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BACKGROUND: Colorectal cancer (CRC) primary tumours are molecularly classified into four consensus molecular subtypes
(CMS1–4). Genetically engineered mouse models aim to faithfully mimic the complexity of human cancers and, when appropriately
aligned, represent ideal pre-clinical systems to test new drug treatments. Despite its importance, dual-species classification has
been limited by the lack of a reliable approach. Here we utilise, develop and test a set of options for human-to-mouse CMS
classifications of CRC tissue.
METHODS: Using transcriptional data from established collections of CRC tumours, including human (TCGA cohort; n= 577) and
mouse (n= 57 across n= 8 genotypes) tumours with combinations of random forest and nearest template prediction algorithms,
alongside gene ontology collections, we comprehensively assess the performance of a suite of new dual-species classifiers.
RESULTS:We developed three approaches: MmCMS-A; a gene-level classifier, MmCMS-B; an ontology-level approach and MmCMS-
C; a combined pathway system encompassing multiple biological and histological signalling cascades. Although all options could
identify tumours associated with stromal-rich CMS4-like biology, MmCMS-A was unable to accurately classify the biology
underpinning epithelial-like subtypes (CMS2/3) in mouse tumours.
CONCLUSIONS: When applying human-based transcriptional classifiers to mouse tumour data, a pathway-level classifier, rather
than an individual gene-level system, is optimal. Our R package enables researchers to select suitable mouse models of human CRC
subtype for their experimental testing.

British Journal of Cancer (2023) 128:1333–1343; https://doi.org/10.1038/s41416-023-02157-6

INTRODUCTION
Colorectal cancer (CRC) primary tumours can be molecularly
classified into four consensus molecular subtypes (CMS1–4) [1].
According to this classification, CMS1 (14% of patients) is enriched
for tumours with microsatellite instability (MSI) and immune
activation. CMS2 (37% of patients) epithelial-rich tumours
represent the canonical subtype and are associated with
activation of the WNT/MYC pathways and chromosome instability.
CMS3 (13% of patients) tumours display signalling indicative of
increased metabolic activity and KRAS mutations. Finally, CMS4
(23% of patients) tumours display stromal-rich and mesenchymal
features, alongside activation of TGF-β and VEGFR pathways [1].

While CMS classification provides valuable prognostic information,
its ability to identify subtype-specific responses to therapies
remains an area of active research, with several reverse-translation
studies using human pre-clinical models, such as cell lines,
organoids and patient-derived xenografts (PDX) [2, 3]. While
CMS classification in these models is possible, the reliance of CMS
classification on gene expression signals from tumour microenvir-
onment (TME) compartments can undermine attempts to identify
the mesenchymal subtype of CRC (CMS4) in cell lines, patient-
derived organoids and PDXs [4, 5]. To address this, Eide et al.
developed a CMS classifier specifically designed for human pre-
clinical models, named CMScaller, which used a filtered set of
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cancer cell-intrinsic, subtype-enriched gene expression markers,
giving a surrogate measurement of alignment with CMS subtypes
in in vitro and in vivo models [6].
Although translation of human CMS subtypes to human-based

pre-clinical models has been addressed, there remains a need to
develop and test a classifier that can be used with mouse-based
tumour data from genetically engineered mouse models (GEMMs).
GEMMs, alongside the armament of human pre-clinical models,
represent the most appropriate models to mimic the complexity
of human CRC biology. GEMMs in particular provide an ideal
system to improve pre-clinical drug testing within a native
immunocompetent host [7, 8]. Identifying murine models that
recapitulate each CRC subtype feature can therefore de-risk
clinical translation of therapeutics, while also providing an
excellent opportunity to improve our understanding of the
nuanced and complex interactions between cancer epithelial cells
and their microenvironment. Currently, there is no reliable and
standardised approach for CMS classification using data from
mouse tissues. In the absence of such a system, users have relied
on converting the human CMS template to mouse orthologues,
followed by sample classification using the nearest template
prediction (NTP) method (as with the CMScaller), or conversely
converting mouse genes to human orthologues and applying the
random forest (RF) method used in the original CMSclassifier
algorithm [1, 6]. Both approaches rely on overlapping nomen-
clature for individual genes; as mouse genes with different names
to the ones in the human classifier template will be ignored/
removed during CMS assignment, or vice versa. In addition, both
systems are also fully reliant on the assumption that genes within
the classifier will perform the same biological function in both
mouse and human tumours and ignore interspecies variability.
Recent studies have shown that pathway-based classifications are
more robust as they are composed of tens to hundreds of co-
ordinately expressed genes, and therefore are protected to some
degree from the loss of individual genes or variations in functions,
both of which are known to undermine gene-level classifiers
[9, 10]. As such, pathway-based approaches consider the collective
impact of genes on pathway-level activity rather than being
influenced by a single differentially expressed gene. Furthermore,
broad biological knowledge-based approaches have previously
been shown to be less influenced by non-biological factors
[11, 12].
To improve on the current state-of-the-art approach of

