apparently healthy

hosts, cryptococcosis typically presents with cerebral involvement and is associated with more

severe neurological sequelae, such as stroke, blindness, deafness and permanent neural deficits

[37,39–41].

In addition, C. gattii VGIII isolates have been reported to be more susceptible to amphoteri-

cin B and 5-flucytosine than isolates of C. neoformans and other C. gattiimolecular types

[42,43]. Although azoles may have good in vitro activity against VGIII isolates, veterinary iso-

lates of molecular type VGIII exhibited a wide range of minimum inhibitory concentrations

(MICs) for fluconazole, with MICs as high as 32 μg/ml [28]. Previous studies have also indi-

cated that VGIII is the most virulent molecular type in a Drosophilamodel of infection [44].

These differences have brought about the need to evaluate the epidemiology, disease trans-

mission and virulence factors of this emerging pathogen. Therefore, the current study aimed to

characterize C. gattii VGIII isolates genetically and phenotypically. In particular, to investigate

the population genetic structure of VGIII isolates and to correlate geographic origin, source

(clinical, veterinary or environmental), virulence in a mouse model of infection, and antifungal

susceptibility. The data obtained from these investigations established a clearer understanding

of the epidemiology and pathogenicity of C. gattii VGIII, revealed distinct ancestral populations,
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and found that there is no specific link between virulence and genotype of the studied isolates

on the whole or mitochondrial genome level.

Methods

Isolates

One hundred twenty-two isolates of C. gattiimolecular type VGIII from Australia (n = 1),

Colombia (n = 37), Guatemala (n = 1), Mexico (n = 14), New Zealand (n = 1), Paraguay

(n = 1), the USA (n = 66) and Venezuela (n = 1), were studied. Isolates were stored at -80°C in

glycerol in the Westmead Millennium Institute Culture Collection (Australian Medical Mycol-

ogy Culture Collection) located at the Molecular Mycology Research Laboratory, Westmead

Millennium Institute, The University of Sydney, Sydney Medical School, Sydney, Australia (S1

Table). Among these isolates 56 were clinical, 38 veterinary and 28 of environmental origin.

Standard strains of the four major molecular types of C. gattii, WM 179 (VGI/AFLP4, serotype

B), WM 178 (VGII/AFLP6, serotype B), WM 175 (VGIII/AFLP5, serotype B) andWM 779

(VGIV/AFLP7, serotype C) were included as reference strains for the genotypic analysis [10].

The proposed type culture of the AFLP10 strain [13] was not included, as it was not publicly

available at the time this study was undertaken.

Isolates were cultured on Sabouraud dextrose agar and incubated for 48 h at 27°C prior to

DNA extraction. Genomic DNA was extracted as described previously [45].

Molecular type, mating type and serotype identification

Restriction fragment length polymorphism (RFLP) analysis of the orotidine monophosphate

pyrophosphorylase gene (URA5) following double digestion with the enzymes Sau96I and

HhaI (New England BioLabs Inc) was used to identify the major molecular type of the isolates

as reported previously [8].

Mating type was determined by PCR using the primers MfαU and MfαL for mating type α

and MFa2U and MFa2L for mating type a and the PCR and amplification conditions as

described previously [46].

The serotype of all isolates was determined using RFLP analysis of the capsular polysaccha-

ride gene (CAP59), digested with the enzyme AgeI (New England BioLabs Inc), as described

previously [47]. The serotype of 53 selected isolates (23 of serotype B and 30 of serotype C) was

in addition determined using the agglutination test CryptoChek (Iatron Laboratories, Tokyo,

Japan) according to the manufacturer’s instructions (S1 Table). In all instances, serotypes were

concordant by both methods.

Sequences of 360 bp of the partial region of the CAP59 gene, which is used to determine

serotype by RFLP, were extracted from the isolates with Whole Genome Sequencing (WGS)

and a maximum likelihood dendrogram of these sequences was constructed to show the clear

separation between serotypes B and C isolates (S1 Fig). The alignment and dendrogram were

generated using the programMEGA 6.0 [48].

Multilocus sequence typing (MLST)

MLST typing was performed using the International Society of Human and Animal Mycology

(ISHAM) consensus MLST scheme for C. neoformans and C. gattii, which includes seven

genetic loci, CAP59, GPD1, LAC1, PLB1, SOD1, and URA5 genes, and the IGS1 region, as

described previously [10]. All loci were amplified independently and the obtained PCR prod-

ucts were purified and commercially sequenced by Macrogen Inc., Seoul, Korea. Sequences

were edited and contigs were assembled using Sequencher 5.3 (Gene Codes Corporation, Ann
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Arbor, USA). Each unique sequence was assigned an allele type (AT) number and the seven

allele types per strain were subsequently combined to give a unique sequence type (ST) accord-

ing to the ISHAM consensus MLST database, accessible at http://mlst.mycologylab.org. Align-

ments were generated using the programMEGA 6.0 [48]. The dendrogram showing the

genetic relationship between the isolates based on the maximum likelihood analysis of the

seven concatenated loci was generated using the same program. Haplotype network analyses

were performed using the software Network 4.6.1.3 (Fluxus Technologies Ltd., Suffolk, UK).

The goeBURST algorithm using the PHILOVIZ software (http://www.phyloviz.net) was used

to generate a minimum spanning tree of the concatenated sequences to visualize relatedness of

the C. gattii isolates according to the source of isolation and serotype. The diagrams show

when the STs differ in a single locus variant (SLV), double locus variant (DLV), and triple

locus variant (TLV). A clonal complex (CC) concept was adopted when SLV linkage with the

founder ST was present [49].

Genotypic diversity of the MLST loci

To estimate the genetic diversity amongst the STs, Simpsons diversity index (D) was calcu-

lated for the whole population, as well as by country, source, serotype and mating type of the

isolates.

The length of each MLST locus, the number of alleles and their frequency were determined

and the genetic diversity of the seven loci was estimated by calculating the average number of

nucleotide diversity (π) and the number of polymorphic (segregating) sites (S) using the soft-

ware DnaSP ver. 5.10.1 [50]. For comparison of the genetic diversity between the VGIII sub-

populations, the index θ, which is the Weir's formulation of Wright's fixation index (FST) for

population differentiation analysis, was calculated for each locus. FST values of >0.05 gener-

ally indicate little inter-population variance, and can range from 0 for identical populations to

1 for populations with no alleles in common. The Index of Association (IA) and rBarD were

also calculated to test for recombination between and within the VGIII sub-populations.

Since clonal reproduction can mask the effects of recombination, IA and rBarD were calcu-

lated using the clone-corrected data for each ST after removal of identical genotypes were

removed (haplotypes only). The values of both IA and rBarD are expected to be zero if popula-

tions are freely recombining and greater than zero if there is association between alleles. The

rBarD statistic takes into consideration the number of loci tested and is considered a more

robust measure of association. Values of FST, IA and rBarD were calculated using the program

MultiLocus 1.3 [51].

Coalescence analysis

The BEAST v1.8.3 software was used to perform the Bayesian molecular clock analysis of the

VGIII MLST sequences [52]. The Tamura Nei model with invariable sites and gamma distribu-

tion (TrNef + I + G) used in BEAST was the best model selected from the Bayesian Information

Criterion in the software jModelTest 2.1.7 [53]. The stepping-stone sampling marginal likeli-

hood estimator available in MrBayes v3.2 software was used to infer the best-fitting clock

model for the dataset [54].

