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mm-Pose: Real-Time Human Skeletal Posture

Estimation using mmWave Radars and CNNs
Arindam Sengupta, Student Member, IEEE, Feng Jin, Student Member, IEEE,

Renyuan Zhang, Student Member, IEEE, and Siyang Cao, Member, IEEE

Abstract—In this paper, mm-Pose, a novel approach to detect
and track human skeletons in real-time using an mmWave radar,
is proposed. To the best of the authors’ knowledge, this is the
first method to detect >15 distinct skeletal joints using mmWave
radar reflection signals. The proposed method would find several
applications in traffic monitoring systems, autonomous vehicles,
patient monitoring systems and defense forces to detect and track
human skeleton for effective and preventive decision making
in real-time. The use of radar makes the system operationally
robust to scene lighting and adverse weather conditions. The
reflected radar point cloud in range, azimuth and elevation
are first resolved and projected in Range-Azimuth and Range-
Elevation planes. A novel low-size high-resolution radar-to-image
representation is also presented, that overcomes the sparsity
in traditional point cloud data and offers significant reduction
in the subsequent machine learning architecture. The RGB
channels were assigned with the normalized values of range,
elevation/azimuth and the power level of the reflection signals for
each of the points. A forked CNN architecture was used to predict
the real-world position of the skeletal joints in 3-D space, using
the radar-to-image representation. The proposed method was
tested for a single human scenario for four primary motions, (i)
Walking, (ii) Swinging left arm, (iii) Swinging right arm, and (iv)
Swinging both arms to validate accurate predictions for motion
in range, azimuth and elevation. The detailed methodology,
implementation, challenges, and validation results are presented.

Index Terms—Convolutional Neural Networks, mmWave
Radars, Posture Estimation, Skeletal Tracking

I. INTRODUCTION

W ITH the advent in computing resources and advanced

machine learning (ML) techniques, computer vision

(CV) has emerged as an exciting field of research to pro-

vide Artifical Intelligence (AI) and autonomous machines

with information about the visual representation of the real

world [1], [2]. Primarily using vision based sensors, such as

monocular camera, Red-Green-Blue-Depth (RGBD) camera or

Infra-Red (IR) based sensors, and applied machine learning,

CV targets several applications, including (but not limited to)

object classification, target tracking, traffic monitoring and

autonomous vehicles [3]–[7]. In the recent years, another

interesting topic that the CV community has been exploring

is the ability to estimate human skeletal pose by identifying

and detecting specific joints and/or body parts from still/video

data. This specific area of research finds several applications,

one being primarily in the health-care industry by automating

patient monitoring systems, with the current situation of global

shortage in nursing staff [8]. Such tracking systems would
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Fig. 1. mm-Pose can be used in autonomous/ semi-autonomous vehicles and
traffic monitoring systems for robust skeletal posture estimation of pedestrians,
represented in green and blue dot on the crosswalk, respectively.

also allow for effective pedestrian monitoring for autonomous

and semi-autonomous vehicles, and aid defense forces with

behavioral information of the adversary, to trigger appropriate

preventive decision making.

While vision based sensors provide a high-resolution repre-

sentation of the scene, there are a few challenges associated

with their operation. They heavily rely on (or influenced by)

external sources for illuminating the scene and are there-

fore rendered ineffective in poor lighting conditions, adverse

weather conditions or when the scene/target is occluded [9].

These could result in irrevocable catastrophic events similar

to the ones encountered at (i) Tesla’s autopilot testing, where

the vision sensors failed to detect the white side of a tractor

trailer in brightly lit sky (very high reflectivity) [10] , and (ii)

Uber self-driving vehicle crash incident in Arizona due to the

vision/LiDAR sensors’ inability to detect the pedestrian in time

to avoid the accident during a night test (low/no reflectivity)

[11]. There is therefore an imminent need for alternate sensors

to achieve the task, while overcoming the aforementioned

challenges.

Radio Frequency (RF) based sensors, such as radars, use its

own signals to illuminate the target (active sensing), therefore

making it operationally robust to scene lighting and weather

conditions. However, unlike vision based sensors, radars rep-
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resent the scene using RF intensity based spatial heat-maps,

reflection point clouds or range-doppler maps, rather than a

true-color image representation. Radars are therefore primarily

used for target localization and tracking applications. Further-

more, object classification becomes non-trivial with radar data,

and the lack of available labeled radar data-sets for this task

makes it even more challenging.

Traditionally, radar systems have been size and cost inten-

sive primarily targeted to commercial and defense applica-

tions. However, continuing advancement in micro-electronics

fabrication and manufacturing techniques, including Radio

Frequency Integrated Circuits (RFICs), have significantly re-

duced the size and cost of electronic sensors making them

more accessible to public [12]–[14]. mmWave automotive

radars are an example of this technology. They are low-power,

compact and are extremely practical to deploy. Furthermore,

mmWave radars provide us with a high resolution point cloud

representation of the scene and have therefore emerged as one

of the primary sensors in autonomous robots on a smaller

scale, to more commercial applications such as autonomous

vehicles. Higher operating bandwidths also allow mmWave

radars to roughly generate the contour of human body without

extracting facial information, thus preserving user privacy.