classifying GEMM tumours, we developed three options for CMS
classification in mouse tissue. The first, hereafter named as
MmCMS-A, uses mouse orthologues of the human CMS gene
template from CMScaller [6]; thus, it has a sole emphasis on
individual genes. Given the benefits of pathway-level approaches
for classification, over gene level, we proposed two further options
(MmCMS-B and MmCMS-C) that use biological knowledge-based
information from either gene ontology (GO) (MmCMS-B) or a
compendium of signatures from biological signalling collections
and microenvironment populations (MmCMS-C). Most impor-
tantly, to ensure the field can utilise these mouse CMS
classification approaches, we developed an R package, namely
MmCMS, which provides a publicly available tool to classify
samples according to all three options, enabling users to assess
the alignment of GEMM tumours to human CMS subtype.

METHODS
Human CRC cohort
The processed TCGA COREAD RNA-Seq dataset (n= 577) was downloaded
directly from the Guinney et al., CMSclassifier study via Synapse (ID:
syn2023932), where it has been described previously [1]. Gene symbols
and Entrez IDs were matched using org.Hs.eg.db R package (v3.8.2)
thereafter CMS classification was performed via RF method using
CMSclassifier R package (version 1.0.0).

Biological process (BP) subset of GO gene sets was extracted from the
Molecular Signature Database (MSigDB) using msigdbr R package (v7.0.1).
Subsequently, ontology scores were generated for the TCGA dataset using
a single sample gene set enrichment analysis (ssGSEA) method from GSVA
R package (v1.26.0). To determine the CMS-specific GO terms, these
ssGSEA scores were averaged for each gene set across samples within each
CMS subtype and scaled to Z scores where the GO with ssGSEA scaled
scores above 0 in a CMS, but below 0 on the others, were selected as the
enriched GO term for that CMS. The CMS-specific GO BP gene sets for
mouse species were then extracted from the msigdbr R package and used
to develop an ontology-based CMS classification for mice.

Mouse models
All animal experiments were performed in accordance with a UK Home
Office licence (Project License 70/8646), and were subject to review by the
animal welfare and ethical review board of the University of Glasgow. Mice
of both sexes were induced with a single injection of 2 mg tamoxifen
(Sigma-Aldrich, T5648) by intraperitoneal injection at an age of 6–12 weeks,
all experiments were performed on a C57BL/6 background. Mice were
sampled at clinical endpoint, which was defined as weight loss and/or
hunching and/or cachexia.

Mouse RNA sequencing and analysis
RNA was isolated using either an RNeasy mini kit (Qiagen) or TRIzol reagent
(Thermo Fisher Scientific). RNA concentrations were determined using a
NanoDrop 200c spectrophotometer (ThermoScientific), and quality was
assessed using an Agilent 220 Tapestation using RNA screentape. RNA
sequencing was performed using an Illumina TruSeq RNA sample prep kit,
then run on an Illumina NextSeq using the High Output 75 cycles kit
(2 × 36 cycles, paired-end reads, single index). Raw sequence quality was
assessed using the FastQC algorithm version 0.11.8. Sequences were
trimmed to remove adaptor sequences and low-quality base calls, defined
as those with a Phred score of <20, using the Trim Galore tool version 0.6.4.
The trimmed sequences were aligned to the mouse genome build
GRCm38.98 using HISAT2 version 2.1.0, then raw counts per gene were
determined using FeatureCounts version 1.6.4. Raw read counts of the
small cohort (n= 18) which is publicly available at ArrayExpress: E-MTAB-
6363 were normalised using vst function in DESeq2 R package (v1.32.0).
The models where the batch they were sequenced in was deeply
confounded by genotype were removed and data from 51 GEMMs
remained. ComBat_seq function in sva R package (v3.40.0) was used to
correct read counts for batch, thereafter, vst function in DESeq2 same as
before was used to normalise the data.

Databases
CMS-curated gene sets signatures (n= 79) were obtained from Synapse
(ID: syn2321865). Cancer hallmarks (n= 50) and GO BP gene set (C5 BP)
was extracted from MSigDB using ‘msigdbr’ R package (v7.4.1).
Ten signatures to estimate the proportion of the eight immune (NK cells,

Cytotoxic lymphocyte, T cells, CD8 T cells, B lineage, Monocytic lineage,
Neutrophils, Myeloid dendritic cells) and two stromal (Fibroblasts and
Endothelial) cell populations in each human sample across CMS subtypes
were obtained using the MCPcounter R package (v1.2.0); the mouse version
of signatures was retrieved from the mMCPcounter R package (v0.1.0).
Immune-related genes for humans and mice were downloaded from the
NanoString panel (https://canopybiosciences.com/product/immunology/).