A relaxed lognormal clock was applied to infer the time scale incorporating one internal

node calibration of 8.5 million years as the time to most recent common ancestor for VGIII as

already described [12]. A normal prior age distribution of 0.25 million years was used in the

analysis. The XML file was generated in BEAUTI v1.8.3 with a run of 108 generations, 1 tree

sampled per 1,000 generations, and a burn-in of 10% [52]. The LogCombiner v1.8.3, distrib-

uted with BEAST, was used to combine the files of two independent runs applying a burn-in
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of 10%. The results were visualized using the Trace v1.6.0 software distributed with BEAST

and showed that the effective sample size was higher than 200 in all analyses. The tree with

the highest log clade credibility was selected in the software TreeAnotator v1.8.3 and the tree

presenting the posterior mean and 95% confidence intervals of the time to most recent com-

mon ancestor was visualized in the FigTree v1.4.3 software (http://tree.bio.ed.ac.uk/software/

figtree/).

Whole genome sequencing (WGS)

Sixty isolates, comprising 33 serotype B and 27 serotype C, representing the full diversity of the

VGIII MLST genotypes, were selected for WGS. High quality DNA was extracted with the ZR

Fungal/Bacterial DNAMiniPrep kit (Catalog N° D6005; Zymo Research, Irvine, CA, USA) fol-

lowing the instructions of the manufacturer.

The samples were sequenced using Illumina HiSeq as previously described [16,55]. DNA

samples were prepared for paired-end Illumina sequencing using the Kapa Biosystems Library

Preparation with Standard PCR kit (Catalog N° KK8232; Woburn, MA, USA) protocol.

Approximately 1μg of double-stranded DNA (dsDNA) was sheared using a Sonicman sonica-

tor (Brooks automation, Spokane, WA, USA) to an average size of 650 bp and DNA libraries

were prepared for sequencing as described by the manufacturer. Modified oligonucleotides

(Integrated DNA Technologies, Coralville, IA, USA) with 8bp indexing capability [56] were

substituted at the appropriate step. Libraries were quantified prior to sequencing with quantita-

tive PCR (qPCR) on the ABI 7900HT (Life Technologies Corporation, Carlsbad, CA, USA)

using the Kapa library quantification kit (Catalog N° KK4835; Woburn, MA, USA). Libraries

were sequenced to a read length of 100bp on the Illumina HiSeq system. WGS read files were

deposited in the NCBI Sequence Read Archive under BioProject PRJNA289249.

All sequenced samples were assembled de novo using the SPAdes v2.5.0 assembler [57].

Read data for all genomes were aligned against the de novo assembly for sample WM 175 using

Novoalign 3.00.03 (Novocraft Technologies, Selangor, Malaysia). Single nucleotide polymor-

phisms (SNPs) were detected using the Genome Analysis Toolkit v2.4 (GATK) [58]. SNP calls

were filtered using NASP (http://tgennorth.github.io/NASP/) and had to meet the following

criteria per SNP loci to be included in the final matrix: coverage of a minimum 10X and less

than 10% variant allele calls. Additionally, reads that mapped to multiple locations within the

genome were excluded from the analysis, as were positions located in an insertion or deletion

site. The de novo assembly of sample WM 1814 was used as the reference strain for serotype

C analyses; otherwise WM 175 was used as the reference strain. Additionally, one isolate of

each of the other three C. gattiimajor molecular types (VGI, VGII, and VGIV), previously

sequenced by WGS, were included for phylogenetic analysis [15]. In total, three SNP matrices

with different taxa were produced: (i) C. gattiimolecular types VGI to VGIV; (ii) C. gattii

molecular type VGIII only, and (iii) C. gattiimajor sub-populations (serotype B and C)

together.

Whole-genome SNP typing (WGST) was performed as previously described [16,59,60] for

phylogenetic analysis in order to understand genetic relationships between isolates. To put the

VGIII population in context with the other C. gattiimajor molecular types the genomes of the

following C. gattii isolates were retrieved from GenBank: WM 179 and WM 276 representing

molecular type VGI, WM 178, WM 05.419, WM 04.78, WM 06.12, WM 08.309, CDCR265,

CDCR272, B9816 and GT 11.7650 representing molecular type VGII, and WM 779 represent-

ing molecular type VGIV [15,60]. Maximum parsimony SNP trees were constructed using

PAUP� v.4.0b10 (Sinauer Associates, Inc., Sunderland, MA, USA) and visualized using FigTree

v.1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/). The C. gattii VGI to VGIV tree was not
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rooted. Additionally, the SNP matrix (iii) was examined for recombination using the phi test

[61]. The neighbor-joining split tree network was drawn on the SNP matrix (iii) in order to

visualize the existing recombination between samples using the program SplitsTree4 [62,63]

with the uncorrected P-distance transformation. A maximum likelihood tree with 1,000 boot-

strap generations was produced from SNP matrix (ii) using the TVM+ASC+G4 model in

IQ-TREEv1.3.10 [64]. The tree was visualized using FigTree v1.3.1.

fineStrucutre analysis [65] was performed on the SNP matrix (ii) and (iii) in order to infer

the population structure within VGIII as well as identify admixture events occurring between

molecular types. Using the phylogenetic tree produced above, one representative from each

clonal clade was selected and the SNP matrix was reduced to a pairwise similarity matrix using

Chromopainter, which was run using the linkage model and assuming uniform rates of recom-

bination per base pair of sequence. Populations were determined through fineStructure using

the above-mentioned similarity matrix.

Putative gene content comparison was performed using BLAST score ratio (BSR) analysis

[66], as previously described [15]. VGIII serotype B and serotype C predicted gene content dif-

ferences were confirmed by alignment of sequence read data. Putative gene characterization of

confirmed gene differences were translated into amino acid sequences and searched against the

Pfam database (http://pfam.xfam.org/) in order to identify potential protein functions. Addi-

tional characterization for selected putative genes were searched against the NCBI non-redun-

dant protein database (http://www.ncbi.nlm.nih.gov/RefSeq/) using blastp.

Mitochondrial genome analysis

In order to assess mitochondrial re-arrangements and mutations, four high-virulence and four

low-virulence serotype B samples were assembled using SPAdes3.0 [67]. Mitochondrial genes

of the highly virulent VGII CDCR265 strain from the Broad institute were used as reference

sequences. Fifteen mitochondrial genes were used to identify the mitochondrial contigs in the

eight genome assemblies using BLAT. Contigs containing the 15 mitochondrial genes were

pulled from the assemblies and were aligned using progressiveMauve v2.3.1 [68].

Additionally, the 56kb contig containing the 15 mitochondrial genes from the isolate

WM09.47 was used as a reference sequence for SNP analysis using NASP as described above.

Virulence study

Based on the MLST results, 17 isolates were chosen to study the pathogenic potential of C. gat-

tiimolecular type VGIII in a murine model of pulmonary cryptococcosis. Female BALB/c

mice, 6-weeks-old and weighing between 16 to 18 g, were inoculated intranasally with 105 yeast

cells suspended in sterile saline. Prior to inoculation, the isolates were grown in Sabouraud dex-

trose agar at 37°C for 24 hours. Five mice per cryptococcal isolate studied were weighed and

anesthetized intraperitoneally by injecting 0.03 to 0.04 ml of a combination of ketamine (44

mg/ml) and midazolam (2.7 mg/ml) (80 mg of ketamine and 5 mg of midazolam in a total vol-

ume of 1.8 ml), using an insulin syringe. Following induction of anesthesia, the mice were

hung on a silk thread by their incisor teeth, so that the necks were fully extended. By using a

pipette, 50 μl of inoculum was slowly instilled directly into each nostril. The well-studied C.

gattii strains CDCR265 (VGIIa, highly virulent) and CDCR272 (VGIIb, low virulence) from

the Vancouver Island outbreak were included as reference strains for comparison [69]. Five

mice were also inoculated with sterile saline as an inoculation control. After inoculation, mice

were placed in standard cages with access to water and food ad libitum and weighed and

observed daily for signs of infection (e.g. difficulty breathing, neurological signs, ruffled fur,

lethargy, poor appetite), until the end point of 60 days. Affected mice were euthanized by CO2
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(5%) inhalation immediately upon observation of any signs of distress. Necropsy was per-

formed and the brain and lungs were collected for macroscopic and histopathological examina-

tions, to determine the presence of yeast and lesions. Blood collected aseptically from the heart

using an insulin syringe was plated on Sabouraud dextrose agar to check for hematogenous dis-

semination. After harvesting tissues at necropsy, infected material was autoclaved and disposed

of by incineration.