In this paper, we propose mm-Pose, a novel real-time

approach to estimate and track human skeleton using mmWave

radars and convolutional neural networks (CNNs). A potential

depiction of its application in traffic monitoring systems and

autonomous vehicles is shown in Fig. 1. To the best of the

authors’ knowledge, this is the first method that uses mmWave

radar reflection signals to estimate the real-world position of

>15 distinct joints of a human body. mm-Pose could also

find applications in (i) privacy-protected automated patient

monitoring systems, and (ii) aiding defense forces in a hostage

situation. Radars carrying this technology on unmanned aerial

vehicles (UAVs) could scan the building and map the live

skeletal postures of the hostage and the adversary, through

the walls, which would not have been possible otherwise with

vision sensors.

The paper is organized as follows. Section II summarizes

the current skeleton tracking work carried out in the CV com-

munity and its extension to RF sensors. A concise background

theory around the two fundamental blocks of the system,

namely (i) radar signal processing chain and (ii) machine

learning and neural networks is presented in Section III.

The detailed approach, novel data representation and system

architecture are presented in Section IV, followed by the

experimental results and discussion in Section V. Finally, the

study is summarized and concluded in Section VI.

II. LITERATURE REVIEW

It is extremely critical to accurately estimate and track

human posture in several applications, as the estimated pose

is key to infer their specific behavior. Since the last decade,

scientists have been exploring various approaches to estimating

human pose. One of the early works in 2005 was Strike a Pose,

proposed by researchers at Oxford, that would detect humans

in a specific pose by identifying 10 distinct body parts/limbs

using rectangular templates from RGB images/videos [15]. A

k-poselet based keypoint detection scheme was proposed in

2016, that uses predicted torso keypoint activations to detect

multiple persons using agglomerative clustering [16]. Another

approach was to use region-based CNN (R-CNN) to learn N

masks, to detect each of the N distinct key-points to construct

the skeleton from images, using a ResNet variant architecture

[17]. In 2016, DeeperCut, an improved multi-person pose

estimation model from DeepCut was proposed that used a

bottom up approach using a fine-tuned ResNet architecture

that doubled the then estimation accuracy with a 3 orders

of magnitude reduction in run-time [18], [19]. A top-down

approach to pose estimation was proposed by Google, that

first identified regions in the image containing people using

R-CNN, and then used a fully convolutional ResNet archi-

tectiture and aggregation to obtain the keypoint predictions,

yielding a 0.649 precision on the Common Objects in Context

(COCO) test-dev set [20]. Another extremely popular bottom-

up approach for human pose estimation is OpenPose, proposed

by researchers at Carneigie Mellon University in 2017 [21].

OpenPose used Part Affinity Fields (PAF), a non-parametric

representation of different body parts, and then associate them

to individuals in the scene. This real-time algorithm had great

results on the MPII dataset and also won the 2016 COCO

key-points challenge [22]. Also, the cross-platform versatility

and open-source data-sets has led to OpenPose being used as

the most popular benchmark for generating highly accurate

ground truth data-sets for training.

While the aforementioned approaches paved the way to-

wards human pose and skeleton tracking, they were limited

to 2-D estimation on account of the images/videos being

collected from monocular cameras. While monocular cameras

provide high resolution information of the azimuth and ele-

vation of the objects, extracting depth using monocular vision

sensors is extremely challenging and non-trivial. To model a 3-

D representation of the skeletal joints, HumanEva dataset was

created by researchers at the University of Toronto [23]. The

dataset was created by using 7 synchronous video cameras

(3 RGB + 4 grayscale) in a circular array, to capture the

entire scene in its field-of-view. The human subject was made

to perform 5 different motions, and reflective markers were

placed on specific joint locations to track the motion and

a ViconPeak commercial motion capture system was used

to obtain the 3-D ground truth pose of the body. Another

approach to extract 3-D skeletal joint information is by using

Microsoft Kinect [24]. The Kinect consists of an RGB and

infra-red (IR) camera that allows it to capture the scene in

3-D space. It used a per-pixel classification approach to first

identify the human body parts, followed by joint estimation

by finding the global centroid of the probability mass for each

identified part. However the downsides of vision based sensors

for skeletal tracking are the fact that their performance is

extensively hindered in poor lighting and occlusion. Moreover,

as previously introduced, privacy concerns restrict the use of

vision based for several applications.

Studies have previously made use of micro-doppler signa-

tures to determine human behavior using RF signals, however

it did not provide spatial information of the subjects’ locations
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[25], [26] as the signatures solely represented the temporal

velocity profiles of the reflection points. Skeleton tracking

using RF signals is a new and emerging area of research.

RF based devices can be further classified into two categories,

wearable and non-wearable. Wearable wireless sensors use Wi-

Fi signals to track the location and velocity of the device,

which indirectly represents the human. However, Wi-Fi sig-

nals cannot distinguish between different body parts and are

therefore not suited for the proposed task of pose estimation.

