
MLxtend: Providing machine learning and data science
utilities and extensions to Python’s scientific computing
stack
Sebastian Raschka1

1 Michigan State UniversityDOI: 10.21105/joss.00638

Software
• Review
• Repository
• Archive

Submitted: 15 March 2018
Published: 22 April 2018

Licence
Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

Summary

MLxtend is a library that implements a variety of core algorithms and utilities for machine
learning and data mining. The primary goal of MLxtend is to make commonly used tools
accessible to researchers in academia and data scientists in industries focussing on user-
friendly and intuitive APIs and compatibility to existing machine learning libraries, such
as scikit-learn, when appropriate. While MLxtend implements a large variety of functions,
highlights include sequential feature selection algorithms (Pudil, Novovičová, and Kittler
1994), implementations of stacked generalization (Wolpert 1992) for classification and re-
gression, and algorithms for frequent pattern mining (Agrawal and Ramakrishnan 1994).
The sequential feature selection algorithms cover forward, backward, forward floating, and
backward floating selection and leverage scikit-learn’s cross-validation API (Pedregosa et
al. 2011) to ensure satisfactory generalization performance upon constructing and select-
ing feature subsets. Besides, visualization functions are provided that allow users to in-
spect the estimated predictive performance, including performance intervals, for different
feature subsets. The ensemble methods in MLxtend cover majority voting, stacking, and
stacked generalization, all of which are compatible with scikit-learn estimators and other
libraries as XGBoost (Chen and Guestrin 2016). In addition to feature selection, clas-
sification, and regression algorithms, MLxtend implements model evaluation techniques
for comparing the performance of two different models via McNemar’s test and multiple
models via Cochran’s Q test. An implementation of the 5x2 cross-validated paired t-test
(Dietterich 1998) allows users to compare the performance of machine learning algorithms
to each other. Furthermore, different flavors of the Bootstrap method (Efron and Tibshi-
rani 1994), such as the .632 Bootstrap method (Efron 1983) are implemented to compute
confidence intervals of performance estimates. All in all, MLxtend provides a large vari-
ety of different utilities that build upon and extend the capabilities of Python’s scientific
computing stack.

Acknowledgements

I would like to acknowledge all of the contributors and users of mlxtend, who helped with
valuable feedback, bug fixes, and additional functionality to further improve the library:
James Bourbeau, Reiichiro Nakano, Will McGinnis, Guillaume Poirier-Morency, Colin
Carrol, Zach Griffith, Anton Loss, Joshua Goerner, Eike Dehling, Gilles Armand, Adam
Erickson, Mathew Savage, Pablo Fernandez, Alejandro Correa Bahnsen, and many others.
A comprehensive list of all contributors to mlxtend is available at https://github.com/
rasbt/mlxtend/graphs/contributors.

Raschka, (2018). MLxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing stack. Journal
of Open Source Software, 3(24), 638. https://doi.org/10.21105/joss.00638

1

https://doi.org/10.21105/joss.00638
https://github.com/openjournals/joss-reviews/issues/638
https://github.com/rasbt/mlxtend
http://dx.doi.org/10.5281/zenodo.1226560
http://creativecommons.org/licenses/by/4.0/
https://github.com/rasbt/mlxtend/graphs/contributors
https://github.com/rasbt/mlxtend/graphs/contributors
https://doi.org/10.21105/joss.00638


References

Agrawal, Rakesh, and Srikant Ramakrishnan. 1994. “Fast Algorithms for Mining As-
sociation Rules in Large Databases.” In VLDB’94, Proceedings of 20th International
Conference on Very Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile,
1215:487–99.
Chen, Tianqi, and Carlos Guestrin. 2016. “Xgboost: A Scalable Tree Boosting System.”
In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery
and Data Mining, 785–94. ACM. https://doi.org/10.1145/2939672.2939785.
Dietterich, Thomas G. 1998. “Approximate Statistical Tests for Comparing Supervised
Classification Learning Algorithms.” Neural Computation 10 (7). MIT Press:1895–1923.
https://doi.org/10.1162/089976698300017197.
Efron, Bradley. 1983. “Estimating the Error Rate of a Prediction Rule: Improvement
on Cross-Validation.” Journal of the American Statistical Association 78 (382). Taylor &
Francis Group:316–31. https://doi.org/10.1080/01621459.1983.10477973.
Efron, Bradley, and Robert J Tibshirani. 1994. An Introduction to the Bootstrap. CRC
press.
Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, et al. 2011. “Scikit-Learn: Machine Learn-
ing in Python.” Journal of Machine Learning Research 12 (Oct):2825–30.
Pudil, Pavel, Jana Novovičová, and Josef Kittler. 1994. “Floating Search Methods in
Feature Selection.” Pattern Recognition Letters 15 (11). Elsevier:1119–25. https://doi.
org/https://doi.org/10.1016/0167-8655(94)90127-9.
Wolpert, David H. 1992. “Stacked Generalization.” Neural Networks 5 (2). Elsevier:241–
59. https://doi.org/https://doi.org/10.1016/S0893-6080(05)80023-1.

Raschka, (2018). MLxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing stack. Journal
of Open Source Software, 3(24), 638. https://doi.org/10.21105/joss.00638

2

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1162/089976698300017197
https://doi.org/10.1080/01621459.1983.10477973
https://doi.org/https://doi.org/10.1016/0167-8655(94)90127-9
https://doi.org/https://doi.org/10.1016/0167-8655(94)90127-9
https://doi.org/https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.21105/joss.00638

	Summary
	References

