

MMAC: A Mobility-Adaptive, collision-Free MAC Protocol for Wireless Sensor Networks

Muneeb Ali
Computer Science Department,
LUMS

Outline

- Introduction
- Mobility in Sensor Networks
- Related Work
- Problems introduced by mobility at MAC layer
- Mobility-Adaptive MAC (MMAC)
- Issues with the MMAC Protocol
 - Mobility Information
 - Synchronization
- Simulation Results
- Conclusion

Introduction

- •Wireless Sensor Networks have emerged as one of the first real applications of Ubiquitous Computing
- Energy-Efficiency has been considered as the single most important design challenge in Sensor Networks
- Recent work on Medium Access Control (MAC) protocol for Sensor Networks focused on energy-efficiency instead of fairness, delay, and bandwidth utilization.
- Mobility poses unique challenges to MAC protocol design

Mobility in Sensor Networks

We define mobility in sensor networks as:

- 1. <u>Weak Mobility</u>: Topology changes, Node joins, and Node failures.
- Strong Mobility: Concurrent Node joins and failures, and physical mobility - either because of mobility in the medium (e.g. water or air) or by means of special motion hardware

MMAC handles both strong and weak mobility.

Related Work

- •The most widely used MAC protocol for Sensor Networks is SMAC.
- •SMAC introduced a low-duty cycle operation in multi-hop wireless sensor networks, where the nodes spend most of their time in sleep mode to reduce energy consumption
- Papers on TRAMA and TMAC showed that SMAC with fixed sleep and awake periods does not perform well with variable traffic loads.
- •The frame time in SMAC, TRAMA and TMAC is fixed, and we show that a dynamic frame time, inversely proportional to level of mobility, is required in mobile sensor networks

Contention-based Protocols

Constant Active Time (SMAC)

sleep	active	sleep	active	sleep	active	sleep	
-------	--------	-------	--------	-------	--------	-------	--

Traffic-Adaptive Variable Active Time (TMAC)

Constant active-time (SMAC) vs Traffic-Adaptive dynamic active time (TMAC)

MMAC Protocol

- MMAC introduces a mobility-adaptive frame time that enables the protocol to dynamically adapt to changes in mobility patterns.
- We will only discuss issues related to mobility.
- MMAC uses location information to predict the mobility behavior of sensor nodes. Localization is a well studied problem in Wireless Sensor Networks.
- We use the AR-1 model by Zainab et al. for mobility estimation.

Mobility-Adaptive algorithm

• <u>Basic Idea</u>: If a large number of nodes are expected to enter or leave the two-hop neighborhood of a node B – reduce the frame time and vice versa

The nodes which are expected to enter or leave the 2-hop neighborhood during the frame F are NOT included in the schedule

If there are a lot of nodes entering or leaving the 2-hop neighborhood then it is desirable to have frequent "random access time" so that the topology changes could be reflected in the schedule

2-hop neighborhood of a node 'B' Node 'p' is moving out of the neighborhood Node 'q' is moving into the neighborhood

Mobility-Adaptive algorithm

- For all nodes in the network locally calculate the 'optimal predicted states' using the AR-1 model.
- 2. For all nodes in the 2-hop neighborhood of a node 'B' calculate the 'average estimated location'.
- 3. Using the above information populate the sets "Incoming nodes" (IN) and "Outgoing nodes" (ON) for node 'B'
- 4. If a node 'A' is a member of either 'IN' or 'ON' do not consider 'A' in the 2-hop neighborhood of 'B'
- 5. If the number of members in these two sets is greater than a threshold value reduce "frame time"
- 6. If the number of members in these two sets is less than a threshold value increase "frame time"
- Adjust the Scheduled-Access time and the Random-Access time according to the new Frame Time.

Protocol Issues

We identify the following issues with the generic mobility adaptive algorithm:

- Mobility Information: Individual nodes can only predict their own future mobility state but in the mobilityadaptive algorithm each node requires future mobility state of ALL current and potential two-hop neighbors
- Synchronization: Using the mobility-adaptive algorithm, individual nodes could independently calculate frame times different from each other, leading to synchronization problems in the schedule-based protocol.

Synchronization

The frame times of all nodes would be the same at any given time in the entire network

If all two-hop neighbors of a node A belong to the same cluster then their random access time and scheduled access time would be the same

If a node E has two-hop neighbors belonging to more than one virtual cluster, then in the two-hop neighborhood of E the frame times would be the same but the scheduled-access and random-access times could be different

Such a node *E* should use the shortest scheduled access time and the shortest random access time out of the different ones in use.

Do NOT transmit anything during this time

Simulation Results

- Simulations performed in NS-2 with 'sensor networks' module by Wendi Heinzelman.
- Simulator uses "First Order Radio Model" for energy calculations:

```
Etransmit(k,d) = Eelectric * k + Eamplifier * k * d2
Ereceive(k) = Eelectric * k
```

k = k-bits per packet
d = distance

Comparison Protocol Set

- We performed a comparative study of MMAC with TRAMA, SMAC, and CSMA.
- As CSMA has no energy-saving mechanisms; it is included in the comparison protocol set as a 'worst case' protocol.
- TRAMA embodies schedule-based MAC protocols for sensor networks.
- The well-known SMAC protocol represents contention-based protocols.

Simulation parameters

- Transmission range of nodes = 100 meters
- Nodes are randomly deployed on a 500m x 500m plane
- Traffic is generated at a variable-rate
- \bullet In order to route a packet, at each hop the node simply forwards the packet to the node closer to the sink
- For SMAC, SYNC_INTERVAL = 10sec and DUTY_CYCLE is variable as either 10% or 50%
- For TRAMA and MMAC SCHEDULE_INTERVAL = 100 transmission slots
- Random access period is 72 transmission slots and is repeated every 10,000 transmission slots

Average Packet Delay

Average Packet Delay (increasing Mobility)

Packets Received

Percentage of Packets Received (Variable Traffic)

Packets Received

Percentage of Packets Received (increasing Mobility)

Energy consumed

Average Energy consumed per Node (Variable Traffic)

Energy consumed

Average Energy consumed per Node (increasing Mobility)

Conclusion

- Showed how current MAC protocols are not suited for "mobile" sensor networks
- Proposed a new schedule-based MAC protocol MMAC
- MMAC adapts the frame-time, transmission slots, and random-access-slots according to mobility.
- Simulation results indicate that:
 - 1. MMAC performs parallel to current MAC protocols when there is little or no mobility
 - 2. In sensor networks with mobile nodes or high network dynamics, MMAC outperforms existing MAC protocols in terms of energy-efficiency, delay, and packet delivery

Further Information

Muneeb Ali, and Zartash Afzal Uzmi {muneeb,zartash}@lums.edu.pk http://suraj.lums.edu.pk/~muneeb

Thank You!