Non-wearable RF sensors, such a radar, can be traditionally

used to localize the target in range and angle. RF-Capture,

proposed by researchers at MIT in 2015, was the first approach

to identify several human body parts, in a coarse fashion, using

FMCW signals and an antenna array, and then stitching the

identified parts to reconstruct a human figure [27]. However,

the design couldn’t perform a full skeletal tracking over time.

This was soon followed by RF-Pose, proposed by the same

research group in 2018, that used RF heat-maps obtained using

two antenna arrays, one vertical and the other horizontal [28].

A teacher-student encoder-decoder architecture was used to

estimate various key-points, which were then used to construct

the skeletal pose. Finally, RF-Based 3D Skeletons, used 1.8

GHz (5.4 GHz-7.2 GHz) bandwidth Frequency-Modulated

Continuous Wave (FMCW) signals, and a ResNet architecture

to estimate 3-D skeletons. For ground truth data, a circular

array of 12 2-D vision sensors was used to capture the scene,

and Open-Pose was used to generate 2-D skeletons from

each camera node output, which were then associated and

triangulated to obtain 3-D skeletons [29].

In this paper, we propose mm-Pose, a novel approach to use

77 GHz mmWave radars for human skeletal tracking. mmWave

radars offer a greater bandwidth (≈3 GHz), that in turn

provides a more precise resolution. Furthermore, operating at

77 GHz allows it to capture even small abnomalities from

the reflection surface, thus adding more granularity in terms

of identifying more key-points. Unlike the aforementioned

approaches, mmWave radars are low-power, low-cost and

compact, making it extremely practical for deployment. We

make use of a forked-CNN architecture to predict >15 key-

points and construct the skeleton in real-time. To obtain ground

truth data, we parallely collect the keypoint locations using

Microsoft Kinect on MATLAB API.

III. BACKGROUND THEORY

A. Radar Signal Processing

The mmWave radar transmits a frequency modulated contin-

ues wave (FMCW) chirp signal, and utilizes stretch processing

[30] to get the beat frequency, which corresponds to the

target’s range. The Doppler processing across multiple chirps

during one coherent processing interval (CPI) determines the

Doppler frequency, which is related to the target’s velocity.

Mathematically, the n-th chirp during one CPI in complex

form is given by:

xn(t) = ej2π[f0t+
BW

2T t2], nT ≤ t < (n+ 1)T,

∀n ∈ [0, 1, ..., N − 1].
(1)

where f0 is the chirp starting frequency, BW is the sweeping

bandwidth, T is the duration of one chirp and N is the number

of the chirps during one CPI. BW
T

is referred to as the chirp

rate. The echo from a target is a time delayed version of

the transmitting chirp. After stretch processing, the resulting

baseband signal is given as:

Ar × ej2πf0τn × ej2π
BW

2T (2τnt−τ2
n
). (2)

where Ar is the normalized received signal amplitude, which

represents its reflectivity, and the τn is the two round time

delay between the radar and the target during the n-th chirp

period,

τn =
2(R0 − vnT )

c
. (3)

in which Ro is the initial distance, v is the target’s radial

velocity. The radar cross section (RCS), which represent the

reflectivity of the target, can be solved by:

σ = 20 log10(4πR
2
oAr). (4)

The equation above shows the relationship between the

normalized signal amplitude, and the corresponding power,

being directly proportional to the radar cross section or the

size of the target. As τn is constant for one chirp in the range

dimension, the baseband signal is a single frequency tone with

respect to t, also called the beat frequency, given by:

fBeat =
BW

T
τn ≈

BW

T
τ =

BW

T

2R0

c
. (5)

The beat frequency resolution, that depends on the sampling

time in one chirp, is expressed as:

∆fBeat ≥
1

T
. (6)

From (5) and(6), the range resolution can be calculated as:

∆R ≥
c

2BW
. (7)

In the Doppler dimension, the data is sampled in the same

position during each chirp across all the N chirps. This time,

as t is constant, the baseband signal in (2) is a single tone with

respect to τn after ignoring the smaller multiplicative term, and

is expressed as:

ej2πf0τn = ej2πf0
2(R0−vnT )

c . (8)

The obtained Doppler frequency is given by:

fDoppler = −
f02v

c
= −

2v

λ
. (9)

where λ is the wavelength. The Doppler frequency resolution

depends on the sampling interval in one CPI, and is repre-

sented as:

∆fDoppler ≥
1

CPI
(10)

Using (9) and (10), the obtained velocity resolution is

expressed as:

∆v ≥
λ

2 ∗ CPI
. (11)

To determine the angle of the target, the time-division-

multiplexing (TDM) multiple-input and multiple-output

(MIMO) direction-of-arrival (DOA) estimation algorithm is

used. Consider a scenario where a mmWave radar has two
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real transmitting antenna elements, and four real receiving

antenna elements, as shown in Fig. 2. First, TX1 transmits a

chirp, and all the four real receiving antenna elements (RX1-

RX4) recieve the echo with a progressive phase term φ(n),
depending on the angle-of-arrive (AOA) of the target θ. For

the nth reciever element RXn, we have:

φ(n) =
2π ∗ n ∗ dsin(θ)

λ
. (12)

where d is the distance between two consecutive receiving

elements (0.5λ in our case) to avoid the grating lobe effect.