Statistical analysis
All the statistical analyses were performed in R (v4.1.2) using the stats R
package, including cor() function with method= ‘pearson’ for Pearson’s
correlation. The Student t-test method embedded in the geom_signif()
function of ggsignif package (v0.6.3) was used to do statistical analysis in
violin plots. Boxplots were generated using ggplot2 (v3.3.5) R package. The
ComplexHeatmap (v2.8.0) and circlize (v0.4.13) packages were used to
display heatmaps. We used glmnet (v4.1-3) R package to do Least Absolute
Shrinkage Selector Operator (LASSO) regression model analysis. The λ or
tuning parameter in the LASSO model was selected through the 10-fold
cross-validation.
ssGSEA was performed using an R package called GSVA (v1.40.1). Alluvial

plot to display concordance result was drawn using riverplot (v0.10).
The NTP algorithm, with cosine correlation distances, was employed to

predict the proximity of each GEM model’s expression profile to the four
CMS subtypes, using each of the three templates individually (A, B and C),
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with an FDR < 0.05 used as a cutoff for statistical significance. To do
unsupervised class discovery in the combined mouse cohort (n= 51), the
gene expression profile converted to GO scores (msigdbr, v7.5.1 and GSVA
R package, v1.44.2) and variables were scaled before applying unsuper-
vised k-means clustering. The elbow method was used to identify optimal
number of clusters (factorextra R package; v1.0.7). ESTIMATE R package
(v1.0.13) was applied to evaluate the presence of immune and stromal
content in each individual mouse tumour sample, following conversion of
the mouse gene expression matrix to human orthologs using biomaRt
package (v2.53.2). Pairwise GSEA analysis was performed using the fgsea
(v1.10.1) R package on shrunken log2FoldChange of each CMS subtype
versus other subtypes for Hallmark gene sets. For human data, differential
expression analysis of each CMS group versus others was performed using
limma R package (v3.52.2) and GSEA was applied on logFC. Schematics
were created using BioRender.

RESULTS
Development and testing of CMS classifier templates for use
in mouse tumours
To confirm the concordance between the CMScaller/pre-clinical
CMS classifier (NTP method) and the CMSclassifier/original CMS
classifier (RF method) in human data, we applied CMScaller on
COREAD TCGA RNA-seq transcriptional data (n= 577) retrieved
from the original CMS article [1]. After removing samples that
were unclassified by either RF or CMScaller, we found 91.19%
(321/352) concordance between RF and NTP calls (Supplementary
Fig. 1a). PCA analysis on the whole transcriptome of these
352 samples demonstrated that samples that gave conflicting calls
(indicated as swapped in Supplementary Fig. 1a) between RF and
CMScaller were in the boundary of CMS subtypes assigned by the
RF method (Supplementary Fig. 1a). To confirm that the
discrepancies in classification call were confined to samples with
lower CMS probability scores, when we set a more stringent CMS
classification probability cutoff (>0.8) for the RF method, the
classifications for the two methods increased to 100% concor-
dance, n= 93 (Supplementary Excel File 1, Sheet 1), demonstrat-
ing that CMScaller provides excellent CMS classification
concordance for samples that display the strongest CMS
transcriptional traits, as indicated by high subtype RF classification
scores.
While these data confirm the suitability of using either the RF

CMSclassifier or NTP CMScaller methods for CMS classification of
human tumour data, to assess the performance of these methods
on mouse tumour model classification, we next assembled
transcriptional data from two independent GEMM tumour cohorts
(Table 1). Tamoxifen-regulated Cre-loxP system was used to
generate all models and introduced via an intraperitoneal
injection. The small cohort has been previously described by
Jackstadt et al. and composed of 18 intestinal primary tumours

across 4 genotypes that represent both the serrated (KPN:
KrasG12D/+ Trp53fl/fl Notch1Tg/+; KP: KrasG12D/+ Trp53fl/fl) and
tubular (APN: Apcfl/+ Trp53fl/fl Notch1Tg/+; AP: Apcfl/+ Trp53fl/fl)
tumour histologies [13]. The large independent cohort (n= 39)
contained a set of independent KP and KPN tumours alongside 4
additional genotypes including Apcfl/+ (A); Apcfl/+ KrasG12/+ (AK);
BrafV600E/+ Trp53fl/fl (BP) and BrafV600E/+ Trp53fl/fl Notch1Tg/+ (BPN).
Median latency age of A, AK AP, APN, KP, KPN, BP and BPN models
is 215, 67, 185, 161, 171, 184, 190 and 174 days respectively,
developing small intestine tumours primarily, with the exception
of seven mice (AK= 5, A= 2) which formed tumours in the colon.
For more characterisation of the samples see Supplementary Excel
File 2.
The RF method in the CMSclassifier package was designed for

