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The paper presents an operating system kernel for highly parallel supercomputers, which was implemented on an
iPSC/2 Hypercube with 32 processors. The kernel offers a process model, which is well suited for most partition-
ing strategies of parallel algorithms. The base for the efficiency of this object oriented, global, and dynamic
programming concept are advances in communication network technologies (virtual fully connection) of some
new parallel supercomputers. After presenting the functionality and the implementation of MMK (Multiprocessor
Multitasking Kernel), the paper reports on an improved programming methodology based on a combination of
data and task partitioning which leads to efficient computations on virtual fully connected highly parallel
machines. MMK is an integral part of the TOPSYS-project (TOols for Parallel SYStems) and all tools support the
MMK programming model.

1. Motivation and State of the Art

In the last years, research and development teams have proposed many scalable and dis-

tributed machines with different architectures. It has been shown, that good speedups are

gained with these computers for several classes of applications ([CHE88],[BOD85],[TRO86]).

The major drawback of these, partly commercially available, parallel computers is their

complicated way of programming. Therefore, in the future the way of using scalable parallel

computers and the programming productivity of these machines have to be improved. In the

following we will concentrate on problems arising from the distribution of resources, especial-

ly of memory. Most of the problems mentioned are not relevant for shared memory multi-

processors.

One of the major reasons for the complicated way of programming existing scalable paral-

lel machines is their inhomogeneous interconnection network. A typical feature of such paral-

lel machines is, that the efficiency of the interprocessor communication depends on the

localization of the communicating processors within the multiprocessor network. Examples of

such parallel machines are hypercubes with store-and-forward communication [SEI85], all

nearest neighbour architectures ([HAE85], [PAR88]), and cluster configurations [GIL88].

Consequences of these inhomogeneous interconnection networks for the way of program-
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ming scalable distributed machines are the following:

– The parallel algorithms have to be adapted to the communication network.

– The mapping of the parallel programs onto the nodes of the parallel machine is difficult,

because the programmer has to keep in mind the varying communication efficiency.

– The implementation of dynamic schemes for multitasking and multiprogramming is very

difficult and inefficient. Therefore these machines are often only used for static applica-

tion structures (numerical applications) with data partitioning.

Although it is well known that a strong separation between writing applications and keep-

ing in mind architectural details is highly desirable, most of the actual parallel computers do

not support a sufficiently high level of programming, for example the programmer has to keep

in mind during writing his program the physical location (node number) of the communication

partners and the operations and objects are often only locally (on the local node) available.

Computer architectures tried to eliminate the disadvantages of the inhomogeneous intercon-

nection networks. Since some years, scalable parallel computers with distributed resources are

coming up, offering more homogeneous interconnection networks. These machines offer at

least virtual fully connected networks with a high communication bandwidth ([ARL88],

[ANN87], [WHI88]). The availability of such homogeneous architectures supports the effi-

cient implementation of more dynamic and homogeneous programming models and operating

system kernels with global objects and operations. This was the motivation for the design and

development of our dynamic object oriented operating system kernel MMK (Multiprocessor

Multitasking Kernel) with global objects and operations, which will be explained in the rest of

the paper. At first we will give a short description of available process models and kernels:

– The process models used in writing real applications for parallel computers are based on

parallel extensions of sequential programming languages (C, Fortran, Pascal) ([PIE88],

[SCH88],[SEI85],[HAE85]). In these language extensions, constructs for parallel proces-

ses and message passing between them are offered. These process modells are imple-

mented via small operating system kernels or runtime libraries. An advantage of this

approach is the close relation to conventional programming languages. The major draw-

back is the knowledge of node and process identifiers the programmers have to have.

– Another group of researchers proposes completely new parallel programming constructs.

In this class of programming constructs, many different approaches are available based

on the paradigms of procedural programming [WHI88], object oriented programming

[AHU86], functional programming [HAL87] and logic programming [SHA86].

Problems arising with these approaches are compatibility and the effort necessary for

rewriting huge application packages in these languages.

Most of the process modells support multitasking on the processing nodes, but there are

also implementations which limit the number of processes to one (i.e. [HAE85]). This restric-



tion results from a concentration on numerical applications, where multitasking is not neces-

sary.