Real Receiving Array

RX3 RX4

RX1 RX4RX2 RX3

RX1 RX6 RX7 RX8RX2 RX5

Real Transmitting Array
TX1

Virtual Receiving Array

TX2

Fig. 2. TDM-MIMO DOA.

After TX1 has transmitted a chirp, TX2 starts to transmit

a chirp as well. Similar to the prior scenario, the receiving

antenna elements recieve the echo with a progressive phase

term. But as the distance between the TX1 and TX2 is 4λ, the

phase terms get adjusted appropriately. If we view the signals

from TX2 as being received by a “virtual” receiving array

indexing from 5 to 8, then the phase term for RX5 to RX8

will also be (12). Once we obtain the 8 reciever samples with

a progressive phase term, a simple FFT solves for the angle

θ. The TDM-MIMO used here extends the size of receiving

array from real size of 3λ to a virtual size of 7λ, yielding a

better angle resolution which is inversely proportional to the

array size. Once we obtain the range (R) and AOA (θ) of the

desired target from the signal processing chain, we can then

compute the cartesian distances - depth (R cos θ) and azimuth

(R sin θ) of the target, with respect to the radar at origin.

B. Neural Networks

With the advent of graphical processing units (GPUs) and

high-performance-computing (HPC), neural networks have

emerged as one the most popular machine learning methods

for classification and regression problems. Neural networks

are loosely derived from biological neurons, where multi-

ple neurons or nodes form an interconnected network to

carry/transform the input signals to arrive at the desired output.

Every node i in a neural network accepts a weighted input

and provides a non-linear output Oi subject to a non-linear

activation function, given by:

Oi = gi(Wixi + bi). (13)

where Wi is the weight that the input xi is scaled by, bi is the

bias and gi is the non-linear activation function. Without a non-

linear activation function, a neural network would only result

in a linear function estimation and would make it unsuitable

for estimating complex non-linear relationships between the

input and outputs. A neural network consists of three major

sub-stages - (i) input layer, (ii) hidden layer(s) and (iii) output

layer. The number of nodes in the hidden layers are equal

to the number of features that we want the network to learn

from, and the number of nodes in the output layers are equal to

the number of classes (for classification problems) or number

of desired outputs (for regression problems). The number of

hidden layers and the number of nodes in a hidden layer

are hyper-parameters that do not have a closed form expres-

sion, neither do we have information of the hidden layer’s

representations, prior to training the model. The objective of

the hidden layers is to transform the input data to a higher-

dimensional space in order to achieve the desired classification

or regression task in hand. The appropriate transformation is

established by learning the optimum values of the weights,

that minimizes the desired loss function by a gradient descent

algorithm using back-propagation. Once the model is trained,

several approaches have been proposed to visualize and inter-

pret these underlying hidden representations [31].

While traditional multi-layer-perceptrons (MLPs), as de-

scribed above, are ideal for most tasks, convolutional neural

networks (CNNs) empirically perform better for tasks involv-

ing images. Analogous to hidden layers, each CNN layer can

represent multiple higher dimensional representation of the

input images, based on the specified depth of the layer. For

instance a CNN layer with depth 32 would generate 32 unique

transformed representation of the input. The transformation

is carried out via m×m weight kernel. Similar to traditional

nodes, the kernel would first take the weighted inputs (pixels),

sum them, and then apply a non-linear activation function

to yeild a single valued scalar as an output. This process

is repeated when the kernel mask traverses the entirety of

the image with a user-defined stride length. For instance,

if an N ×N × 3 image is subjected to a CNN layer with

depth D, and a kernel size k × k × 3 (k < N ), we would

obtain a N ×N ×D volume tensor as output, with D distinct

k × k × 3 weights to be trained. The training process is similar

to MLPs, i.e. gradient descent using back-propagation is used.

Unlike the hidden layer outputs from MLP, the CNN

“filters” could have a visual representation. In previous study

with a given visual input, say of a dog, the resulting filters

have shown to have detected the outline, edges, eyes, noses

etc. in the activation map, due to the fact that CNNs are

inherently spatial filters [32]. Another added advantage that

CNNs offer over MLP is the significant reduction in com-

putational complexity, owing to the kernel weights getting

reused for generating a single transformation. As an example,

if an N ×N × 3 image is subjected to a CNN layer with

depth 1 (for simplicity), and a kernel size k × k × 3, the total

number of trainable parameters would be 3k2, as opposed

to 3N2 with MLP. With the increase in the number of

representations D, while the additional number of parameters

in CNNs would increase linearly (D × (3k2)), the increase

in the number of parameters in a fully-connected MLP would

increase exponentially ((3N2)D).

IV. PROPOSED APPROACH

A. Radar-To-Image Data Representation

As introduced in the previous sections, radars are essentially

time-of-flight sensors that illuminate the scene with its own RF
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signals and use the phase information of the reflected signals

to resolve the time-delay and estimate the range of the points

of reflection. As the name suggests, mmWave radar signal

wavelengths are in the order of mm, which enables them to

even detect minute abnormalities of a target. Furthermore, with

bandwidths in the range of 3-4 GHz, mmWave radars can also

provide a high resolution mapping of the scene in range.

