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ABSTRACT

A variant of the WEBSOM architecture for information retrieval is
proposed in this paper. WEBSOM is based on the self-organizing
map that employs a linear LMS adaptation rule for updating the
weight vector of each neuron. Accordingly, the weight vector con-
verges asymptotically to the conditional cluster mean of the feature
vectors assigned to the class represented by the weight vector of
the neuron. We propose to replace the updating rule by employing
the marginal median. The objective is to overcome the drawbacks
of the standard technique in the presence of outliers in the training
set and to use robust estimators of the reference vectors for each
class. Experimental results demonstrate a superior performance of
the proposed variant against the standard algorithm, in terms of
the number of training iterations needed so that the mean square
error (i.e., the average distortion) drops to the 1

e
of its initial value.

We provide precision-recall curves as a measure of the quality of
the clustering procedur as well. Both techniques are tested using a
corpus that comprises web pages selected over the Internet.

1. INTRODUCTION

Artificial neural networks (NN) has been an active research area
for the past three decades [1, 2]. A large variety of learning al-
gorithms (error-correction, memory-based, Hebbian, competitive
learning, Boltzmann machines, supervised or unsupervised, etc)
are employed during the training phase of the NN. Self-organizing
maps (SOMs) are feedforward artificial neural networks with one
layer of input nodes and a single computational layer of neurons
arranged on a two or three-dimensional lattice [3, 4, 5, 6]. Every
neuron in the computational layer is fully connected with the input
layer, while the topology on the computational layer can be either
hexagonal or orthogonal.

SOMs are capable of forming a non-linear transformation or
mapping from an arbitrary dimensional data manifold onto the
low-dimensional discrete map. The algorithm takes into consider-
ation the relations of the input feature vectors and computes an op-
timal representation that approximates these features in the sense
of some error criterion, usually the mean square error (MSE).

WEBSOM is a two-layer SOM. It is a method for organiz-
ing document collections onto map displays in order to enhance
document organization and subsequently, to improve information
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retrieval. The map is organized according to the contextual simi-
larities of the full-text documents.

Let X denote the set of vector-valued observations fxj(t) =
(x1j(t); x2j(t); : : : ; xNwj(t))

T 2 IRNw
	

andW the set of refer-

ence vectors
�
wm(t) 2 IRNw ;m = 1; : : : ; K

	
. The parameter t

denotes discrete time andwm(0) is randomly initialized. Compet-
itive learning finds the best-matching (winning) reference vector
ws(t) to a specific feature vector xj(t) with respect to a certain
metric. The metric usually employed is the Euclidean distance.
The index s of the winning reference vector is given by:

s = argmin
k
kxj(t)�wk(t)k: (1)

In the sequel, reference vectors are the weight vectors of the neu-
rons.

In the standard SOM the weight vector of the winner as well as
the weight vectors of the neurons in its neighborhood are modified
toward xj(t) as follows:

wi (t+ 1) =

�
wi (t) + �si (t) [xj (t)�wi (t)]; 8i 2 Ns

wi (t); 8i =2 Ns

(2)
where �si(t) is the learning rate parameter and Ns denotes the
neighborhood of the winner. Eq. (2) can be rewritten in the fol-
lowing form:

wi (t+ 1)=wi (t) + a(t)cij(t) [xj (t)�wi (t)] (3)

where a(t) is the adaptation step and cij(t) = 1 if the jth feature
vector is assigned to the ith neuron at the iteration t, otherwise
cij(t) = 0. The weight vector of any neuron at the iteration (t+1)
of the training phase is a linear combination of the input vectors
assigned to it during the past iterations:

wi (t+ 1) = wi (0)
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It can be shown that only in the special case of one neuron when
cij(t) = 1; 8j, and the adaptation step sequence a(t) = 1=(t+1)
the reference vector is the arithmetic mean of the observations.
That is, the maximum likelihood estimator (MLE) of location. In
any other case, the reference vectors are not the optimal estima-
tors of the cluster means. A summary of the disadvantages of the
standard SOM algorithm used in WEBSOM is as follows:

1. SOM does not use optimal estimators for obtaining the ref-
erence vectorswi(t) that match the probability density func-
tion (pdf) fi(x) of each class, i = 1; : : : ; K.