human samples and uses 273 genes to assign CMS subtypes. To
enable the use of this method with mouse data, we converted the
entire mouse gene matrix to human orthologues using biomaRt
[14]. During the conversion of the mouse matrix, 16 genes of the
273 genes used to predict CMS calls in humans were mismatched
in both cohorts (Supplementary Table S1). Applying the RF
method to our n= 18 and n= 39 mouse model matrices
produced 56% unknown samples in both datasets (Supplemen-
tary Fig. 1b, c). Of note, to test the functionality of CMScaller in the
same mouse cohorts, we next converted the human CMScaller
template genes (n= 529; CMS1= 126, CMS2= 82, CMS3= 84,
CMS4= 237) to mouse orthologues (n= 533; CMS1= 128,
CMS2= 80, CMS3= 90, CMS4= 235), which as anticipated
resulted in a small number of dropouts (n= 26 missing genes,
Supplementary Table S2) due to lack of recognised orthologues,
though overall the number of genes in mouse CMS template
increased due to the existence of multiple mapping mouse genes
for the individual human genes (Fig. 1a and Supplementary Excel
File 3). Using this CMScaller method in our mouse data, we found
fewer unknown samples, 17% and 36%, respectively (Supplemen-
tary Fig. 1b, c) and therefore selected this NTP-based approach as
our initial dual-species classifier, termed MmCMS-A.

Identification of CMS-related GO BP terms in human TCGA
data (MmCMS-B)
To complement the gene-level approach in MmCMS-A, we again
utilised the RF classifications used in the original CMS classifier
development within the human TCGA COREAD data (n= 577) to
identify the GO BP that are most significantly associated with
individual human CMS classes, using ssGSEA to derive the
enrichment score across all samples. For each gene set (GO BP),
the mean enrichment score was calculated for each human CMS
subtype, with scaled Z-score >0 in one CMS subtype but <0 in the
other three CMS subtypes being selected as distinct features for
each particular CMS subtype. This identified n= 172, n= 64,

Table 1. Summary of mouse models used in this study.

Model name Genotype of mouse model

Small cohort (n= 18) AP villinCreER Apcfl/+ Trp53fl/fl (n= 3)

APN villinCreER Apcfl/+ Trp53fl/fl Notch1Tg/+ (n= 3)

KP villinCreER KrasG12D/+ Trp53fl/fl (n= 3)

KPN villinCreER KrasG12D/+ Trp53fl/fl Notch1Tg/+ (n= 9)

Large cohort (n= 39) A villinCreER Apcfl/+ (n= 6)

AK villinCreER Apcfl/+ KrasG12D/+ (n= 6)

BP villinCreER BrafV600E/+ Trp53fl/fl (n= 4)

BPN villinCreER BrafV600E/+ Trp53fl/fl Notch1Tg/+ (n= 7)

KP villinCreER KrasG12D/+ Trp53fl/fl (n= 6)

KPN villinCreER KrasG12D/+ Trp53fl/fl Notch1Tg/+ (n= 10)

In this study, we investigated the presence of CMS subtypes in two panels of 18 and 39 GEMMs with 4 and 6 different genotypes, respectively.
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n= 63 and n= 675 specific GO terms associated with CMS1,
CMS2, CMS3 and CMS4, respectively (Fig. 1b, blue background;
Fig. 1c). To test if these CMS class-specific GO terms represent
surrogate markers for human samples called with high probability
using RF, we again used CMS classifications from the stringent RF
threshold (probability cutoff > 0.8) as before and compared them
to CMS classifications using this new NTP ontology-based method,
where we observe 95% concordance with the RF-based calls
(Supplementary Excel File 1, Sheet 2). In line with the generation
of MmCMS-A, the mouse-equivalent GO terms of these human
gene ontologies were identified using the ‘msigdb’ R package and
used as the MmCMS-B template for CMS classification in mouse
data using NTP method (Fig. 1b, yellow background).