The radar reflections over a coherent processing interval

(CPI) results in a radar data cube with 3 dimensions, viz.

fast-time, slow-time and channel. By using the radar signal

processing chain, as described in Section III-A, we obtain

the range, velocity and angle information of the reflection

points, also referred to as the range-doppler map. By using

basic trigonometric relations, we can obtain the real world

position (x, y, z) of the reflection points, with respect to the

radar (at origin), where x, y, z represent the depth, azimuth

and elevation coordinates, respectively. However, using a 3-

D range map coupled with an additional Doppler dimension,

further adds to the number of pixels that need to be processed

by the neural network, that would make the representation

unsuitable for real-time applications. Alternately, we undergo a

constant false alarm rate (CFAR) processing on the previously

obtained range-doppler map to alleviate background noise and

clutter, and then perform the range to 3-D position conversion

to obtain a point-cloud representation of the scene, as our

desired application requires us to map the skeletal joint-indices

in real world 3-D co-ordinate space.

Generally, the number of radar reflection points, from a

moving human target, is random and varies from frame-to-

frame which makes it difficult to track and associate at an

individual point-level. Therefore, it is extremely challenging

to determine the closed form mapping between the reflection

point-cloud and the desired skeletal key-points, directly. There-

fore, as it is non-trivial to map the random radar reflections

to obtain the skeletal key-points for pose estimation, in this

study we instead aimed to use supervised-learning to estimate

the skeleton of a human with the aid of CNNs.

There are multiple approaches to represent the radar re-

flection data. The simplest approach is a point-cloud rep-

resentation of the reflection points in 3-D XYZ space, as

shown in Fig. 3(a). The term point-cloud had initially been

used in the Lidar community, as reflected signals were used

to map the scene in “cluster/cloud of points” [33]. This

terminology has also been borrowed in radar-based perception

applications, especially now that improved resolution radars

could represent individual objects as a “point-cloud” (multiple

reflection points), rather than just a single rigid source of

reflection. However, such representation does not provide an

indication of the size of the reflecting surface. By introducing

the reflection power-levels as an additional feature I , based on

the relationship in Eqn. 4, we can assign an RGB weighted

pixel value to the points (Fig. 3(b)), resulting in a 3-D heat-

map, which may serve as an input to the CNN. Representing

intensity levels in an 8-bit RGB color-map allows for finer

resolution along the intensity dynamic range, with the lowest

I corresponding to absolute red (255,0,0), and the maximum

I corresponding to absolute blue (0,0,255), and all the inter-

mediate intensity levels mapped appropriately between them.

Z
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X

Y
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Fig. 3. (a) Point-cloud representation of the reflection points in 3-D space; (b)
Point-cloud representation with the reflected power in the color channels; (c)
Projecting the point-cloud with intensities in the XY and XZ planes, followed
by the image equivalent with the RGB channels corresponding to X,Y/Z and
Intensity respectively.

Alternately, if such precise resolution in I is not required for

an application, a gray-scale representation could also be used,

with the intensity values mapped between 0 to 255 (in an 8-

bit representation). Considering the maximum unambiguous

depth (Xua), azimuth (Yua) and elevation (Zua) offered by

the radar with resolutions ∆x,∆y and ∆z, respectively, the

resulting input data dimension can be represented as:

Dimension =
Xua

∆x
×

Yua

∆y
×

Zua

∆z
× Channels (14)

where, Channels is 3 for an RGB representation and 1 for

gray-scale representation. For instance, consider a radar that

can detect up to 256 reflection points in a CPI. To represent

the reflection data in a 5 m × 5 m × 5 m scene, with

achievable resolutions of 5 cm in all the three dimensions,

the input dimensions would be 100 × 100 × 100 pixels, each

with 3 channels (RGB) corresponding to the reflection power

intensity. There are a couple of challenges with this approach.

Firstly, the CNN would be size and parameter intensive as

the input size is extremely big. Secondly, the input data is

extremely sparse (256 points in 106 pixels) and is therefore

an sub-optimal representation of the features resulting in

unnecessary computation expenditure.

To overcome these challenges, here is our proposed ap-

proach. The first step is to project the reflection points onto

the depth-azimuth (XY) and depth-elevation (XZ) planes, re-

spectively. A 16 × 16 RGB image would then be constructed,

with each pixel corresponding to a reflection point, and the

RGB channels would represent the x-coordinate, y/z coordi-

nate (depending on the projection plane) and the normalized

reflection power, I , respectively. The pixels corresponding
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Fig. 4. The N × N × 3 image data generated from radar projections on the XY and XZ plane are subjected to a 3-layer forked CNN architecture and the
outputs are concatenated and flattened. A 3-layer MLP is further used to finally obtain the X,Y and Z positions of the 25 skeletal joints from the output layer.

to no detections would be assigned with a (0,0,0) in the

RGB channels. Therefore, every CPI would yeild us with

two images, each with a dimension of 16 × 16 × 3, as

shown in Fig. 3(c), thus offering a significant reduction in

the input size to the CNN, which in turn significantly reduces

the computational complexity of the network.