2. It lacks robustness against erroneous choices for the winner
vector because it is well known that linear estimators have
poor robustness properties [7, 8, 9].

3. It does not possess robustness against outliers.

In order to overcome these problems and to enhance the per-
formance of the WEBSOM architecture, a variant of the standard
architecture is proposed that employs multivariate order statistics
[10, 11, 12]. This variant treats efficiently the outliers, because it
inherits the robustness properties of the order statistics [9].

The outline of the paper is as follows. Section 2 describes
briefly the marginal ordering principle and the proposed variant.
Sections 3.1 and 3.2 describe the formation of the corpus and the
language modeling employed to construct the feature vectors. The
high dimensionality nature of the feature vectors is reduced in Sec-
tion 3.3. The word/document clustering achieved by the proposed
variant is discussed in Section 3.4. Experimental results are pre-
sented in Section 4 and conclusions are drawn in Section 5.

2. SELF-ORGANIZING MAPS BASED ON MARGINAL
ORDERING

The lack of any obvious and unambiguous means of ranking mul-
tivariate observations is surpassed through the definition of meth-
ods that employ various types of sub-ordering principles such as
marginal ordering, reduced (aggregate) ordering, partial ordering
and conditional (sequential) ordering. A discussion on these sub-
ordering principles can be found in [13].

The variant employed in this paper relies on the concept of
marginal ordering. In marginal ordering, the samples are ordered
independently along each of the Nw-dimensions:

xj(1)(t) � xj(2)(t) � : : : � xj(N)(t); j = 1; 2; : : : ; Nw : (5)

The marginal median xmed of N feature vectors is defined by

xmed = median fx1;x2; : : : ;xNg

=

8>><
>>:

(x1(�+1); x2(�+1); : : : ; xNw(�+1))
T

for N = 2� + 1�
x1(�)+x1(�+1)

2
; : : : ;

xNw(�)+xNw(�+1)
2

�T
for N = 2�.

(6)

The concept of the marginal median can be used in the follow-
ing way. Let Xi(t � 1) denote the set of the feature vectors that
have been assigned to each class i, i = 1; 2; : : : ; K until iteration
(t � 1). At iteration t we find the winner vector ws(t) which is
then updated by

ws(t+ 1) = median fxj(t) [Xs(t� 1)g: (7)

The neighboring neurons, i 2 Ns(t), are updated as follows:

wi(t+ 1) = median fa(t)xj(t) [Xi(t� 1)g: (8)

The proposed variant shall be referred as the MM-WEBSOM.

3. APPLICATION TO INFORMATION RETRIEVAL

3.1. Corpus description and preprocessing steps

Throughout this process a training corpus, that is a collection of
sample texts, is used. It comprises 650 full-text HTML files con-
taining nearly 120,000 words (word tokens), which were manu-
ally collected over the Internet. The HTML files are web pages of
touristic content and in its current state is biased in the sense that
web pages related to Greece, Spain and Germany form the ma-
jority [14]. The selected files are annotated by dividing them into
18 categories related to tourism such as accommodation, history,
geography, etc., so that ground truth is incorporated.

Before testing the standard WEBSOM technique as well as
the proposed variant a series of actions had to be taken in order
to encode the textual data into vectors. The first step deals with
HTML as well as plain text cleaning. HTML cleaning refers to
the removal of the HTML tags and entities, and the appropriate
treatment of some special tags, while plain text cleaning refers
to the removal of URLs, email addresses, numbers, punctuation
marks and the formation of word tokens. The sole punctuation
mark left intact is the full stop, providing a rough sentence de-
limiter. Collocations, i.e., expressions consisting of two or more
words are meaningful only within the limits of a sentence [15].
Text cleaning also includes the removal of some common English
words (such as articles, determiners, prepositions, pronouns, con-
junctions, complementizers, abbreviations) and some non-English
frequent terms in a processing step called stopping. All the re-
maining words were converted to lowercase except for some cases
where acronyms were detected. The aforementioned step resulted
in a corpus of 70,000 word tokens.

