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Abstract. The p-adic cellular neural networks (CNNs) are mathematical gen-

eralizations of the neural networks introduced by Chua and Yang in the 80s. In
this work we present two new types of CNNs that can perform computations

with real data, and whose dynamics can be understood almost completely. The
first type of networks are edge detectors for grayscale images. The stationary

states of these networks are organized hierarchically in a lattice structure. The

dynamics of any of these networks consists of transitions toward some minimal
state in the lattice. The second type is a new class of reaction-diffusion net-

works. We investigate the stability of these networks and show that they can

be used as filters to reduce noise, preserving the edges, in grayscale images pol-
luted with additive Gaussian noise. The networks introduced here were found

experimentally. They are abstract evolution equations on spaces of real-valued

functions defined in the p-adic unit ball for some prime number p. In practical
applications the prime p is determined by the size of image, and thus, only

small primes are used. We provide several numerical simulations showing how

these networks work.

1. Introduction

In the late 80s Chua and Yang introduced a new natural computing paradigm
called the cellular neural networks (or cellular nonlinear networks) CNN which
includes the cellular automata as a particular case [10], [11], [13]. This paradigm
has been extremely successful in various applications in vision, robotics and remote
sensing, see, e.g., [12], [32] and the references therein.

In [37] we introduce the p-adic cellular neural networks which are mathematical
generalizations of the classical CNNs. The new networks have infinitely many cells
which are organized hierarchically in rooted trees, and also they have infinitely many
hidden layers. Intuitively, the p-adic CNNs occur as limits of large hierarchical
discrete CNNs. A p-adic CNN is the dynamical system given by

∂X(x,t)
∂t = −X(x, t) +

∫
Qp

A(x, y)Y (y, t)dy +

∫
Qp

B(x, y)U(y)dy + Z(x)

Y (x, t) = f(X(x, t)),

(1.1)

where x is a p-adic number (x ∈ Qp), while t is a non-negative real number,
X(x, t) ∈ R is the state of cell x at the time t, Y (x, t) ∈ R is the output of
cell x at the time t, f is a sigmoidal nonlinearity, U is the input of the CNN, and
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Z is the threshold of the CNN. In [37], we study the Cauchy problem associated to
(1.1) and also provide numerical methods for solving it.

The goal of this article is to show that p-adic CNNs can perform computations
using real data, and that the dynamics can be understood almost completely. We
present two new types of p-adic CNNs, one type for edge detection of grayscale
images, and the other, for denoising of grayscale images polluted with Gaussian
noise. It is important to emphasize that our goal is not to produce new techniques
for image processing, but to use these tasks to verify that p-adic CNNs can perform
relevant computations. On the other hand, classical CNNs have been implemented
in hardware for performing certain image processing tasks. We have used some of
the ideas introduced in [12], but our results go in a completely new direction.

We found experimentally that p-adic CNNs of the form
∂
∂tX(x, t) = −X(x, t) + aY (x, t) + (B ∗ U)(x) + Z(x), x ∈ Zp, t ≥ 0;

Y (x, t) = f(X(x, t)),
(1.2)

can be used as edge detectors, here Zp is the p-adic unit ball, and U is an image.
We develop numerical algorithms for solving the Cauchy problem attached to (1.2),
with initial datum X(x, 0) = 0. The simulations show that after a time sufficiently
large the network outputs a black-and-white image approximating the edges of the
original image U(x). The performance of this edge detector is comparable to the
Canny detector, and other well-known detectors. But most importantly, we can
explain, reasonably well, how the network detects the edges of an image.

We determine all the stationary states of (1.2), i.e. the solutions of ∂
∂tX(x, t) = 0,

for any a ∈ R, see Lemma 1 and Theorem 1. We show that for a > 1, the set of all
possible stationary states M of (1.2) has a hierarchical structure, more precisely,
(M,4) is a lattice, where 4 is a partial order. Furthermore, we determine the
set of minimal elements of (M,4), see Theorem 2. The dynamics of the network
consists of transitions in a hierarchically organized landscape (M,4) toward some
minimal state. This is a reformulation of the classical paradigm asserting that the
dynamics of a large class of complex systems can be modeled as a random walk on
its energy landscape, see, e.g., [22], [23].

We found experimentally that p-adic CNNs of the form

∂X(x, t)

∂t
= µX(x, t) + (λI −Dα

0 )X(x, t) +

∫
Zp

A(x− y)f(X(y, t))dy (1.3)

+

∫
Zp

B(x− y)U(y)dy + Z(x)

can be used for denoising grayscale images polluted with Gaussian noise. In this
case, X(x, 0) is the input image, and X(x, t0) is the output image, for a suitable
(typically small) t0.