B. CNN Architecture

In this study, we use a forked CNN architecture that takes

in the radar reflection data as input and provide us with the

skeletal joint coordinates of the human. The advantage of using

a CNN stage instead of a completely fully-connected multi-

layer perceptron (MLP) is that the CNN shares weights at a

given layer, thus reducing the number of trainable parameters

compared to an equivalent MLP.

Generalizing from the example scenario in the preceding

section, consider the radar can detect up to N2 reflection points

in a CPI. After projection onto XY and YZ planes, we obtain

two N × N × 3 images with (X,Y, I) and (X,Z, I) as the

RGB channels. If the actual number of points detected is fewer

than N2, the remaining pixels corresponding to no detection

would be assigned with a (0,0,0) in the RGB channels. Each

image is subjected to its own 3-layer CNN, with depths 16, 32

and 64 respectively. The filter size is set at 3 × 3 with a single-

pixel stride and same padding. The nodes are activated using a

Rectified Linear Unit (ReLU) activation with a 20% dropout to

avoid overfitting [34]. As the input dimension is small, we have

not used max-pooling layers between the CNN stages, thus

preserving full resolution of our data with no down-sampling.

The outputs from both the final CNN layers, with output

dimensions of N × N × 64 are then concatenated to form a

N × N × 128 tensor, which is then flattened and subjected to a

3-layer MLP for further flexibility in the non-linear modeling

of the input (radar) - output (skeleton) relationship. The layers

have 512, 256 and 128 nodes respectively, with a 30% dropout

and ReLU activation function.

In this study, we aim to map the radar reflection points

to 25 distinct skeletal joints of the human body in 3-D space.

Therefore, the output layer consists of 75 nodes corresponding

to the (X,Y, Z) locations of the 25 joints. The output layer

has a linear activation function and is fully-connected to the

final layer of the MLP network. The model is trained with the

objective to minimize the mean-squared-error (MSE) of the

predicted location of the joints with the measured ground truth.

The model is trained using gradient descent using the Adam

optimizer, that uses a variable learning rate depending on the

rate of change of the gradient over iterations. The complete

machine learning architecture is shown in Fig 4.

The added advantage the proposed method offers is that this

approach would not only work with radar systems that have

both azimuth and elevation antenna channels, but can also be

extended to radar modules that only have antenna elements in

one axis (azimuth, say). In the latter case, two radars may then

be used, with one capturing XY data and the other rotated at

90o to capture XZ data. This way N × N × 3 images can

be directly generated with no projection operation required

as each radar detects the reflected points in the respective

single plane. However, note that unlike a 3-D radar followed

by projection, this approach may lead to an unequal number

of radar reflection/scatter points from both the radars. Despite

this property, the underlying feature representation of the target

in the proposed approach still holds true. The aforementioned

advantage is validated in our experiments by using two 2-D

radars, one for each plane, and is presented in the following

section. The proposed approach also eliminates the need for

data association or complex construction of 4D CNNs. Finally,

by incorporating the reflection power levels, we provide the

CNN with an additional feature to aid the learning process

and distinguish between the reflections from a larger RCS of

the body (torso, say) from a smaller RCS (elbow, say).

V. EXPERIMENTS AND RESULTS

A. Experimental Setup and Frames Association

In this study we used Texas Instruments AWR 1642 boost

mmWave radar transceivers, that has two transmit and four
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Fig. 5. Signal flow graph of mm-Pose architecture built on a Keras framework

receive channels on a linear axis, which in its traditional

orientation would resolve the radar reflection points in range

(depth) and azimuth, only. We used two of these, R-1 and R-

2 (say), with R-2 rotated 90o counter-clockwise with respect

to R-1, with the azimuth now corresponding to the elevation

of the reflection points. Both the radars transmitted a 3.072

GHz wide chirp, centered at 79 GHz, every 92 µs. A dual-

slot 3-D frame was developed and used to mount both the

radars to ensure stability and consistent data collection. The

processed radar point cloud data from both radars was captured

via USB cables on a robot operating system (ROS) interface,

running on a Linux computer. Each radar would return up to

256 detected points in a coherent processing interval, including

their position (depth, elevation/azimuth), velocity and intensity

at 20 frames-per-second(fps). Every return also carried a

header with the UTC time-stamp and the radar module index.

To capture the ground truth data, we used a Microsoft Kinect

connected to a Windows computer, using a MATLAB API.

The infra-red (IR) sensor data coupled with the Mathworks

developed skeletal tracking algorithm provided us with the

depth, azimuth and elevation information of 25 joint positions,

as well the UTC time-stamp in each frame. A common time

server was used to synchronize clocks on both the computers

capturing data (Radar and Kinect), with the clock slew in the

order of one millisecond, which was tolerable. The UTC time-

stamps from Kinect and radar frames were used for frame

identification and association.

The experiment was setup in an open space in the Electrical

and Computer Engineering department at the University of

Arizona. Two human subjects with varying sizes were used,

one-at-a-time, to collect the data. The subjects performed

four different actions in contiguous sets, viz. (i) Walking, (ii)

Left-Arm Swing, (iii) Right-Arm Swing, and (iv) Both-Arms

Swing. We acquired ≈32000 samples of training data and

≈6000 samples of validation/development data set, to be used

for training the model. ≈1700 samples of test data was also

collected with the human subject performing the four actions,

in no ordered fashion, for added robustness.