To compare the virulence of selected isolates, survival curves for each isolate were graphed.

Median survival times were obtained and differences in survival times were analyzed by the

Log-rank (Mantel-Cox) test. Statistical analysis and plots were carried out using GraphPad

Prism version 6.0b (La Jolla, CA, USA). In all cases, p-values of<0.05 was considered statisti-

cally significant.

Antifungal susceptibility

Susceptibility testing was carried out using the Sensititre YeastOne plate (Thermo Scientific,

USA), which is a colorimetric microdilution test, following the manufacturer’s instructions.

Briefly, isolates were grown on Sabouraud dextrose agar and incubated for 24 h at 27°C. Dis-

creet yeast colonies were suspended with a swab into 5 ml of sterile water, adjusted to a density

of 0.5 McFarland standard (1–5 × 106 cells/ml), and 20 μl aliquots were transferred into 11 ml

of YeastOne inoculum broth for a final concentration of 1.5–8 × 103 CFU/ml. An aliquot of

100 μl of inoculum was placed in each well of the Sensititre YeastOne plate using a multichan-

nel pipette. Plates were sealed, incubated at 35°C and read manually after 72 h of incubation.

The reference strains of Candida krusei ATCC 6258 and Candida parapsilosis ATCC 22019,

were used as quality control. Controls were read after 24 h of incubation.

Purity of the cell suspension and colony counts were determined by plating 10 μl of inocula on

to Sabouraud dextrose agar. The range of drug concentrations tested by 2-fold serial dilutions was

0.125–8 μg/ml for amphotericin B; 0.125–256 μg/ml for fluconazole; 0.015–16 μg/ml for itracona-

zole; 0.008–8 μg/ml for voriconazole and posaconazole; and 0.06–64 μg/ml for 5-flucytosine.

The range of minimum inhibitory concentrations (MICs), MIC50, MIC90 and geometric

mean MICs of each antifungal drug were estimated. Epidemiologic cutoff values (ECV), defined

as the MIC value encompassing at least 95% of the wild-type distribution, were calculated for

each antifungal drug. Significant differences in MICs between two groups of isolates were com-

pared using a Mann-Whitney test. Group comparisons for MIC data included serotype B vs.

serotype C; mating type α vs. mating type a; clinical vs. veterinary isolates; clinical vs. environ-

mental isolates and veterinary vs. environmental isolates. All analyses were performed with

GraphPad Prism version 6.0b (La Jolla, CA, USA); p-values<0.05 were considered significant.

Ethics statement

The virulence study was carried out in accordance with the protocol No. 4151-06-09 approved

by the Westmead Hospital Animal Ethics Committee (WHAEC) adhering to Australian Code

for the Care and Use of Animals for Scientific Purposes 8th Edition 2013 and the Animal

Research Act New South Wales 1995.

Results

The C. gattii VGIII population is represented by serotypes B and C
isolates with mating types α and a identified in both serotypes

RFLP analysis of the URA5 gene identified 116 of the 122 isolates as molecular type VGIII and

six isolates displayed the restriction pattern of the molecular type VGIV. In silico restriction

The Divergent C. gattii VGIII Population
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and alignments of the URA5 sequences of these six isolates, revealed a single nucleotide poly-

morphism (SNP) in the position 528, which is the restriction site of the enzyme Sau96I, result-

ing in misidentification of those isolates as VGIV [12]. However, as MLST analysis established

that all 122 isolates were related, they were classified as molecular type VGIII.

Serotype and mating type analysis identified 60 (49%) isolates as B/α, 39 (32%) as C/α, 15

(12%) as B/a and 8 (7%) as C/a. The obtained serotype data were confirmed based on CAP59

sequences extracted from the whole genome sequencing (WGS) data (S1 Fig). Detailed descrip-

tions of the mating and serotype results obtained for each isolate are provided in S1 Table.

MLST analysis revealed two major clades among the C. gattii VGIII
isolates and linked clinical and veterinary cases with environmental
sources

Among the 122 isolates, 55 sequence types (STs) were identified (S1 Table). Of these, ST75 was

the most frequent sequence type (21 serotype B isolates: five clinical and 15 veterinary isolates

from the USA and one clinical isolate fromMexico), followed by ST79 (16 serotype C isolates:

four clinical and nine environmental isolates from Colombia, two clinical isolates fromMexico

and one from the USA). ST116 was the third most common sequence type, containing seven

serotype B environmental isolates from Colombia.

Of the remaining 52 STs, 37 were represented by a single isolate each, while 15 were repre-

sented by two to five isolates, with ST65 (n = 2) and ST68 (n = 2), ST146 (n = 3) and ST74

(n = 5), each identified in more than one country. ST65, ST146 and ST74 each contained iso-

lates from different source (S1 Table).

Based on maximum likelihood analysis and coalescence analysis of the seven concatenated

MLST loci, C. gattiimolecular type VGIII isolates separated into two major clusters or sub-

populations corresponding mainly to serotype B and C (Figs 1A, 2, S1 Fig). These two sub-pop-

ulations most likely correlate with the VGIIIa and VGIIIb lineages, respectively, that were

recently described in independent MLST studies using a different MLST scheme [20,32], based

on the loci that both MLST schemes share (GPD1, LAC1, PLB1 and IGS1) [10,20,32].

Among the serotype B isolates, WM 1811 and WM 1812 (ST 99), were identified as serotype

C. However, because they shared most of the MLST alleles with the serotype B isolates, they

were considered as such for the purpose of the analysis. Similarly, isolates WM 02.138 (ST95),

WM 11.943 (ST140) andWM 1663 (ST94) were identified as serotype B, but were considered

as serotype C for the analyses, as they clustered more closely with isolates of the later serotype.

Isolates outside the two major clusters, namely the six isolates misidentified as VGIV by

URA5-RFLP, mentioned previously, grouped into two additional small sub-populations, with

each corresponding either to the serotype B (n = 4) or C (n = 2) (Figs 1A, 1B and 2). From

these atypical strains, we deduced the presence of a novel serotype B, VGIII ancient lineage

among C. gattii VGIII isolates, represented by three isolates from Colombia (WM 2004, WM

2041 and WM 2042 (ST64)) and one isolate from the USA (WM 11.32 (ST114)), reported

herein for the first time. The coalescence analysis showed that these isolates diverged from the

VGIII isolates around 1.91 to 6.53 million years ago. A second ancient lineage that diverged

from VGIII isolates around 7.94 to 8.92 million years ago, represented by two serotype C iso-

lates (WM 1802 (ST100) andWM 1804 (ST101)) fromMexico, likely corresponds to the previ-

ously described VGIIIc/AFLP10 lineage [11,32], as these isolates share most of their MLST

alleles with the published strain CBS11687 (IHEM14941 = RV 63979), with the exception of

the SOD1 allele [11,13]. Both lineages appear to be basal to the VGIII clade (Figs 1A, 1B and 2).

The sequences obtained for each allele type were deposited in GenBank under the following

accession numbers: CAP59 (JX840782—JX840787), GPD1 (JX840788—JX840795), LAC1

The Divergent C. gattii VGIII Population
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(JX840805—JX840821), PLB1 (JX840822—JX840832), SOD1 (JX840833—JX840840), URA5

(JX840841—JX840851), and IGS1 (JX840796—JX840804) (S2 Table or at the INTERNA-

TIONAL FUNGALMLST DATABASE website at mlst.mycologylab.org).