The CNN (1.3) is a reaction-diffusion network. The diffusion part corresponds
to

∂X(x, t)

∂t
= (λI −Dα

0 )X(x, t), x ∈ Zp, t ≥ 0, (1.4)

here Dα
0 is the Vladimirov operator acting on functions supported in the unit ball,

α > 0. The equation (1.4) is a p-adic heat equation in the unit ball, this means that
there is a stochastic Markov process attached to it. The paths of this stochastic
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process are discontinuous. p-Adic heat equations and the associated stochastic
processes have been studied intensively in the last thirty years in connection with
models of complex systems, see, e.g., [3]-[4], [14], [22], [25]-[23], [34]-[36], [38]-[39].

The reaction term in (1.3) gives an estimation of the edges of the image, while the
diffusion term produces a smoothed version of the image. Under suitable hypothe-
ses, see Theorem 3, we show that a solution of the initial value problem attached
to (1.3) is bounded at very time if µ ≤ 0, otherwise, the solution is bounded by
Ceµt, where C is a positive constant. Some numerical simulations show that our
filter effectively reduces the noise while preserves the edges of the image, however,
its performance is inferior to the Perona-Malik filter, see, e.g., [31].

Finally, we want to mention that p-adic numbers have been used before in pro-
cessing image algorithms, see, e.g., [5]-[6], [26]. But these results are not directly
related with the ones presented here.

2. Basic facts on p-adic analysis

In this section we fix the notation and collect some basic results about p-adic
analysis that we will use through the article. For a detailed exposition on p-adic
analysis the reader may consult [1], [33], [36]. For a quick review of p-adic analysis
the reader may consult [7], [27].

2.1. The field of p-adic numbers. Throughout this article p will denote a prime
number. The field of p−adic numbers Qp is defined as the completion of the field
of rational numbers Q with respect to the p−adic norm | · |p, which is defined as

|x|p =

{
0 if x = 0

p−γ if x = pγ
a

b
,

where a and b are integers coprime with p. The integer γ = ordp(x) with ordp(0) :=

+∞, is called the p−adic order of x. The metric space
(
Qp, |·|p

)
is a complete

ultrametric space. Ultrametric means that |x+ y|p ≤ max
{
|x|p , |y|p

}
. As a topo-

logical space Qp is homeomorphic to a Cantor-like subset of the real line, see, e.g.,
[1], [36].

Any p−adic number x 6= 0 has a unique expansion of the form

x = pordp(x)
∞∑
j=0

xjp
j , (2.1)

where xj ∈ {0, 1, 2, . . . , p − 1} and x0 6= 0. It follows from (2.1), that any x ∈
Qp r {0} can be represented uniquely as x = pordp(x)u (x) and |x|p = p−ordp(x).

2.2. Topology of Qp. For r ∈ Z, denote by Br(a) = {x ∈ Qp; |x− a|p ≤ pr} the

ball of radius pr with center at a ∈ Qp, and take Br(0) := Br. The ball B0 equals
the ring of p−adic integers Zp. We also denote by Sr(a) = {x ∈ Qp; |x− a|p = pr}
the sphere of radius pr with center at a ∈ Qp, and take Sr(0) := Sr. We notice
that S0 = Z×p (the group of units of Zp). The balls and spheres are both open
and closed subsets in Qp. In addition, two balls in Qp are either disjoint or one is
contained in the other.

As a topological space
(
Qp, |·|p

)
is totally disconnected, i.e. the only connected

subsets of Qp are the empty set and the points. A subset of Qp is compact if and
3



only if it is closed and bounded in Qp, see e.g. [36, Section 1.3], or [1, Section 1.8].

The balls and spheres are compact subsets. Thus
(
Qp, |·|p

)
is a locally compact

topological space.
Since (Qp,+) is a locally compact topological group, there exists a Haar measure

dx, which is invariant under translations, i.e. d(x + a) = dx. If we normalize this
measure by the condition

∫
Zp dx = 1, then dx is unique. For a quick review of

the integration in the p-adic framework the reader may consult [7], [27] and the
references therein.

Notation 1. We will use Ω
(
p−r |x− a|p

)
to denote the characteristic function of

the ball Br(a).

