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Summary

MLxtend is a library that implements a variety of core algorithms and utilities for machine
learning and data mining. The primary goal of MLxtend is to make commonly used tools
accessible to researchers in academia and data scientists in industries focussing on user-
friendly and intuitive APIs and compatibility to existing machine learning libraries, such
as scikit-learn, when appropriate. While MLxtend implements a large variety of functions,
highlights include sequential feature selection algorithms (Pudil, Novovičová, and Kittler
1994), implementations of stacked generalization (Wolpert 1992) for classification and re-
gression, and algorithms for frequent pattern mining (Agrawal and Ramakrishnan 1994).
The sequential feature selection algorithms cover forward, backward, forward floating, and
backward floating selection and leverage scikit-learn’s cross-validation API (Pedregosa et
al. 2011) to ensure satisfactory generalization performance upon constructing and select-
ing feature subsets. Besides, visualization functions are provided that allow users to in-
spect the estimated predictive performance, including performance intervals, for different
feature subsets. The ensemble methods in MLxtend cover majority voting, stacking, and
stacked generalization, all of which are compatible with scikit-learn estimators and other
libraries as XGBoost (Chen and Guestrin 2016). In addition to feature selection, clas-
sification, and regression algorithms, MLxtend implements model evaluation techniques
for comparing the performance of two different models via McNemar’s test and multiple
models via Cochran’s Q test. An implementation of the 5x2 cross-validated paired t-test
(Dietterich 1998) allows users to compare the performance of machine learning algorithms
to each other. Furthermore, different flavors of the Bootstrap method (Efron and Tibshi-
rani 1994), such as the .632 Bootstrap method (Efron 1983) are implemented to compute
confidence intervals of performance estimates. All in all, MLxtend provides a large vari-
ety of different utilities that build upon and extend the capabilities of Python’s scientific
computing stack.
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