Genotypic diversity of the MLST loci shows low genetic flow between
serotypes B and C but some degree of recombination within each

The VGIII population was genetically highly diverse (D = 0.061). There were no statistically

significant differences among the groups with respect to the country of origin, isolate source

Fig 1. Dendrogram showing the genetic relationships between 122Cryptococcus gattiimolecular type VGIII isolates based on the analysis of the
seven concatenated MLST loci of the International Society for Human and Animal Mycology (ISHAM) consensus MLST scheme, using the programMEGA
6.0 [48] (A). Dendrogram showing the genetic relationships between 60C. gattii isolates representing all published MLST sequence types for
molecular type VGIII currently present in the MLST database based on theWGS SNPmatrix (ii) (B). Numbers on the branches indicate bootstrap
values above 50. The color of the branches indicates serotype B (blue) and C (red). Color of the font indicates clinical (black), veterinary (orange) and
environmental (green) isolates recovered in AUS: Australia, COL: Colombia, GTM: Guatemala, MEX: Mexico, NZL: New Zealand, PRY: Paraguay, USA:
USA, VEN: Venezuela and ZAF: South Africa (Country abbreviations according to the United Nation (UN) three letters ISO 3166–1 code). Asterisk (*)
indicates mating type a isolates, all other isolates are mating type α.

doi:10.1371/journal.pntd.0004861.g001
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Fig 2. Coalescence gene genealogy of theCryptococcus gattii isolates evidencing the presence of twomain clusters (Serotypes B and C) within
the VGIII genotype that separated 0.96 to 2.7 million years ago. Blue bars represent the 95% high posterior probability of the ages in the branches with a
posterior probability limit of 0.5. The Bayesian posterior support values higher than 90% are described in the branches of the tree. The serotype C isolates
are highlighted in red while serotype B isolates are highlighted in blue. The reference strains WM 179 (VGI, ST51), WM178 (VGII, ST21), andWM779 (VGIV,
ST70) were included in the analysis as out-groups.

doi:10.1371/journal.pntd.0004861.g002
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(clinical vs. veterinary vs. environmental), or mating type. Only minor differences were identi-

fied between serotypes, with serotype C isolates being slightly more diverse than those of sero-

type B (D = 0.056 vs. 0.105 (p< 0.05)) (S3 Table).

Among the seven loci studied, LAC1 was the most informative locus with 17 alleles, 31

polymorphic sites over 477 bp, a nucleotide diversity of 0.895%, and a fixation index (FST or

θ) of 0.5137. Although SOD1 was represented by eight alleles, two more than CAP59, it was

the least informative locus with only 16 polymorphic sites over 713 bp and a nucleotide diver-

sity of 0.205% (Table 1). Overall, the seven concatenated loci resulted in an alignment of

4,212 bp with 160 polymorphic sites. The high FST values of all seven loci indicate high

genetic diversity between the VGIII sub-populations (serotype B and serotype C clusters,

respectively), indicating low genetic flow between them (Table 1). The low number of shared

MLST alleles between serotype B and serotype C isolates (S1 Table), and the high values

obtained with the tests of linkage disequilibrium (IA = 1.16184 and rBarD = 0.197630

(p = 1.00)), further support low genetic flow within this population structure. Tests of linkage

disequilibrium showed some recombination within each sub-population, with serotype B iso-

lates (IA = 0.478372 and rBarD = 0.0962771 (p< 0.01)) recombining less frequently than

serotype C isolates (IA = 0.342210 and rBarD = 0.0575250 (p = 0.02)).

Haplotype network analyses per locus revealed a low number of shared MLST alleles

between sub-populations, indicating a low level of recombination (Fig 3). The low number of

shared alleles between these two C. gattii VGIII sub-populations was also supported by the goe-

BURST analysis with the concatenated dataset (Fig 4). Overall, only the four atypical serotype

C isolates fromMexico (WM 1802 (ST100), WM 1804 (ST101), WM 1811 (ST99) and WM

1812 (ST99)), shared alleles, and were grouped in the serotype B cluster. This analysis also pre-

sented 11 clonal complexes (CC) (i.e. 11 groups presenting single locus variant (SLV)) with

two of them, CC79 (composed of ST79, ST82, ST80, and ST65 in serotype C group) and CC75

(composed of ST75, ST115, ST138, ST72, ST143, ST139, and ST87 in the serotype B group),

appearing to play an important role in the epidemiological distribution of the C. gattii VGIII

population due to the wide geographical distribution of the CCs (Fig 4).

Whole genome sequencing supports the presence of sub-populations
among the C. gattii VGIII isolates

Whole genomes from 60 C. gattii VGIII isolates, representing at least one isolate per ST identi-

fied in the MLST analysis, were sequenced. Whole genome sequencing (WGS) determined the

presence of 572,268 SNPs with 514,098 SNPs being parsimony informative. Within the sero-

type B and serotype C major sub-populations, 88,337 and 79,945 SNPs were identified, respec-

tively. Maximum parsimony analysis based on whole genome SNP typing (WGST) confirmed

the same clustering of the VGIII isolates as obtained by MLST typing, although with much

Table 1. Allele diversity per MLST locus of the studiedCryptococcus gattiimolecular type VGIII isolates (n = 122).

Locus Length (bp) n of alleles Nucleotide diversity (π) n of polymorphic sites (S) Fixation index FST (θ)

CAP59 557 6 0.534% 19 0.9513

GPD1 549 8 0.371% 18 0.6681

IGS1 743 9 0.372% 38 0.5500

LAC1 477 17 0.895% 31 0.5137

PLB1 535 11 0.331% 18 0.5290

SOD1 713 8 0.205% 16 0.5204

URA5 638 11 0.299% 20 0.5337

doi:10.1371/journal.pntd.0004861.t001
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higher resolution (Figs 1B and 5). When the whole genomes of the other major molecular

types of C. gattii, VGI, VGII, and VGIV [15] are included (Fig 5), WGST SNP data found

1,347,295 total SNPs with 1,055,552 of them being parsimonious SNPs, with a consistency

index (CI) of 0.7934.

Neighbor-joining phylogenetic splits tree network analysis of the WGST SNP data clearly

separated the major serotype B and serotype C clusters within VGIII and showed many phylo-

genetic splits within each sub-population (Fig 6A). These findings indicate a shared genetic his-

tory, possibly including sexual recombination events within, but not between the two main

serotype groups in the VGIII population, which largely contributes to the genetic diversity

found within each serotype. When the Phi test for recombination was performed using the

SNP data, the test indicated that recombination was present within each of the two major

VGIII serotype groups (p = 0.0).

fineStructure analysis showed that the serotype B isolates shared very few or no genomic

regions with the serotype C isolates. However, within sub-populations, there are some shared

genome regions, with serotype C isolates having a greater amount of shared regions than sero-

type B isolates, indicating a significant separation between the two major VGIII serotype

Fig 3. Haplotype network analysis by locus of the studiedCryptococcus gattiimolecular type VGIII isolates. Networks were constructed using the
software Network 4.6.1.3. The size of the circles is proportional to the number of isolates. Color of the circles indicates serotype B (blue) and serotype C
(red). Dual-coloration represents shared alleles between serotypes. Alleles for each locus are indicated numerically.

doi:10.1371/journal.pntd.0004861.g003
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groups, but at the same time also suggestive of some level of recombination within each of

them (Fig 7). In addition fineStructure analysis indicates incomplete lineage sorting among the

atypical strains, accounting for the maintenance of ancestral genome parts (S2 Fig). The VGI

genome contributed more to the genomes of the atypical VGIII serotype B strains (WM 1802,

Fig 4. Minimum spanning tree of the studiedCryptococcus gattiimolecular type VGIII isolates. The
tree was constructed using the goeBURST algorithm and shows the distribution of the STs according to the
country of origin and the serotype B (blue) or serotype C (red) status of the isolates. STs are indicated
numerically inside the circles. The size of the circles is proportional to the number of isolates per each ST.
Circles surrounded by yellow lines represent the founder of each clonal complex. Numbers between STs
represent one (black solid line), two (dark grey line), three (light grey line), and more than four (dashed line)
allele differences.

doi:10.1371/journal.pntd.0004861.g004
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WM 1804) and the VGIV genome contributed stronger to the genomes of the atypical VGIII

serotype C strains (WM 2004, WM 2041, WM 2042 andWM 11.32) (S2 Fig). If these ancestral

groups are isolated (genomically and geographically) they would have very little recombination

opportunity and little new variation, and therefore do not “share” their genome with others.