The acquired data from both the radars was first separated

using the module information from the frame headers and

then associated frame-by-frame with the corresponding Kinect

return using the UTC time-stamps. The radar returns in each

frame were normalized in range, azimuth (R-1), elevation (R-

2) and intensity corresponding to the dimensions of the exper-

iment space. The normalized data was then used to generate

two RGB images every frame, corresponding to R-1 and R-

2 respectively, based on the approach described in Section

IV. Note that we did not have the plane projection stage as

R-1 and R-2 already provided returns in XY and XZ planes

respectively. The ground truth skeletal joint positions obtained

using Kinect were also normalized to a [0,1] range. The

normalization parameters were stored to rescale the predictions

from the model and obtain the real-world joint locations.

B. Training the Architecture

A forked-CNN architecture, as described in Section IV

was used as our learning algorithm. The primary reason to

use CNNs in this study, as opposed to a complete multi-

layer-perceptron (MLP) deep-network was to reduce the com-

putational complexity of the network and achieve real-time

implementation. Note that unlike traditional CNN layers in

classification problems that are aimed to learn and generate

spatial filters (edge/corner detection) in higher dimensional

space, we have only used them to map our RGB encoded

radar data to a higher dimensional representation, at a lower

complexity, on account of CNNs’ inherent property of using

shared trainable weights in a kernel. Moreover, although the

pixels in the encoded RGB image have relationships in terms

of the range, there is no associated visual meaning by just

physical inspection. Therefore, the resulting activations at

intermediate layers would also have no visual interpretability

and are therefore excluded for presentation in this paper.

The architecture was trained using the acquired experiment

data, after normalization, on Google Colaboratory platform,
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powered by nVidia Tesla K-80 GPU. The model was built

using Keras Functional API, built on top of Tensorflow. The

signal flow graph with the input and output dimensions are

shown in Fig. 5. The model was trained using an Adam

optimizer with the objective of minimizing the mean-squared-

error (MSE) of the output with respect to the ground truth

data. A callback mechanism was put in place to track the

training loss and the validation loss after each epoch, and save

the model parameters (weights) each time the validation loss

improves from the previous best logged loss. This regular-

ization technique, coupled with dropout at each layer in the

network is aimed to reduce the chances of overfitting. After

training the model over several epochs, the model that yielded

the best validation loss, prior to the occurrence of overfitting, is

retained for further testing and evaluation, as shown in Fig. 6.

C. Test Results and Analysis

The trained model is evaluated in two stages. First, the

testing data is used to evaluate the model’s performance by

evaluating the mean-absolute-error (MAE) of the predictions

compared to the ground truth in depth (X), azimuth (Y)

and elevation (Z) of all the 25 points. Second, the model’s

efficiency in terms of achieving the desired accuracy is eval-

uated by comparing it with a baseline architecture. As this

is a relatively unexplored field of research, there is a lack

of existing mmWave radar based skeletal joint databases and

architectures. Therefore, to establish a baseline for comparing

our results and architecture, we compare it to a model that
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Fig. 7. The MAE of mm-Pose predicted 25 joint locations (in all three
dimensions) over all the frames in the test data set. Note that the 6 outlier
joint indices that offer the highest MAEs have been highlighted in green.

would always produce the average location of each of the

joints based on the training data.

1) Localization Accuracy: The MAE of all the 25 joint

locations is shown in Fig 7. From our results, we observe that

a few joint indices are outliers in the training process and

offer the highest MAE. We also observed that the outliers

offer a consistently high error across all the frames. The

outlier joints correspond to (i) Wrist, (ii) Palm, (iii) Hand

Tip and (iv) Thumb, of both left and right hands. While the

ground truth data using Kinect could resolve for these joints on

account of high-resolution spatial imagery, we acknowledge

the challenges of representing such extremely granular and

small RCS joints using mmWave radar returns alone.

As the general skeletal representation of human pose could

still be constructed with the remaining 17 points, with neg-

ligible effect on its visual interpretability, the 8 outliers, as

listed above, were excluded from further analysis. The mm-

Pose predicted skeleton for two frames for each of the four

postures, from the test data, along with the ground truth for

comparison, is shown in Fig 8. Also note that the outlier joint

positions have also been removed from the ground truth data

for consistent representation and comparison. The MAE of

mmPose predictions from ground-truth for all the 17 joints

across all the frames in the test data is also presented in Fig 9,

to demonstrate the accuracy in representing all the necessary

key-points required to construct the skeleton. The proposed

mm-Pose architecture offered average localization errors of

3.2 cm in depth (X), 2.7 cm in elevation (Z) and 7.5 cm in

azimuth (Y), respectively. The results show that our model (17

joints) offers better localization in X and Z axis than MIT’s

RF-Pose3D (8 key-points), however at a greater localization

error in azimuth due to a higher variance in the location of

all the joints in that dimension. The localization error metrics

comparing mm-Pose with RF-Pose3D is presented in Table I.