2. Features, Design Concepts, and Implementation of the MMK

The previous paragraph showed, that there are at the moment two contrary approaches for dis-

tributed memory machines. MMK is a compromise between the two approaches, but is closer

to the conventional one because of compatibility reasons. In the MMK programming model

we tried to enrich the static language extensions of the conventional approach with more

dynamic constructs and global operations and objects. The result was a dynamic, transparent

process model which allows the programmer to leave the specific architecture out of con-

sideration during program construction. The key features and design concepts of the MMK

are:

– MMK offers a transparent multitasking process model, which means that programmers

can define multiple parallel processes. During program construction programmers neither

have to keep in mind processor numbers nor locations of processes on processor nodes.

– When using the MMK programming model, the programmer thinks about his parallel

program in an object oriented style. MMK offers active objects (tasks), communication

objects (mailboxes), synchronization objects (semaphores), and storage objects

(memory) with the usual operations the programmer can deal with. Object manipulation

is only possible via the defined operations (for semantic details see part 3).

– All objects and operations are locally and globally available without differences in usage.

– The MMK offers only a minimum set of objects which reduces the complexity of im-

plementing dynamic object (process) migration, dynamic load balancing strategies and

monitoring support.

– All objects of a parallel program based on MMK can be dynamically created and deleted.

This dynamic characteristic of the MMK supports also dynamic load balancing strategies
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Figure 1: Hierarchical structure of the MMK.



and the implementation of non-numerical applications based on code (task) partitioning.

– Within the actual version of the MMK we implemented an experimental concept for

dynamic object migration between processor nodes. This migration scheme is at the mo-

ment restricted to passive objects (mailboxes, semaphores).

– The intention to increase programers’ productivity also motivated a project where inter-

active development tools for MMK-based applications were implemented [BEM88].

These tools (debugger, performance analyzer, visualizer) are supported by monitoring

hooks and interfaces integrated in MMK delivering necessary runtime information.

One of the main implementation concepts of the MMK was portability. Therefore the only

requested functionality of the underlying hardware are primitives, which implement a message

passing concept; i.e. routines for sending messages to and receiving messages from other

processor nodes. Another implementation concept supporting the portability of MMK is the

highly modular and hierarchical structure. The overall structure of MMK is illustrated in

figure 1 and can be explained in the following way:

– The MMK is fully distributed over the nodes of the multiprocessor. This means, that the

same kernel runs at each node of the multiprocessor.

– The lowest layer implements the basic communication routines for passing messages to

other nodes based on the interconnection network of the parallel machine.

– The layers BASIC, MANAG and USER can be compared with an implementation of a

multitasking kernel on a single processor. These layers contain the local scheduling,

state-, time-, object- and memory-management, and the local system calls for tasks,
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semaphores, mailboxes, and memories.

– The REMOTE layer is responsible for forwarding remote actions (system calls etc.) to

the nodes, where they have to be executed.

– The MAP layer identifies the location of the objects in the global object space. It deter-

mines the nodes where objects are located and initiates remote actions to these nodes.

Apart from the overall implementation structure, the MMK contains some interesting im-

plementation details, which are explained next.

The migration of objects is implemented in the MAP layer. The migrate system call is im-

plemented the way, that a new object with the same state as the old one at the source node

(migration source) is created on the destination node (migration destination). Operations on

the migrated object are handled with an algorithm, where the source node sends the new node

number to the requester of the operation. The requester forwards the operation once more to

the known destination node and makes an update of his object localization table.

Operations on remote objects are implemented via a server concept which is based on the

well known remote procedure call (rpc). Remote actions are handled via defined mailboxes

and corresponding server-tasks at the remote and the local processor node (see figure 2).

The MMK is totally written in C and at the moment implemented on an 8-processor iPSC

Hypercube based on 80286 and an iPSC/2 Hypercube with 32 processors based on 80386. The

kernel offers the described process model via a library which is linked to every node program

of the multiprocessor.

3. Conventional Programming Based on MMK

We will now discuss in detail the objects of MMK and their corresponding operations and ex-

plain, in which way the MMK can be used for implementing parallel programs.

As already mentioned, the MMK operating system supports four different object types:

tasks, mailboxes, semaphores and memories. The programmer can manipulate these objects

only via the operations defined on them.

The active parts of an implementation based on MMK are the tasks. Each task is at each

time in one of the following states: terminated, running, ready, waiting, suspended, or waiting

suspended. Waiting means that the task is waiting for an access to an object of type mailbox,

semaphore, or memory or for timeout. The state changes of the task are initiated by activities

of the scheduler or by expilicit system calls (for more details see [BEM87]).