Very few differences in gene content were found between serotype B and serotype C isolates

using the BLAST Score Ratio (BSR). An analysis of the presence/absence of genes in the VGIII

sub-populations identified two gene clusters that were unique to the serotype C genomes, and

one gene cluster that was unique to the serotype B genomes. However, all three gene clusters

represented hypothetical proteins of unknown function. Both clusters identified in the serotype

C isolates, did not have significant matches (E values 7.00E-51 and 3.00E-109), and although

the cluster identified in the serotype B isolates matched with a H-N-H homing endonuclease

(E value 8.00E-79), the amino acid identity was only 50% with 96% coverage.

Mitochondrial genome analysis supports two sub-populations amongst
the VGIII isolates

Based on previous findings, implicating changes in mitochondrial morphology and mitochon-

drial gene expression to an increased virulence in the Vancouver Island Outbreak VGII strains

[70], the mitochondrial genomes were bioinformatically extracted from the WGS data set of

the 60 C. gattii VGIII isolates, representing at least one isolate of each ST identified in the

Fig 5. Maximum parsimony phylogenetic analysis of the major molecular types of Cryptococcus gattii (VGI to VGIV) performed onWGST SNP
data. The analysis of the molecular type VGIII alone found 572,268 total SNPs, with 514,098 of them being parsimonious SNPs, with a consistency index
(CI) of 0.7691. The tree shown is not rooted. Branch lengths represent numbers of SNPs between taxa, with the unit bar in the Figure. The taxa nomenclature
include a unique strain identifier, the country and source of isolation and the ST. AUS: Australia, COL: Colombia, GTM: Guatemala, MEX: Mexico, NZL: New
Zealand, PRY: Paraguay, USA: USA, VEN: Venezuela and ZAF: South Africa; Clin: clinical, Vet: veterinary, and Env: environmental.

doi:10.1371/journal.pntd.0004861.g005
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Fig 6. Phylogenetic network of the main sub-populations ofCryptococcus gattiimolecular type VGIII based on whole genome sequence analysis
(A) andmitochondrial genome analysis (B). The neighbor-joining phylogenetic splits tree represents the relationship between the VGIII STs and serotypes
using the uncorrected P distance transformation. Each band of parallel edges indicates a split. The taxa nomenclature include a unique strain identifier, the
country and source of isolation and the ST. AUS: Australia, COL: Colombia, GTM: Guatemala, MEX: Mexico, NZL: New Zealand, PRY: Paraguay, USA:
USA, and VEN: Venezuela; Clin: clinical, Vet: veterinary, and Env: environmental. Isolates included in the virulence studies are in bold. High virulent strains
are indicated with a red asterisk.

doi:10.1371/journal.pntd.0004861.g006
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above mentioned MLST analysis. Interestingly, the estimated mitochondrial genome size of C.

gattii VGIII strains was 55 kb, which is much larger than the mitochondrial genome sizes of C.

gattii VGII strains (34.7 kb) [70], C. neoformans var. grubii strains (24 kb) and C. neoformans

var. neoformans strains (32 kb) [71]. Mitochondrial genome sequencing determined the pres-

ence of 577 SNPs with 415 SNPs being parsimony informative, with a consistency index (CI)

of 0.36. Neighbor joining phylogenetic splits tree network analysis of the mitochondrial

genomes confirmed a similar but not identical topology for the two major VGIII clusters iden-

tified in the WGS analysis (Fig 6B). No recombination between the two major clades obtained

from the mitochondrial genomes was identified, Phi test (p = 0.09032). However, the Phi test

for recombination using the mitochondrial SNP data indicated that recombination was present

Fig 7. fineStructure analysis of the main sub-populations of Cryptococcus gattiimolecular type VGIII. To identify the
population structure and possible recombination events between and within serotype B and C, fineStructure analysis was performed
using a SNPmatrix (iii). Whole-genome SNP data were reduced to a pairwise similarity matrix. The x-axis represents the strain as a
“donor” and the y-axis represents the strain as a “recipient” of genomic regions. The scale bar represents the number of shared
genome regions with blue being the greatest amount of sharing and yellow being the least. Blue and red boxes represent serotype B
and serotype C isolates, respectively.

doi:10.1371/journal.pntd.0004861.g007
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within each of the two major VGIII serotype groups, serotype B, 498 SNPs, with 320 SNPs

being parsimony informative, Phi test (p = 0.0032), and serotype C, 333 SNPs, with 258 being

parsimony informative, Phi test (p = 0.000000143), indicating possible sexual recombination

events.

Serotype B prevails amongst the highly virulent VGIII isolates, causing
pulmonary cryptococcosis

Seventeen isolates, widely representative of the identified MLST genotypes, were studied in a

mouse model of infection. Five were highly virulent and caused 100% mortality, while 12 did

not kill any mice within 60 days of inoculation (Table 2, Fig 8). Of the virulent isolates, WM

11.105 (C/α, ST79, a clinical isolate from Colombia) was the most virulent, even more lethal

than CDC R265 (the highly virulent VGIIa reference strain from the Vancouver Island out-

break, which was used as a control [69]) (p = 0.0112), followed by WM 2088 (B/a, ST59, a clini-

cal isolate from Colombia), WM 11.139 (B/a, ST143, a veterinary isolate from the USA), WM

09.47 (B/α, ST74, a veterinary isolate from the USA) andWM 11.118 (B/α, a clinical isolate

from Colombia), which was the least virulent (p = 0.0025). Pairwise comparison among the

other virulent isolates showed no significant differences (p>0.05). Four of the five virulent iso-

lates were serotype B while only one was serotype C. Of the four serotype B isolates, two

human clinical isolates (WM 11.139 andWM 2088) were mating type a and two veterinary iso-

lates (WM 09.47 andWM 11.139) were mating type α. No environmental isolates were virulent

in this mouse model.

Table 2. List of Cryptococcus gattiimolecular type VGIII isolates tested in the murine model of infection (n = 17).

WM number Country Source Serotype/ mating type Median survival time (days)

WM 11.105 Colombia Clinical C/α 27*

WM 2088 Colombia Clinical B/a 32*

WM 11.139 USA Veterinary B/a 34*

WM 09.47 USA Veterinary B/α 39*

WM 11.118 Colombia Clinical B/α 50*

WM 1826 Mexico Clinical B/α ND*

WM 175 USA Environmental B/α ND

WM 02.127 Guatemala Clinical B/α ND*

WM 02.139 USA Clinical B/α ND*

WM 11.8 Colombia Environmental B/a ND*

WM 1667 USA Clinical C/α ND

WM 10.17 USA Veterinary C/α ND*

WM 1814 Mexico Clinical C/α ND

WM 3071 Colombia Environmental C/α ND

WM 2423 New Zealand Clinical C/a ND*

WM 10.121 USA Veterinary C/a ND

WM 06.38 USA Clinical C/a ND

ND: Not determined. These isolates did not kill any mouse at the end of the experiment (60 days). The reference strains of the highly virulent subtype VGIIa

(CDCR265) and low virulent subtype VGIIb (CDCR272) were used as controls for infection in vivo [69]. The median survival of mice inoculated with

CDCR265 was 29 days, where no mice infected with CDCR272 died within the 60-day observation period.