TABLE I
LOCALIZATION ACCURACY COMPARISON

Localization Accuracy
Depth (X) Elevation (Z) Azimuth (Y)

RF-Pose3D (MIT) 4.2 cm 4.0 cm 4.9 cm

mm-Pose 3.2 cm 2.7 cm 7.5 cm

2) Architecture Metrics: The implementation goal of our

proposed method is deployment for real-time application. To

achieve this, smaller model size and short inference time

is extremely desired. Our model makes use of CNNs, with

a 3×3×3 kernel (27 trainable parameters) to transform the

16×16×3 input images (low-size with high-resolution-radar

information) to every higher dimensional representation of the

input data, in order to aid the learning process. The proposed

model provides an average inference time of ≈150 µs per

frame, which make it suited for real-time implementation.

A conventional multi-layer perceptron feed-forward network

would require 16×16×3 = 768 learning units to achieve every

transformative representation, with the number of multiplica-

tions between layers also increasing exponentially, and the

inference time also increasing significantly as a consequence.

Finally, we compare mm-Pose’s prediction and localization

errors, on the testing data, with a baseline model that always
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(a)

(b)

(c)

(d)

Fig. 8. Visual representation of the 17-points mm-Pose vs ground truth on the testing data with two frames shown for (a) Walking, (b) Both-arms swing, (c)
Right-arm swing and (d) Left-arm swing. The axes show elevation (gray), azimuth (red) and depth (blue) in meters.
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Fig. 9. Comparing the localization error (in meters) of mm-Pose (blue) vs baseline model (red) the 17 joints across 1696 frames of the testing data-set. The
bottom-right figure depicts the localization error variance offered by the baseline model and the proposed mm-Pose.

outputs the mean of the training data’s ground truth for each

of the 17 joint locations. The 3-D euclidean distance of the

predicted position and the ground truth positions are compared

to evaluate our model’s performance. We observe, as shown

in Fig. 9, that the distance between mm-Pose’s predicted joint

locations from the actual ground truth is an order of magnitude

lower than the baseline model. A cumulative probability

distribution of the localization error for each of the joints.

as shown in Fig. 10, further elucidates mm-Pose’s consistently

lower errors with a steep convergence to the maximum, unlike

the baseline architecture.

D. Practical Implementation

The trained mm-Pose model was then implemented for real-

time human skeleton based pose estimation using mmWave

radars. The entire system was achieved on a ROS interface

by instantiating four sequential nodes. Node 1 was the radar

node that published the point cloud information from reflection

signals following the signal processing stages. Node 2 was

subscribed to the published point cloud data, separated R-1

and R-2 frames and published the corresponding 16×16×3

radar data encoded RGB images. Node 3 was the mmPose

node that used the RGB images from Node 2 to predict the

normalized locations of all the joints. The final node (Node

4) un-normalized the predicted joint locations and converted

them to a real world coordinate system before mapping it over

to a display for monitoring. The system was tested out with

different human subjects and the real-time pose estimation

system was successfully verified.

E. Limitations

With the unavailability of mmWave radar-skeletal databases,

the data acquisition stage was the most expensive process in

this study. As mm-Pose was developed with the training data

obtained while performing four different movements as listed

above, the output might not be reliable if the subject performs
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a completely different spatial motion (crouch, bend over etc.).

However, with additional training encompassing more behav-

ioral data, future variants of mmPose could be developed to

be more robust, including extension to simultaneous multiple

human skeletal pose tracking.

VI. CONCLUSION

In this paper, mm-Pose, a real-time novel skeletal pose

estimation using mmWave radars is proposed. The 3-D XYZ

radar point cloud data (up to N2 points per CPI) is first

projected onto the XY and XZ planes, followed by an N×N×3

RGB image, with the RGB channels corresponding to the 2-D

position and intensity information of each reflection point. This

data representation was aimed at eliminating a voxel based

learning approach and reducing the sparsity of the input data.

A forked-CNN based deep learning architecture was trained to

estimate the X, Y, and Z locations of 25 joints and construct a

skeletal representation. 8 outlier joints were identified that did

not aid to the learning process and were subsequently removed

from our system and further analysis, as we were able to

reasonably reconstruct the skeletal pose using the remaining 17

joints. The proposed architecture offered significant reduction

in computational complexity compared to traditional MLP

networks and offered a much lower localization error and

variance when compared to the baseline architectures. The

average localization errors of 3.2 cm in depth (X) and 2.7

cm in elevation (Z) outperforms MIT’s RF-Pose3D by ≈24%

and ≈32%, respectively. However, the localization error of

7.5 cm in azimuth (Y) was found to be greater than the

4.9 cm offered by RF-Pose3D. The end-to-end system was

verified successfully for real-time estimation, using mmWave

radars and the proposed mm-Pose architecture on ROS. The

current implementation of mmPose was developed with the

data obtained using four different motions, however, more

motions could be added by the rather expensive process of data

collection and labeling for a wide range of spatial motions for

added robustness. Finally, mm-Pose could be used for a wide

range of applications including (but not limited to) pedestrian

tracking, real-time patient monitoring systems and through-

the-wall pose estimations for military applications.
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