Development of mouse CMS template (MmCMS-C) based on
combining gene sets/pathways that best characterise each
human CMS subtype in a supervised approach
While MmCMS-B is focussed solely on GO BP signatures, for
MmCMS-C we generated a classifier based on four biologically
informed signature collections (Fig. 1d). First, we compiled the
n= 79 gene sets used to characterise biological signalling in the
original CMS study from the Synapse database (https://doi.org/
10.7303/syn2623706). As with MmCMS-B, we refined these

79 signatures into only those with individual CMS class-specific
expression (t-test; p value < 0.01) and signatures only kept if one
subtype was significantly higher when compared to each of the
other subtypes in turn, resulting in 48 of the 79 gene sets being
used (Fig. 2a and Supplementary Fig. 2a). Next, using the 50
MSigDB hallmark gene sets, we identified 21 with significant
expression (t-test; p value < 0.01) across CMS groups (Fig. 2b and
Supplementary Fig. 2b). In the third step, we used the
microenvironment cell population (MCP)-counter signatures, and
in line with previous studies, we found cytotoxic lymphocyte and
NK cells are significantly enriched in CMS1, whereas fibroblast and
endothelial cells are enriched in CMS4, thus 4 signatures from
MCPcounter [15] were included (Supplementary Fig. 2c; t-test;
p value < 0.01). Finally, given the importance of inflammatory
lineages in development and classification, we assessed immune-
related genes (n= 557; from a NanoString panel) for their
associations with each CMS subtype, filtered first using the LASSO
regression model (Fig. 2c). Based on coefficient >0, overall 44
immune-related genes (CMS1= 14, CMS2= 8, CMS3= 9, CMS4=
13) were found as the best predictors of individual CMS classes.
As with Options B, these co-ordinately expressed immune genes
for each CMS subtype were then grouped for ssGSEA, and
enrichment scores were assessed across subtypes which were
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significantly enriched (t-test; p value <0.01) (Fig. 2c). Overall, this
four-step MmCMS-C approach identified 77 CMS class-specific
gene sets (CMS1= 28; CMS2= 5; CMS3= 10; CMS4= 34). When
tested in the same way as MmCMS-A and B, using the NTP
method on TCGA data, MmCMS-C was found to have 98%
concordance with the RF-based high probability calls, threshold =
0.8 (Supplementary Excel File 1, Sheet 3).
To enable mouse classification, the biomaRt [14] and msigdb

[16] R packages were used to obtain the mouse version of 48 gene
sets and 21 hallmark pathways, respectively, with mouse MCP
signatures retrieved from the mouse-specific mMCP-counter
package [17]. Individual orthologues of immune-related genes
were obtained from the mouse NanoString panel (Supplementary
Table S3), with 39 mouse genes aligned to the 44 human immune
genes identified using regression analysis, and then grouped into
signature scores as before.

MmCMS classification of mouse tumours in previously
characterised cohort
To assess the performance of our three options for classifying
mouse tumours, two different cohorts of GEMMs as described
above were used (Table 1 and Fig. 3a). As there is no CMS ‘ground
truth’ or reference for mouse tumour data, we utilised tumours
from n= 18 mouse models across four genotypes (KPN, KP, APN,
AP; Table 1), which we have previously shown to correlate with
signalling associated with stromal CMS4 tumours (KPN and KP) or
epithelial-rich CMS2/3 tumours (AP and APN). PCA on the dataset
revealed distinct groups according to genotype (Supplementary
Fig. 3a). The NTP-based algorithm was employed to predict CMS
classification of GEMM tumours, using each of the three templates
individually (MmCMS-A, B and C), with an FDR < 0.05 used as a
cutoff for significant calls. Within the small cohort, both MmCMS-A
and MmCMS-C returned three unknown calls; however, MmCMS-B
classified all mouse tumours (Fig. 3b). Comparing these unknown
classification rates to those returned by the existing RF method
used for human tumour classification, which returned 10 unknown
classification calls, re-emphasised the value of using a pathway/
GO-based approaches (MmCMS-B, -C) compared to the individual
gene-based methods (MmCMS-A and RF). Overall, these CMS
grouping using our new R-based MmCMS classifier were all in line
with previously published subtype associations for these models
(Fig. 3b, c). There was broad consensus across all three options for
samples classified as CMS4, indicating how distinct this subtype is
compared to the others; however, samples classified as CMS3
using MmCMS-C were classified as either CMS2 or unclassified
using MmCMS-B and MmCMS-A (Fig. 3c). Characterisation of these
GEMM tumours using ssGSEA shows that, as with human tumours,
all samples assigned as CMS4 display high levels of enrichment for
TGFβ signalling, EMT, angiogenesis, Notch and Hedgehog
signalling. In line with human CMS biology, samples classified as
CMS3 using MmCMS-C display high expression of metabolic
pathways, such as bile acid, xenobiotic, fatty acid, heme
metabolism and glycolysis. Samples classified as CMS2 have high
expression of MYC and E2F targets which are well-identified
signalling molecules in the CMS2 subtype. One sample was
consistently classified as CMS1, which displayed high expression
of interferon-gamma response and interferon-alpha response
(Fig. 3c and Supplementary Fig. 3b).