The communication between tasks is realized with mailboxes, which allow various forms

of interprocess-communication. First of all they support direct communication from one

sender to one receiver. Furthermore mailboxes provide means for communication from sender

to any a receiver which is useful for certain types of applications. It is possible to define mail-



boxes with or without buffering, which has to be specified during creation time. With the mail-

boxes and the timeout mechanism of the mailbox system calls the user can for example imple-

ment asynchronous message passing (no-wait-send), synchronous message passing (rendez-

vous), buffered and unbuffered message passing.

For the synchronization of tasks the MMK offers counting semaphores with the usual

operations defined on them. These semaphores include a timeout mechanism and the

semaphore queues are organized in first-in-first-out manner.

Finally, there is the object memory, which provides a simple facility of implementing a

global memory on a loosly coupled parallel computer. The object of type memory is physical-

ly located on one single processor node but can be accessed to by each processor in the paral-

lel computer. Of course, there can be more than one object of type memory. The realization of

the memory object type is an attempt for investigating the problems resulting from virtual

global memories on multiprocessors with distributed memory (see also

[AHU86],[KES89],[RAS88]). 

The first thing the programmer has to do is to devide the application into parts, which can

potentially be computed concurrently. These parts form the tasks of the program. If there is

any communication necessary between tasks, we have to add some mailboxes, semaphores, or

memories. As a result we get a task graph describing the static structure of our application pro-

gram. Nowadays most of the work necessary in this phase can be undertaken with computer-

aided specification tools. At our department we adapted the task map feature of the specifica-

tion system CARD-tools to facilitate the work with MMK programs [TER87].

After having finished the design of the task graph and the programming of the task bodies

we can compile the already available source codes. The next step to do is the mapping of the

MMK-objects onto the processor nodes of the machine. We will discuss this point in detail in

the next paragraph. The information resulting from the mapping is also compiled and linked

together with the precompiled sources. The linker yields an object code file, which now can be

loaded into the nodes of the parallel computer.

Even if the programming language allows to hide such machine relevant parameters as

node numbers, there is a point in the software development cycle, where we have to map the

objects of our application program onto the processing nodes of our machine. The mapping is

done via a text file which includes the names of all objects to be mapped, the corresponding

node number and some additional parameters. For tasks we have also to specify the name of

the task body, because each task body can have more than one task activation differing only by

name. Figure 3 shows a task graph with three tasks and two mailboxes mapped on three

processor nodes. The mapping file defines the initial connection scheme of the objects.

Let us now discuss the two typical parallelization paradigms for parallel computers. Most

of the relevant implementations of parallelized algorithms use either data partitioning or task



partitioning. We will show that the MMK programming model can deal with both of them.

One of the most common methods for using parallel computers efficiently is to distribute

the load to the processor nodes by dividing the data among them. This method is called data

partitioning and results for many applications in a good load balance between the nodes

[FRI88]. The process graph is very simple because we have only one task body representing

the algorithm. From this task body we make as many task activations as there are nodes in our

computer and then map one task onto one node. The partitioning of the data also leads to an

intertask communication but the resulting process graph is regular in most cases: for numerical

applications we often use for example ring or torus structures [ROS88].

By using the mapping file we can adapt the process graph of the MMK application to the

available number of processor nodes: we replicate the tasks and the mailboxes, so that the

number of tasks equals the number of processors.

The second paradigm of using parallel computers is what we call task partitioning. Here the

application is divided into tasks being distinct from each other and solving specialized

problems. According to the replicated worker scheme we call this the specialized worker

scheme. Nowadays, task partitioning is mainly used with distributed systems, e.g. systems

consisting of some few coupled workstations, and for the implementation of non-numerical al-

gorithms. With increasing number of processors there are hardly any applications with task

partitioning for the simple reason that the number of tasks3 should exeed the number of

processors for using the machine efficiently.

With our mapping file, we can arrange the tasks within the machine such that the efficiency

is maximum. The multitasking facility on each node allows a grouping of tasks to minimize

the load imbalance between the nodes. Second, software fault-tolerance can be easily achieved

by replicating tasks of the process graph with the mapping file on different nodes.

As a conclusion we can say that the MMK programming model is suitable for both, ap-

plication programs with data partitioning and programs with task partitioning. But with MMK

we can also implement any mixture of the two parallelization types and use the machine effi-

ciently for a wide spectrum of different algorithms.