*Fungal cells were culture from cardiac blood collected at necropsy. This raises the possibility that fungal cells seen by histology in brain tissue might have

been located within cerebral blood vessels rather than being present in the meninges or brain parenchyma.

doi:10.1371/journal.pntd.0004861.t002
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Macroscopic examination after necropsy revealed multiple granulomata in the lungs of

the mice infected with virulent cryptococcal isolates. In contrast, few or no granulomata

were observed in lung tissue from mice that survived for at least 60 days post inoculation.

Direct microscopy of the lung tissue suspensions stained with Indian ink revealed numerous

cryptococci in the lung samples of all infected mice. Lung tissue burdens of cryptococci

(number of yeasts per gram) did not differ significantly among the virulent isolates. Brains

excised from these mice were macroscopically normal and brain suspensions were culture

negative. Direct microscopy of India ink preparations of the brain suspensions revealed not

more than four cryptococcal cells. It is possible these represent yeasts originating from cere-

bral or meningeal blood vessels. Histological examination of lung tissue from mice infected

with the five virulent isolates revealed widespread location of cryptococci within the alveoli,

interstitial tissue and the airways. C. gattii was recovered from the cardiac blood from 11 out

of the 17 isolates inoculated into mice, indicative of dissemination of cryptococcal cells from

the lungs to circulation (Table 2). Fig 9 shows multiple granulomata and numerous crypto-

cocci in the lungs of mice infected with the most virulent C. gattii VGIII isolate WM 11.105.

Isolates with enhanced virulence caused significant weight loss during the course of infection

(Fig 10).

Fig 8. Survival curves of BALB/c mice inoculated with isolates of Cryptococcus gattiimolecular type VGIII and the highly virulent
VGIIa strain CDCR265 [69]. Blue lines indicates serotype B and red lines, serotype C. Asterisk (*) indicates mating type a isolates, all other
isolates are mating type α. Clin: clinical and Vet: veterinary. The median survival time (in days) is indicated in brackets.

doi:10.1371/journal.pntd.0004861.g008
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Fig 9. Pathological findings from BALB/c mice inoculated with a high virulent isolate ofCryptococcus
gattiimolecular type VGIII (WM 11.105). A. Lungs with multiple gelatinous granulomata comprised mostly
of masses of cryptococcal cells (cryptococcomas). B. India ink stained lung suspension examined
microscopically displaying abundant cryptococcal cells.C. Histopathological section of infected lungs stained
with haematoxylin and eosin showing alveoli containing large numbers of yeast cells and little or no
inflammatory response.

doi:10.1371/journal.pntd.0004861.g009
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Serotype C isolates show less susceptibility to azoles than serotype B
isolates

Antifungal susceptibilities of all VGIII isolates to amphotericin-B, 5-flucytosine, posaconazole,

voriconazole, intraconazole, and fluconazole, were determined (S1 Table). Minimum inhibi-

tory concentrations (MICs), MIC50, MIC90, geometric mean MICs and epidemiological cut-off

values for all isolates are shown in Table 3. One veterinary isolate from the USA (WM 11.937)

and two clinical isolates from Colombia (WM 11.105 andWM 11.112) had high fluconazole

MICs; the first isolate (WM 11.937) with a MIC of 64 μg/ml and the last two (WM 11.105 and

WM 11.112) with MICs of 128 μg/ml. The comparison of MIC distributions for the tested

drugs according to the serotype, mating type and source of the isolates is shown in S4 Table.

Overall, serotype C isolates had statistically significant higher modal MICs and geometric

mean MICs for posaconazole, voriconazole, itraconazole and fluconazole than serotype B iso-

lates, but lower geometric mean MICs for 5-fluorocytosine (p<0.05) (Table 4, S4 and S5

Tables). Statistically, environmental isolates were less susceptible to the tested antifungals,

except for amphotericin-B, compared with clinical and veterinary isolates (Table 5 and S4

Table). There was no significant difference in antifungal susceptibility profiles between mating

Fig 10. Change in body weight (expressed as a percentage) of BALB/c mice inoculated with
Cryptococcus gattiimolecular types VGII and VGIII. Blue lines indicates VGIII serotype B, red lines, VGIII
serotype C and green lines, VGII isolates. Virulent VGIII isolates and isolates of subtypes VGIIa (CDCR265)
and VGIIb (CDCR272) are labelled [69]. Code numbers of isolates that did not kill any mice at the end of the
experiment are not included.

doi:10.1371/journal.pntd.0004861.g010

Table 3. Antifungal susceptibility results of theCryptococcus gattiimolecular type VGIII isolates (n = 122) determined by microdilution (Sensititre
YeastOne).

MIC (mg/ml)a

AMB FC PCZ VCZ ITZ FCZ

Range �0.125–2 0.5–8 0.015–0.25 �0.008–1 �0.015–2 1–128

MIC50 0.25 2 0.06 0.03 0.03 4

MIC90 0.5 4 0.125 0.125 0.125 16

Geometric meanb 0.2865 1.879 0.06923 0.04249 0.04573 5.224

ECVc 0.5 (98.4) 4 (95.9) 0.25 (95.1) 0.125 (95.9) 0.125 (98.4) 16 (95.9)

aAMB: Amphotericin-B; FC: 5-Fluorocytosine; PCZ: Posaconazole, VCZ: Voriconazole; ITZ: Itraconazole; FCZ: Fluconazole
bGeometric mean MIC
cEpidemiologic cutoff value (% wild type distribution)

doi:10.1371/journal.pntd.0004861.t003
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type α or a isolates (p> 0.05) (S4 Table). Susceptibility to amphotericin-B did not vary signifi-

cantly with the source of the isolates (S4 Table). The epidemiological cut off values (ECVs)

were the same as the MIC90 for the tested drugs, except for posaconazole, where the ECV was

0.25 μg/ml, compared with an MIC90 of 0.125 μg/ml (Table 3).

Discussion

Taking into account the rising importance of VGIII as cause of clinical and veterinary infec-

tions [17, 20–24, 27–29], their genotypic and phenotypic epidemiology has been under-investi-

gated, compared with strains of molecular type VGII. Two MLST studies performed on a

VGIII population from HIV positive patients from Southern California, identified two major

molecular groups, VGIIIa and VGIIIb, that differed in virulence and fertility and a minor

VGIIIc cluster represented by only one isolate [20,32]. Shortly after the first study was pub-

lished, VGIII was found to predominate among the molecular types recovered from both

human and veterinary samples outside the Pacific Northwest in the USA [17], and amongst

Table 4. Antifungal susceptibility of theCryptococcus gattiimolecular type VGIII isolates by serotype.

MIC (μg/ml)

Serotype Range MIC50 MIC90 Geometric mean

Amphotericin B (p = 0.1153)

Serotype B �0.125–1 0.25 0.5 0.2980

Serotype C �0.125–2 0.25 0.5 0.2691

5-Flucytosine (p = 0.0397)*

Serotype B 0.5–8 2 4 2.095

Serotype C 0.5–4 2 4 1.580

Posaconazole (p < 0.0001)****

Serotype B 0.015–0.25 0.06 0.125 0.05698

Serotype C 0.03–0.25 0.125 0.125 0.09445

Voriconazole (p < 0.0001)****

Serotype B �0.008–1 0.03 0.06 0.03304

Serotype C �0.008–0.5 0.06 0.125 0.06346

Itraconazole (p = 0.0031)**

Serotype B �0.015–0.25 0.03 0.125 0.03830

Serotype C �0.015–2 0.06 0.125 0.06068

Fluconazole (p < 0.0001)****

Serotype B 1–128 4 8 3.927

Serotype C 1–128 8 32 8.239

Statistical significance * p� 0.05, ** p � 0.01, *** p� 0.001 and **** p� 0.0001

doi:10.1371/journal.pntd.0004861.t004

Table 5. Geometric mean MICs of theCryptococcus gattiimolecular type VGIII isolates according to source.