Validation of MmCMS in extended GEMM tumour cohort
Following assessment in this initial cohort of histologically
distinct tumours, with tubular/epithelial-rich (AP, APN) and
serrated/stroma-rich (KP, KPN) genotypes, we next tested each
of the individual classifier options in an independent and more
heterogeneous cohort of 39 mouse tumours across 6 genotypes.
The NTP method, the same as above, was used to predict CMS
classification that measures the proximity of each sample with
the template by calculating distance d and assigning the

CMS label that it is closest to in the template (Supplementary
Fig. 3b).
As can be seen in Fig. 3d, MmCMS-A, B and C returned n= 14,

n= 2 and n= 6 unknown samples respectively. MmCMS-A
returned unknown calls for all Apcfl/+ samples; however, when
using MmCMS-B and C, all samples with Apcfl/+ genotype were
assigned as CMS2, with biological characterisation using GSEA
indicating that these samples have enriched signalling hallmarks
related to proliferation including G2M checkpoint, E2F targets and
MYC targets (Supplementary Fig. 3c). The only Apcfl/+ genotype
sample (A2) that remained unclassified by MmCMS-C appeared as
an outlier when assessed by PCA, as it did not cluster with other
Apcfl/+ samples (Supplementary Fig. 3d). GSEA reveals that
samples classified as CMS2 by MmCMS-A display features
inconsistent with human CMS2 tumours, and are more aligned
with human CMS3 classification, including high expression of
metabolic pathway and low expression of proliferation-related
hallmarks, indicating limited ability of the gene-level approach to
identifying CMS2 tumours (Fig. 3d and Supplementary Fig. 3c).
Furthermore, genes associated with immune response, colon
epithelial differentiation, goblet cell-like, and stroma, which
represent CMS1, CMS2, CMS3, and CMS4, respectively, were
obtained from [18], converted to mouse orthologues using
biomart and examined in the GEMMs to determine if they support
the CMS calls assigned by the classifiers (Fig. 3e and Supplemen-
tary Fig. 3e). Referring to MmCMS-C calls particularly, this analysis
reveals a strong association between CMS4 samples and stroma
signature. The CMS2 samples in the larger cohort (n= 39) are
repressed for immune response and stroma signatures but have
high enrichment for colon epithelial differentiation as expected as
well as goblet cell-like signatures (Fig. 3e). Although all
CMS3 samples have universal enrichment for goblet cell-like
signatures, some samples with BP, BPN, AK genotype also display
elevated immune response and colon epithelial differentiation
signatures. Moreover, the result demonstrates high enrichment of
only immune response signature for CMS1 samples in the small
cohort as expected; however, in the larger cohort there is also
some level of expression for colon epithelial differentiation and
goblet cell-like signatures; although these inconsistencies may be
explained due to limited samples classified as CMS1 using any
method (Fig. 3e and Supplementary Fig. 3e).
Interestingly, these results also revealed intra-genotype varia-

tion in CMS classifications, particularly within the non-Apc models,
indicating that mice with the same genotype at induction can
develop tumours with heterogeneity in terms of CMS biology.
(Fig. 3b–d and Supplementary Table S4). Our group and others
have previously described the importance of the TME in CMS
classification, particularly with CMS1/4 [5, 19]. Therefore, we
performed an assessment of stromal/immune percentages using
ESTIMATE [20] R package for the large mouse cohort (n= 39),
compared to MmCMS-C results, which confirmed a strong
association between these histological features and CMS classifi-
cation (Fig. 3f). These findings indicate that while intra-genotype
subtype heterogeneity exists in mouse tumours, similar to our
previous reports in human tumour data, this can be explained to
some extent by the histology of the established tumour.

MmCMS-C provides an optimal classifier for CMS2-like mouse
tissues
To test how well our GEMM classifications align with the biological
characteristics associated with human CMS subtypes, we next
measured the biological traits of immune-related, metabolic,
proliferation and stromal signalling associated with CMS calls in
human TCGA data and compared them directly to the CMS
classification calls according to each of our three MmCMS options
in both independent GEMM cohorts. Mean ssGSEA scores were
calculated across samples of each human CMS subtype, using the
same TCGA samples used in Fig. 1, alongside mean ssGSEA scores
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for MmCMS-A, B and C predictions in the n= 18 and n= 39 GEMM
cohorts (Fig. 4a, b). Using the human RF calls as the ground truth,
followed by cross-comparison and correlation analysis of samples
assigned as CMS2 by all three mouse options, we find a strong
correlation with MmCMS-B (r= 0.79, p= 0.0000005) and MmCMS-
C (r= 0.81, p= 0.0000001) and no correlation with MmCMS-A in
both cohorts (Fig. 4 and Supplementary Table S5). In addition, we
found limited associations for biological traits in human CMS1
with the CMS1 calls for any of our mouse classifier options, again
however this may be due to the small numbers of CMS1
classifications in mouse tumours. In samples classified as CMS3
and CMS4, all 3 MmCMS options show a significant positive
correlation with related human CMS subtypes, although again
MmCMS-C classification calls display higher association to human
traits compared to MmCMS-A (Supplementary Table S5).