4. A New Programming Style for Parallel Computers

Task_A box_1

Task_B box_2

Task_C

Node 2

Node 1

Node 3

MBOX (box_1 ,..., NODE 1)
MBOX (box_2 ,..., NODE 2)
TASK (Task_A INIT send , box_1 NODE 1)
TASK (Task_B INIT send , box_2 NODE 2)
TASK (Task_C INIT receive , box_1 , box_2 NODE 3)

GLOBAL_BEGIN

GLOBAL_END

Figure 3: Example task graph and corresponding mapping file.



In order to make parallel computers more available for general-purpose applications there will

have to be a new programming paradigm which allows a problem oriented programming with-

out taking into account the special qualities of the multiprocessor. There are two preconditions

for such a new paradigm, which will now be described.

Most of the parallel computers suffer from not having enough communication links bet-

ween their processing nodes and from the fact that the length of the interprocessor communi-

cation depends from the distance between sender and receiver. This means, most multiproces-

sors offer only inhomogeneous communication networks. This results in a programming style

where the mapping of the processes plays an important role: the amount of communication

can only be minimized by mapping communicating processes to the same or at least to neigh-

bouring processors.

With the new parallel machines like the Intel iPSC/2 (see also [WHI88]) there is no such

limit because they are virtual fully connected. There is no longer such thing like ’topology’

and the programmer is not longer forced to superimpose a logical structure on his algorithm

which can be easily mapped to the physical structure of his computer.

With the hardware precondition being fullfilled, the programmer is not interested any more

in node numbers and in whether two nodes are physical neighbours or not. As a consequence

the MMK hides the node numbers from the programmer by offering only global objects which

can be referred to by name from everywhere in the machine.

The MMK together with the communication mechanism of these new parallel machines

like the iPSC/2 creates a new programming style which has the following advantages:

– First of all, we can use task and data partitioning together. The mapping file allows a

replication of every specialized task so that the number of task activations can be adapted

to the amount of data to be computed.

– The multitasking facility reduces the idle time of each processor and even allows multi-

programming to increase the usage of the supercomputer.

– The replication facility of the mapping file allows to control the granularity of the ap-

plication program, which is important for loadbalancing ([BAI87], [THE86]).

– The remote creation facility for tasks allows a dynamic loadbalancing controlled by the

programmer as he can activate new tasks on nodes with only low load.

– Furthermore the global objects allow a dynamic loadbalancing controlled by the operat-

ing system which is the greatest advantage of referencing objects only by name and not

by location. At the moment, the loadbalancing feature is only implemented for

non-active objects and not for tasks.

In summary one can say that a heterogeneous software concept being composed of a mix-

ture of task and data partitioning is well suited for programming more heterogeneous

machines, for example machines with special nodes for file-I/O, graphic output or sensor



input. These special nodes can be efficiently used by assigning specialized tasks to them.

In the field of fault-tolerance we can easily implement software fault-tolerance by replicat-

ing processes and the communications between them to different resources. At our laboratory

we are now making first measurements to evaluate the costs of such methods.

For numerical algorithms which are mostly using data partitioning we can easily add spe-

cialized tasks for the pre- or post-processing of the data (for example I/O-tasks, tasks for

graphic). At the moment we are parallelizing a placement algorithm for cells in gate arrays

[KLE88].

5. Performance Results

In order to compare the quality of the MMK implementation to other existing operating sys-

tems we precisely investigated the performance of MMK.

– Of great importance for the evaluation of MMK is the knowledge about the time con-

sumption of each MMK system-call. We will discuss this point in detail and make some

comparisons to other operating systems.

– Furthermore, a profiling of the system-calls yielded some interesting results concerning

the detection of performance losses within MMK.

Our aim was not only to compare MMK to other systems but mainly to assess the im-

plementation quality. As already mentioned, MMK is implemented on top of NX/2, so perfor-

mance losses resulting from more hierarchical software layers are unavoidable. A thorough in-

vestigation of MMK will result in a concept for integrating important features of MMK into

the NX/2-system itself, thus multiplying the performance of this redesigned MMK.

For all measurements we used a maximum number of two nodes and two tasks performing

system-calls to be measured. All system-calls were investigated with varying combinations for

their corresponding parameters. Results will show that there exist different types of inter-

dependencies between parameters and performance. Most important for multiprocessors is the

comparison of local and remote system-calls. For some system-calls this distinction depends

on the location of a related object: if a receiving mailbox is located on the same node as the

sending task, receiving of messages will be a local operation; otherwise receiving is done

remotely via remote-procedure-call. System-calls like create_mailbox distinguish by

parameter whether the operation is local or remote. Remote-procedure-calls were only per-

formed between directly neighbouring nodes, because the time overhead necessary for multi-

hop communication depends only on the underlying hardware and has no influence in MMK’s

performance.