Subsequently, stemming was performed. Stemming refers to
the elimination of word suffixes so that the resultant vocabulary
shrinks, though keeping the informative context of the text. It can
be considered as an elementary clustering technique, with the word
roots (stems) regarded as the clusters. The underlying assumption
for the successful usage of a stemming program, called a stem-
mer, is that morphological variants of words are semantically re-
lated [16, 17]. The application of the commonly used Porter stem-
mer [18] resulted in a vocabulary size of N ' 8700 stem types
(distinct occurrences).

3.2. Language Modeling

The last step was the computation of the contextual statistics for
every word i in the corpus. For this purpose, the second version of
the CMU-Cambridge Statistical Language Modeling Toolkit was
used [19]. In a first attempt, the following statistics (i.e., maximum
likelihood estimates of conditional probabilities) can be used to
encode the ith word stem in the vocabulary [20]:

xil =
nil
Ni

; l = 1; 2; : : : ; N (9)

where nil is the number of times the pair (ith word stem, lth word
stem) occurred in the corpus, Ni is the number of times the ith
word stem occurred in the corpus, and N is the number of word



stems in the vocabulary. By using Eq. (9), the following word
vectors, xi, can be computed [21]:

~xi =
1

Ni

NX
l=1

nil el (10)

or

~xi =
1

Ni

2
66666664

NX
l=1
l6=i

nli el

� ei
NX
m=1
m6=i

nim em

3
77777775

(11)

where ei, i = 1; 2; : : : ; N , denotes the (N � 1) unit vector having
one in the ith position and zero elsewhere.

3.3. Dimensionality Reduction

If Eq. (11) is used to model each word stem, feature vectors of
dimension 3N � 1 results. The problem of the high dimension-
ality of the feature vectors is tackled by using any dimensionality
reduction technique. For example dimensionality reduction to Nw

is achieved by a linear projection

xi = �~xi (12)

where ~xi is a 3N � 1 feature vector, xi is the projected vector and
� is an appropriate matrix of dimensions Nw � 3N .
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Fig. 1. Percentage of successfully identified winning neurons in
the formation of the word categories map using the standard WEB-
SOM.

Kaski et al. have shown that a suboptimal but faster approach
to the previous problem is the use of a random matrix that has the
following properties [22]:

� The components in each column are chosen to be indepen-
dent, identically distributed Gaussian variables with zero
mean and unit variance.

� Each column is normalized to unit norm.

In the case under consideration the dimensionality of the projected
space was chosen to be equal to 300 (Nw = 300).

An additional step toward dimensionality reduction can be
achieved using the following technique. The sample variance of
the mth component in the feature vector is computed

um(t) =

NX
j=1

(xmj(t)� xm(t))2; m = 1; 2; : : : ; Nw (13)

where xm(t) = 1
N

NP
j=1

xmj(t) is its sample mean, and N is the

number of feature vectors. The components of the feature vectors
xj(t) and the neuron weights are rearranged in descending order
with respect to their sample variance um(t). The Euclidean dis-
tance used in Eq. (1) is then decomposed as follows:

kxj(t)�wk(t)k
2 =

d0X
n=1

�
x(n)j(t)�w(n)k(t)

�2

+

NwX
n=d0+1

�
x(n)j(t)� w(n)k(t)

�2
(14)

where x(n)j(t) and w(n)k(t) denote the nth component of the
ordered feature vector xj(t), and the weight vector respectively.
Moreover, d0 is an arbitrary number such that d0 < Nw . The first
sum in Eq. (14) contains those components of the feature vectors
with the largest sample variance, whereas the second sum contains
the components whose impact on the selection of the winning neu-
ron is more or less the same for each feature vector. By selecting
the parameter d0 and omitting the second sum in Eq. (14) an ac-
curate estimation of the winning neuron can be achieved. Figure 1
presents the percentage of the successfully identified winner neu-
rons with respect to the dimensionality difference Nw � d0. It is
seen that the performance of the proposed technique is satisfactory
even if the feature vector dimensionality is reduced to one half of
its original value.