MmCMS-B and C (biological knowledge-based approaches)
are less influenced by non-biological factors
To assess how much non-biological factors, such as normalisation
methods would affect the CMS classification result of three
options, we generated a larger collection of GEM models by
combining both cohorts used in this study. APN and AP models
were excluded, as the batch they were sequenced in was deeply
confounded by genotype, resulting in a collection of transcrip-
tomic data from n= 51 tumour samples, including 6 genotypes: A,
AK, BP, BPN, KP and KPN. After batch correction using
ComBat_seq, two different methods of normalisation, namely vst
and quantile, were applied and thereafter CMS classification was
performed using the 3 options. The results show 100%
concordance between both methods for CMS calls assigned by
MmCMS-B and MmCMS-C; however, in line with limitations of
gene-level classifiers, concordance with the gene-level MmCMS-A
classifier was reduced to 92% (Supplementary Fig. 4a, b). This
suggests broad biological knowledge-based approaches based on
overall gene ranking across biological pathways, rather than
individual genes, are more robust and less likely to be influenced
by non-biological factors [12].

Individual gene-level classifiers are not reliable for dual-
species classification
Our study suggests that individual gene-level classifiers, both the
RF and MmCMS-A approaches, derived from human tumours
perform poorly when applied to data derived from mouse CRC
tumours (Fig. 3). Therefore, we next assessed if the reverse was
also true; if individual genes associated with MmCMS-C classified
mouse tumours could be used in a reverse-translational way to
distinguish CMS within human tumours. Using the 20 most
discriminatory genes (Fold change > 4; p value < 0.05) within
mouse tumours assigned using MmCMS-C (Supplementary Fig. 5a),
we calculated the median value of these ‘meta-signatures’ within
each CMS subtype in the human TCGA cohort. In line with our
human-to-mouse findings, although gene-level classification can
be used to distinguish CMS4 tumours from all other subtypes,
individual genes associated with mouse CMS1-3 displayed
inconsistent subtype associations when applied in human
(Supplementary Fig. 5b), further reinforcing the importance of
using pathway-level data for dual-species tumour classification.

Unsupervised clustering within mouse tumour tissue
identifies clusters that align with CMS
Following cross-comparison with human data and identification of
MmCMS-C as the most optimal classifier, pairwise GSEA was
performed for each CMS subtype versus other subtypes in both
human and mouse data to identify conserved hallmark signalling
in both species (Fig. 5a). In CMS2 group, we found positive
enrichment of MYC targets, E2F targets and G2M checkpoint (padj
< 0.05) which are best characteristic signatures for this subtype in
both species. Due to the small number of CMS1 classifications in
mouse tumours, no significant hallmark biology could be found in
CMS1. Furthermore, although our cohort of n= 51 GEMM tumour
samples is small in comparison to the dataset size likely required
for robust subtype discovery, it does represent one of the largest
collections of GEMM tumour data. Therefore, with the caveats of
sample size in mind, we next tested if de novo unsupervised
clustering of our mouse tumour transcriptional data would
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identify tumour clusters that relate to CMS biology, or indicate the
presence of unique mouse-related tumour biology. To this end,
we performed class discovery using K-means algorithm along with
elbow method, which identified the presence of three clusters as
the optimal number of classes (Fig. 5b). Assessment of these three
cluster in comparison to the MmCMS calls in our cohort revealed a
striking alignment with CMS2, CMS3 and CMS4 subtypes (Fig. 5c).
Although our cohort did not contain a large number of CMS1

mouse tumours, these tumours were equally split across all three
clusters identified (Fig. 5c). Finally, we utilised the K-means
algorithm to identify a fourth cluster in an attempt to segregate
CMS1 tumours, which revealed that when set to k= 4 clusters, the
CMS1 tumours remained split across the same three initial
clusters, while CMS3 tumours were further subdivided into two
clusters (Supplementary Fig. 6). Taken together, despite the
limitations of small sample size, these analyse indicate that there
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is general alignment between human CMS tumour clustering with
that of the transcriptional traits underpinning current mouse
models of CRC.
Overall, this study presents a new approach to CMS classifica-

tion of mouse tumour tissue, alongside the development of a
publically available R-based classification tool (Fig. 5d) that will
improve the reproducibility of disease positioning and enable
standardisation in pre-clinical molecular subtyping studies.