Table 1.a shows the times necessary for those system-calls which only depend from being

local or remote but not from any other parameter. In Table 1.b we summarize the measure-

ments for system-calls depending on parameters. As can be seen from the table sending and



receiving depend on the message length. Only local receive has a constant time because there

is no copying of the message but only an assignment of pointers.

In addition figures 4.a-d illustrate the kind of interdependence between time and message

length: time is in direct proportion to the number of bytes sent so that one can project the time

necessary for sending or receiving a certain message. The figures for remote actions also show

a jump for messages smaller and larger than 80 bytes, resulting from two communication

mechanisms within NX/2 for short and long messages. The overhead of the MMK protocol

can be estimated by comparing the remote communication performance to that of NX/2. The

dotted line shows the time necessary for raw communication via NX/2 system-calls. 

Finally in table 1.c we present some figures about the profiling of MMK functions. Most

important is the remote procedure call which can only be improved by integrating the

mechanisms into NX/2 itself. The make_global procedure is used for reserving a global object

identifier for a local object and is called after object creation.

Comparison of performance measurements to other operating systems is very difficult be-

cause of three reasons: First of all there are nearly no publications with detailed performance

informations. Second, even if measurements exists, there is the unavoidable problem of differ-

ing hardware concepts and realizations making performance figures incomparable. Last but

not least also equivalent procedure calls may slightly differ in semantics, so that sending mes-

sages with MMK can not be compared to sending routines of other systems. So the following

  a )          d)

   b)          e)

local
0,18 ms
0,33 ms
0,16 ms
0,33 ms
0,12 ms
0,11 ms
0,58 ms
0,42 ms

function
crembox
delmbox
cresema
delsema
relsema
reqsema
cretask
deltask

remote
3,38 ms
3,30 ms
3,30 ms
3,30 ms
3,31 ms
3,26 ms
4,09 ms
3,43 ms

-migrate 6,75 ms

c)

localfunction remote

* 0 - 10 KBytes messages

0,05 ms
0,06 - 26,17 ms

recmsg
sndmsg

3,41 - 112,12 ms
3,50 - 112,54 ms*)

*)

Time (ms)Send

NX/2

MMK

PEACE

message remote

0.290
0.850
1.040
3.545
9.240

14.780
2.380
2.540
2.660

Bytes

0
512

1024
0

512
1024

0
512

1024

local

*)
*)
*)

0.063
1.405
2.727
0.080
0.200
0.305

Time (ms)Receive

NX/2

MMK

PEACE

message
Bytes

0
512

1024
0

512
1024

0
512

1024

local

0.051
0.051
0.051
0.080
0.200
0.305

remote

0.290
0.850
1.040
3.478
9.295

14.852
1.570
1.735
1.860

*)
*)
*)

*) no figures known

timefunction

* 0 - 99 objects

0,07 - 0,12 ms
0,076 ms
3,06 ms

make_global
scheduler
RPC

*)

Tables 1.a-e: Time consumption of MMK functions and comparison to other systems.



shall only give an idea of performance differences between MMK and other systems.

PEACE is the operating system of the SUPRENUM parallel computer. Performance figures

are given in [SCH87] and listed in tables 1.d-e together with the times necessary for remote

operations with NX/2 [BOM89]. There is a considerable difference between PEACE and

MMK whereas PEACE and NX/2 are very similar. Note that the PEACE figures are only

given for intercluster communication where at best 16 processors can communicate with each

other.

6. Conclusion and Future Works

Our first results show, that the MMK is an adequate compromise between the hardware-

oriented operating systems (e.g. NX/2) and programming concepts with high abstraction levels

like Linda which often do not provide enough efficiency for numerical applications.

We also were working on an improvement of the MMK implementation to increase the per-

formance. Two issues are of special importance: the global object space for localization inde-

pendent object manipulation and a migration mechanism for objects. The migration

mechanism brings together the advantages of the memory managment unit and of the iPSC/2

network and facilitates a migration of single pages across the interconnection network. Costs
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Figures 4.a-d: Time consumption of communication.



for migration are reduced because pages are only migrated on demand. We actually compare

different loadbalancing strategies for the control of the migration mechanism.

The integration of both the concept of the global object space and the concept of the

dynamic loadbalancing invisible to the programmer results in the programming philosophy of

mixed data and task partitioning which makes multiprocessor supercomputers easier to use

and more adequate for general purpose applications.
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