Geometric mean MIC (μg/ml)a

Source (n) AMB FC PCZ VCZ ITZ FCZ

Environmental (28) 0.2563 2.208 0.09520 0.5666 0.06732 7.246

Clinical (56) 0.2726 1.927 0.06987 0.04421 0.04530 5.384

Veterinary (38) 0.3347 1.607 0.05401 0.03241 0.03486 3.928

aAMB: Amphotericin-B; FC: 5-Flucytosine; PCZ: Posaconazole, VCZ: Voriconazole; ITZ: Itraconazole; FCZ: Fluconazole

doi:10.1371/journal.pntd.0004861.t005
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cats in California [28]. It was also identified as the second most common molecular type

amongst human cases in Colombia [24]. Based on these limited reports, we conducted a VGIII

population analysis of clinical, veterinary and environmental isolates from a broader geo-

graphic range, taking into account the previously reported endemic areas and sporadic cases

[25]. Isolates were sampled from the USA, Colombia and Mexico, and single cases from Aus-

tralia, Guatemala, New Zealand, Paraguay and Venezuela, to give a more comprehensive

perspective of the epidemiology of the VGIII molecular type and to investigate possible correla-

tions between genotype and virulence and antifungal susceptibility phenotypes.

Although C. gattii VGIII has been recovered infrequently from human cases in Argentina,

Guatemala [8], Cuba [37], Western Europe [72] and Korea [73, 74], and from the environment

in Argentina [31] and India [30], this molecular type remains an important cause of neglected

cryptococcosis cases in Brazil [34, 38], Colombia [23,24] and Mexico [21,35]. In addition, the

previously described endemic region of C. gattii VGIII is expanding beyond the borders of the

US state of California, with an increase of both clinical and veterinary cases [17,28]. The high

incidence of cryptococcosis caused by C. gattii VGIII beyond the tropical and subtropical

areas, where it is considered to be endemic, and the emergence of this pathogen in more tem-

perate regions traditionally considered of low risk for the acquisition of this infection are major

clinical concerns. C. gattii, including VGIII is mostly isolated from patients without recognized

immunologic defects and may be associated with worse clinical outcomes, complications such

as permanent neurologic sequelae and the requirement for prolonged periods of antifungal

treatment [37,39–41]. Failure to consider the diagnosis or delays in doing so in immunocom-

petent patients, result in failing to initiate the most appropriate therapy, and consequently

increase morbidity and mortality. This is illustrated by recent cases of disseminated cryptococ-

cosis caused by C. gattii VGIII, including two fatal cases reported from Cuba and the USA

[37,39].

As also reported in the aforementioned studies, the herein studied VGIII population showed

a high level of genetic diversity, with no geographic restriction of genotypes. This is at variance

with observations made with VGII subtypes [14–17]. Not only were the VGIII isolates from

the endemic areas of Colombia, Mexico and the USA closely related, but they also shared geno-

types with most of the sporadic cases from around the world, namely ST68 (found in New Zea-

land and the USA), and ST65 (found in Venezuela and Colombia) (Figs 1 and 4). Although

only a single isolate from Guatemala was identified as ST96, this genotype clustered very

closely with isolates from Mexico (Fig 1). Similarly, a single isolate of ST144 found in Australia,

clustered very closely with isolates from the USA (Fig 1). Interestingly, there was an association

between clinical and veterinary genotypes and those identified from environmental samples,

which present the natural reservoirs for C. gattii (Fig 1).

Determination of the serotype of the isolates clearly revealed that the major MLST, WGST

and mitochondrial genome clusters within VGIII correspond to either serotype B or serotype

C, corresponding most likely to the subgroups VGIIIa and VGIIIb, respectively, which were

designated previously, based exclusively on MLST genotypic clustering [20,32]. This discrimi-

nation between the serotypes of C. gattii VGIII has been demonstrated previously using Fourier

transform infrared spectroscopy, which, in contrast to MLST, WGS and mitochondrial genome

sequencing, characterizes phenotype instead of genotype [72]. Phylogenetic and coalescence

analyses also revealed two more distant, but basal groups in the VGIII population, which inter-

estingly, have been erroneously designated as VGIV following URA5-RLFP analysis, due to a

SNP in the restriction site of Sau96I [12]. In addition, these two minor clusters did not share

any of the MLST alleles with the major groups. Notably, they were additionally separated

according to serotype, in spite of being represented by only a few isolates each (Figs 1 and 2; S1

Table). Importantly, one of these minor/basal groups, which includes the serotype C isolates
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WM 1802 and WM 1804 from Mexico, is closely related to the previously described AFLP10

type, which differs in one of the seven MLST loci, the SOD1 locus having allele type (AT) AT51

in strain IHEM14941S compared to AT39 in the herein studied strains WM 1802 andWM

1804 [11,32]. This strain has recently been proposed as a distinct species among C. gattii (C.

decagattii) [13]. The second minor group described in this study, which includes the serotype

B isolates WM 2004, WM 2041 and WM 2042 (all ST64) from Colombia, and WM 11.32

(ST114) from the USA, could similarly represent another new cryptic species, considering the

species concept proposed by Hagen et al. [13]. However, DNA barcoding gap analysis,

accounting for all four identified subgroups within the VGIII isolates combined, does not

reveal a DNA barcoding gap (S3A Fig). If the newly described minor serotype B subgroup

(WM 2004, WM 2041, WM 2042 andWM 11.32) is removed from this analysis, a DNA bar-

coding gap emerges between the major two serotype groups, B and C, and the minor serotype

C subgroup (WM 1802 and WM 1804, similar to AFLP10 [13]) (S3B Fig). As such, the separa-

tion of the AFLP10 isolates from the VGIII isolates may be mistaken because of the small sam-

ple size. Depending on the number of isolates that are included in the phylogenetic analysis,

the species borders can become blurred, indicating ongoing speciation events.

Based solely on the MLST analysis serotype C isolates were slightly more diverse than sero-

type B isolates and there was a low gene flow between isolates of different serotypes, as reflected

by population differentiation analysis (Figs 1, 2 and 3). Tests of linkage disequilibrium showed

additionally that serotype C isolates recombine more readily than serotype B isolates. These

conclusions were also supported by the phylogenetic network and fineStructure analyses of the

whole genomes and the mitochondrial genomes, showed almost no recombination between

the two serotypes but recombination within each of the serotypes, with more sharing of geno-

mic content amongst serotype C isolates (Figs 6 and 7). Identification of the two opposite mat-

ing types amongst both serotype B and serotype C isolates provides further evidence for sexual

recombination within these VGIII sub-populations, which may contribute to their genetic

diversity. The occurrence of well-supported sub-populations, which are separated geographi-

cally and in time, suggests that recombination and genetic exchange events are not occurring

between the two major serotype specific groups of the molecular type VGIII and that this pop-

ulation is going through a process of expansion, divergence and perhaps speciation.

MLST, maximum parsimony-based WGST, and coalescence analyses demonstrated that the

two major VGIII sub-populations, serotypes B and C, which share minimal genetic diversity,

likely originated from very distant ancestors in the VGIII endemic regions of Colombia,

Mexico or the USA (Figs 1A, 1B, 4 and 5). The two distinct atypical populations link the two

major VGIII populations (serotype B and C) specifically to the C. gattii lineages VGI and

VGIV, confirming findings from comparative WGS studies, which also showed a closer link

between VGI, VGIII and VGIV [75] (Fig 5). fineStructure analysis confirmed their ancestral

role by indicating shared gene content between VGI and/or VGIV (S2 Fig). This reflects also

findings by Farrer at al., that structural genome rearrangements are almost exclusive to the

VGI, VGIII and VGIV lineages [75]. Given that atypical isolates may be under-sampled or mis-

identified as molecular type VGIV using traditional molecular methods (i.e. URA5-RFLP), fur-

ther studies are required to more accurately infer the ancestors of the VGIII population.