DISCUSSION
GEMMs represent a valuable tool to test novel treatments that may
benefit specific subtypes of tumours, making it essential to ensure
the chosen models accurately recapitulate biological signalling and
phenotypes underpinning human subtypes [21]. Therefore, accu-
rate and robust classification of mouse CRCs according to human
subtypes is a critical step to improve disease positioning of models
and translation of findings from the pre-clinical setting. Integrity
and robustness in positioning models with human cancer subtypes
is critical in the era of stratified medicine, where therapeutic
approaches are designed for the biology underpinning specific
tumour subtypes. In order to successfully translate pre-clinical
efficacies into clinical benefit, testing of therapeutics must be
performed in models that are representative of specific patient
subtypes. Despite its importance, dual-species classification has
been limited by the lack of a reliable and standardised approach,
limiting researchers’ ability to ensure faithful alignment between
human tumours and pre-clinical models. Therefore, to address this,
we developed a series of dual-species CMS classification models,
named MmCMS, and an accompanying R package, which allows
users to rapidly perform CMS classification of mouse tissue using
three different options (A–C) of increasing complexity, from gene-
level to biological pathways. To ensure that these new classifier
options benefit the field, we developed a publicly available R
package for MmCMS, which can be downloaded from https://
github.com/MolecularPathologyLab/MmCMS. Although we have
focussed on CMS in this study, data presented here provide an
ideal template for the development and testing of other dual-
species classifications, for subtypes such as CRC intrinsic subtypes
[5], Braf mutant subtypes [22] and many others.
Our gene-level classifier, MmCMS-A, converts the human CMS

template, embedded in CMScaller R package, to mouse orthologs
and then use the NTP algorithm to carry out mouse CMS
classification. The CMScaller package has been developed to
enable exploration of the CMS subtypes in human pre-clinical
models, particularly in cell lines, organoids and PDX tumours, to
overcome the limitation of CMSclassifier’s strong dependence on
gene expression derived from the TME [1, 6]. As this approach is
based on individual genes, any genes lost during the process of
obtaining mouse orthologues [23, 24] can affect classification
performance, resulting in a higher number of inaccurate or
unknown calls, compared to biological knowledge-based
approaches. In addition to biological differences between mice
and humans, the representation and coverage of individual genes
required for robust CMS classification may not be equivalent
across different transcriptome profiling platforms [11], which
again can lead to poor classifier performance.
Recent studies have shown that classifiers based on biological

pathways, rather than individual genes, have the potential to
provide a more robust classification, as by using hundreds of co-
ordinately expressed genes they become far less sensitive to bias
that is associated with missing individual genes [9, 10]. This is
based on the understanding that ontology/pathway-level
approaches for transcriptional analyses have the advantage of
identifying biologically meaningful information associated with a
particular subgroup, rather than individual genes which can be
confounded by issues such as intratumoural heterogeneity or
technical variations associated with molecular profiling [9, 11, 12].

In our MmCMS R package, MmCMS-B and C were developed to
overcome the limitations of individual gene-based approaches
and are based on ssGSEA scores from broad biological knowledge-
based approaches, less influenced by non-biological factors such
as normalisation methods. Correlation analysis between each
CMS-related pathway mean scores in human samples with each
MmCMS individual classifiers shows that MmCMS-B and -C are
more similar to human CMS classification, using the original RF
classifier, and have higher discriminatory power and classification
rates, particularly for CMS2 and CMS3. Our results suggest the
presence of intra-genotype CMS subtype heterogeneity, indicating
that the same mutations driver events can result in variable
downstream transcriptional signalling, emphasising that faithful
mouse model alignment with human tumour signalling should
not be based on mutation alone.
Coupled with advances in our understanding of the biology

underpinning tumour development and progression, the versati-
lity and accessibility of transcriptional signatures has seen them
become a fundamental tool in the alignment of clinical
phenotypes and biological signalling across human tumours and
pre-clinical models. As therapeutics are being tested in a variety of
mouse-based in vivo models, it is now even more important to
ensure faithful alignment between models and human tumours
and that the models we use represent the same biology during
forward and reverse-translation studies. Our study provides an
important standardised approach for researchers to enable more
reproducible and comparable classification of CRC mouse models,
aligned to the biology underpinning human CRC subtypes. The
identification of mouse tumours that truly mimic each human CRC
subtype is essential for the proper interpretation of results, and
their translation into effective human clinical trials.

DATA AVAILABILITY
The dataset of 18 GEM models is available via ArrayExpress: E-MTAB-6363. The
dataset of 39 GEM models is available via Gene Expression Omnibus: GSE218776. To
ensure that these new classifier options benefit the field, we developed a publicly
available R package for MmCMS, which can be downloaded from https://github.com/
MolecularPathologyLab/MmCMS.
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