3.4. Clustering

After the completion of the preprocessing phase all feature vectors
xi are presented iteratively an adequate number of times to both
the standard WEBSOM and the proposed variant that employs the
marginal median. Both neural networks perform a clustering of
the word feature vectors xi in an effort to build clusters of seman-
tically related words. This process yield the so-called word cat-
egories map (WCM). The WCM created by the marginal median
WEBSOM is depicted in Fig. 2. The grey levels of the map corre-
spond to different word densities in each neuron/cluster. Hexagons
with grey levels near 255 (white colour) imply that fewer word
stems have been assigned to those neurons/clusters, whereas, grey
levels near 0 (black colour) imply larger densities.

Subsequently, for each document in the corpus, a histogram of
word categories is computed to derive the so-called document vec-
tor, ak. The standard architecture as well as its variant is used to
construct clusters of contextually similar documents. The resulted
map is called document map (DM). The document map computed
by the marginal median WEBSOM is depicted in Fig. 3. It can be
seen seen that the documents assigned to the highlighted neurons
are contextually related to Spain.



Fig. 2. The words categories map of the marginal median WEB-
SOM for 637 neurons/clusters.

Fig. 3. The document map for 86 neurons and 650 documents.

Fig. 4. The MSE curves for the standard WEBSOM and the MM-
WEBSOM variant.

4. EXPERIMENTAL RESULTS

The performance of the proposed MM-WEBSOM is measured
against the standard WEBSOM using the training mean square
error between the neuron weights and the document vectors as-
signed to each cluster as a figure of merit. Figure 4 depicts the
MSE curves for both techniques. It can be seen that even from the
beginning, the marginal median variant outperforms the standard
technique. This is due to the presence of many outliers in the first
iterations of the training procedure.

Furthermore, for the standard WEBSOM the number of train-
ing iterations needed so that the MSE drops to the 1

e
of the initial

value is nearly 11% higher than the marginal median variant.
The quality of the clusters is measured by querying the re-

trieval system using a sample test document. The system retrieves
the training corpus documents that are represented by the best
matching neuron of the document map. The training documents
retrieved are ranked according to their Euclidean distance from
the sample test document. Subsequently they are classified as ei-
ther being relevant or not to the sample test document according
to their annotation. Table 1 is the 2 � 2 contingency table which
shows how the training corpus is divided.

For both techniques the precision-recall curves are calculated
[23]. Precision is defined as the proportion of retrieved documents
that are relevant,

P =
r

n2
(15)

and, recall is the proportion of relevant documents that are re-
trieved,

R =
r

n1
(16)

where r denotes the number of relevant documents which are re-
trieved, n1 is the total number of relevant documents in the corpus
and n2 denotes the number of retrieved documents.

Figure 5 depicts the precision-recall curves for both techniques.
It is seen that the marginal median variant outperforms the stan-
dard WEBSOM by clustering more relevant documents together.



Retrieved Not-Retrieved
Relevant r x n1 = r + x
Not Relevant y z

n2 = r + y

Table 1. Contingency table for evaluating retrieval.
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Fig. 5. The precision-recall curves for both techniques. The sam-
ple test document was classified into the ‘history’ category.

5. CONCLUSIONS

The inherent drawbacks of SOMs used in the standard WEBSOM
algorithm motivated us to develop a variant where multivariate me-
dian operators are employed. The first experimental results ob-
tained indicate that the novel marginal median variant outperforms
the standard algorithm.
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