Inclusion of the highly virulent reference strain of the VGIIa subtype (CDCR265) [69] in

the mouse model of infection permitted the recognition of VGIII isolates with enhanced or

comparable virulence to the VGII Vancouver Island outbreak isolates and very similar diseases

patterns (Figs 8, 9 and 10; Table 2). Importantly, the mortality from infection with serotype B

isolates was higher than that caused by serotype C isolates. Nevertheless, most of the isolates

formed granulomata and direct microscopic examination revealed yeast cells in all lung sec-

tions similar to an isolate with increased virulence (WM 11.105) (Fig 9). These findings
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indicate that as reported in infections mainly caused by VGIIa strains in British Columbia and

the Pacific Northwest [36,76], pulmonary cryptococcosis is the predominant clinical manifes-

tation of C. gattii VGIII serotype B infections. Among the highly virulent serotype B isolates

identified in this study, the veterinary isolate WM 09.47 shared the same genotype (ST74) with

the strain responsible for a fatal case of cryptococcosis reported in NewMexico in 2010 (WM

11.935, B7495) [39] and with a clinical isolate (WM 1819) fromMexico recovered in 1990.

This finding suggests that the identification of certain genotypes may be indicative of increased

virulence. It is conceivable that these virulent genotypes are circulating but are undocumented.

Paradoxically, there were no specific whole or mitochondrial genome differences between low-

and high-virulence isolates in the two major groups. This is similar to the findings by Ma et al.

in 2009, which showed also no correlation between the major genes coding for known viru-

lence factors and the actual virulence in the VGII Vancouver Island Outbreak strains [70], but

identified changes in the mitochondrial morphology and mitochondrial gene expression as

major factors of increased intracellular proliferation, corresponding to increased virulence.

However, specific comparative mitochondrial genome analysis between high and low virulent

VGIII strains conducted herein did not, like the WGS analysis, reveal any specific changes.

Gene rearrangement analysis (i.e., progressive Mauve) showed variation among the mitochon-

drial genomes of the strains included in the virulent study, not specific changes associated with

either high or low virulent strains were found (S4 Fig). The variation found within the mito-

chondrial genomes is in agreement with the observation made previously, attributing the fact

that mitochondria are more recombinogenic than their nuclear counterparts, to the ability to

change the mitochondrial phenotype [75]. As no specific whole genome or mitochondrial

genome differences between high and low virulent have been found herein, the differences in

virulence may therefore be related to phenotypic characteristics generated by differences in

gene expression, for example, different rates of multiplication at 37°C, the ability to disseminate

from the lung to the brain and other sites via the blood and to overcome the host immune

response.

Recovery of yeast cells from cardiac blood (heart blood collected at time of euthanasia) sug-

gests that C. gattii VGIII can disseminate to the CNS, but that experimentally-inoculated mice

die of cryptococcal pneumonia before establishment of meningoencephalitis, as previously

found [77]. We suggest that the small number of yeasts detected by direct examination of brain

tissue from mice infected with VGIII isolates represented yeasts within cerebral blood vessels,

as there was no clinical or histopathological evidence for infection of the central nervous

system.

To date, many in vitro susceptibility studies have been performed on C. neoformans and C.

gattii, to elucidate differences between species, serotypes and molecular types. Differences

between serotypes have been mostly reported within C. neoformans, where there is a clear cor-

respondence between serotype and molecular type. This close correspondence has not been

reported within C. gattii, mainly because the serotype in this species is rarely identified and

documented [11,28,42,43,78–81]. Because differences in antifungal susceptibility can influence

therapeutic choices in the clinical setting, the findings of this study are of interest. Serotype C

isolates were significantly less susceptible to azoles, especially fluconazole, than serotype B iso-

lates (Table 4). In addition, irrespective of serotype, environmental isolates were slightly less

susceptible to azoles and 5-fluorocytosine than clinical and veterinary isolates, indicating that

their use in establishing ECVs may be misleading (Table 5). However, the association between

the source of the isolates (clinical, veterinary and environmental) and antifungal susceptibility

profiles remains unclear, as different findings have been reported elsewhere. In a previous Bra-

zilian study, for instance, clinical isolates of C. neoformans were reported to be less susceptible

to antifungal drugs than environmental isolates [80], and in general, veterinary isolates of C.
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gattii collected worldwide were found to be less susceptible to antifungal drugs than clinical

and environmental isolates [11].

Overall, C. gattii VGIII strains have been more susceptible to amphotericin B and 5-flucyto-

sine than other C. gattiimolecular types and C. neoformans [42,78,81]. In the present study

ECVs of both these antifungal agents were higher than reported previously (0.5 μg/ml for

amphotericin B and 4 μg/ml for 5-flucytosine). C. gattii has shown variable susceptibility to flu-

conazole and other azoles [28,43,79]. However, this study is the first to document high values

of GMMICs and ECVs amongst C. gattii VGIII isolates, specifically for fluconazole and itraco-

nazole, which are currently recommended as alternative induction therapy for pulmonary

cryptococcosis [82]. All of these findings emphasize that recognition of serotype and molecular

type in C. gattii isolates can identify isolates with acquired resistance mechanisms, based on the

reported ECVs for each drug and may be relevant to the choice of the treatment regimen for a

specific cryptococcal infection. Clinical studies correlating these parameters with responses to

therapy and patient outcomes are required.

In conclusion, the herein reported study of clinical, veterinary and environmental isolates

from the main endemic areas in the world revealed a high genetic diversity within the C. gattii

molecular type VGIII population. Two well-supported and divergent lineages were identified,

corresponding to serotypes B and C. In addition distant ancestors within the molecular type

that are represented by isolates from VGIII endemic areas were revealed in either Mexico or

Colombia/USA, linking the two major VGIII populations to the other major molecular types

within C. gattii, specifically to VGI and VGIV. The predominant clinical manifestation of C.

gattii VGIII infections was pulmonary disease rather than meningitis or encephalitis. No spe-

cific associations between the WGS or mitochondrial genome and virulence have been

observed. Antifungal susceptibility profiles differed according to serotype. The results of this

study reinforce the notion that global cooperation is necessary to more accurately determine

the prevalence of C. gattii infection and redefine endemic regions. Additionally, surveillance of

antifungal susceptibility patterns and correlation with clinical outcomes is needed to optimize

therapeutic guidelines and hence clinical outcomes.
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S1 Fig. Dendrogram of the partial sequences of the CAP59 gene. The tree is based on the

analysis of a fragment of 360 bp of the capsular gene extracted from the WGS data using the

programMEGA 6.0 [48] and indicating the serotype B (blue) and serotype C (red) isolates.

(EPS)

S2 Fig. fineStructure analysis of all sub-populations of Cryptococcus gattii VGIII in context

with the other C. gattiimolecular types: VGI, VGII and VGIV. To identify the population

structure and genome exchange events between the VGIII groups and the remaining C. gattii

molecular types, fineStructure analysis was performed using a SNP matrix (i). Whole-genome

SNP data were reduced to a pairwise similarity matrix. The x-axis represents the strain as a

“donor” and the y-axis represents the strain as a “recipient” of genomic regions. The scale bar

represents the number of shared genome regions with blue being the greatest amount of shar-

ing and yellow being the least. Blue and red boxes represent the main VGIII serotype B and

serotype C isolates, respectively.

(TIF)

S3 Fig. Barcoding gap analysis. (A) Identified subgroups within the VGIII isolates combined

do not reveal a DNA barcoding gap. (B) If the newly described minor serotype B subgroup

(WM 2004, WM 2041, WM 2042 andWM 11.32) is removed from this analysis, a DNA bar-

coding gap emerges between the major two serotype groups, B and C, and the minor serotype

C subgroup (WM 1802 and WM 1804, similar to AFLP10).

(EPS)

S4 Fig. progressiveMauve analysis of the mitochondrial genomes.High virulent: WM 09.47,

WM 11.118, WM 11.139, WM 2088, and low virulent: WM 11.8, WM 02.1`39, WM 02.127,

WM 18260 C. gattii VGIII strains.

(JPEG)
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