2.3. The Bruhat-Schwartz space. A real-valued function ϕ defined on Qp is
called locally constant if for any x ∈ Qp there exist an integer l(x) ∈ Z such that

ϕ(x+ x′) = ϕ(x) for any x′ ∈ Bl(x). (2.2)

A function ϕ : Qp → C is called a Bruhat-Schwartz function (or a test function) if it
is locally constant with compact support. Any test function can be represented as
a linear combination, with real coefficients, of characteristic functions of balls. The
R-vector space of Bruhat-Schwartz functions is denoted by D(Qp). For ϕ ∈ D(Qp),
the largest number l = l(ϕ) satisfying (2.2) is called the exponent of local constancy
(or the parameter of constancy) of ϕ. Let U be an open subset of Qp, we denote
by D(U) the R-vector space of all test functions with support in U . For instance
D(Zp) is the R-vector space of all test functions with supported in the unit ball
Zp. A function ϕ in D(Zp) can be written as

ϕ (x) =

M∑
j=1

ϕ (x̃j) Ω
(
prj |x− x̃j |p

)
,

where the x̃j , j = 1, . . . ,M , are points in Zp, the rj , j = 1, . . . ,M , are integers,

and Ω
(
prj |x− x̃j |p

)
denotes the characteristic function of the ball B−rj (x̃j) =

x̃j + prjZp.

2.4. Some function spaces. Given ρ ∈ [1,∞), we denote by Lρ := Lρ (Zp) :=
Lρ (Zp, dx) , the R−vector space of all functions g : Zp → R satisfying

‖g‖ρ =

[∫
Zp
|g (x)|ρ dx

] 1
ρ

<∞.

We denote by C(Zp) the R-vector space of continuous functions f : Zp → R satis-
fying

‖f‖∞ := max
x∈Zp

|f (x)| <∞. (2.3)

3. p-Adic continuous CNNs

3.1. A type p-adic continuous CNNs. In this section we present new edge
detectors based on p-adic CNNs for grayscale images. We take B ∈ L1(Zp) and
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U,Z ∈ C(Zp), a, b ∈ R , and fix the sigmoidal function f(s) = 1
2 (|s+ 1| − |s − 1|)

for s ∈ R. In this section we consider the following p-adic CNN:
∂
∂tX(x, t) = −X(x, t) + aY (x, t) + (B ∗ U)(x) + Z(x), x ∈ Zp, t ≥ 0;

Y (x, t) = f(X(x, t)).
(3.1)

We denote this p-adic CNN as CNN(a,B,U, Z), where a,B,U, Z are the param-
eters of the network. In applications to edge detection, we take U(x) to be a
grayscale image, and take the initial datum as X(x, 0) = 0.

3.2. Stationary states. We say that Xstat(x) is a stationary state of the network
CNN(a,B,U, Z), if Xstat(x) = aYstat(x) + (B ∗ U)(x) + Z(x), x ∈ Zp;

Ystat(x) = f(Xstat(x)).
(3.2)

Remark 1. Let X̃(x) be any solution of (3.2). Then

X̃(x) =

{
a+ (B ∗ U)(x) + Z(x) if X̃(x) > 1

−a+ (B ∗ U)(x) + Z(x) if X̃(x) < −1,
(3.3)

and

(1− a) X̃(x) = (B ∗ U)(x) + Z(x) if
∣∣∣X̃(x)

∣∣∣ ≤ 1. (3.4)

Lemma 1. (i) If a < 1, then the network CNN(a,B, U, Z) has a unique stationary
state Xstat(x) ∈ C(Zp) given by

Xstat(x) =


a+ (B ∗ U)(x) + Z(x) if (B ∗ U)(x) + Z(x) > 1− a
−a+ (B ∗ U)(x) + Z(x) if (B ∗ U)(x) + Z(x) < −1 + a
(B∗U)(x)+Z(x)

1−a if |(B ∗ U)(x) + Z(x)| ≤ 1− a.
(3.5)

(ii) If a = 1 , then the network CNN(a,B,U, Z) has a unique stationary state
Xstat(x) ∈ L1(Zp) given by

Xstat(x) =

 1 + (B ∗ U)(x) + Z(x) if (B ∗ U)(x) + Z(x) > 0
−1 + (B ∗ U)(x) + Z(x) if (B ∗ U)(x) + Z(x) < 0
0 if (B ∗ U)(x) + Z(x) = 0.

(3.6)

Proof. If a < 1, it follows from (3.3)-(3.4) that (3.5) is a continuous stationary
state since by the dominated convergence theorem (B ∗ U)(x) is continuous. To
establish the uniqueness of the solution, let X(x) ∈ C(Zp) be another stationary
state. Consider a point x0 ∈ Zp such that X(x0) > 1. Then by (3.3), X(x0) =
a+(B ∗U)(x0)+Z(x0) > 1 consequently (B ∗U)(x0)+Z(x0) > 1−a and therefore

X(x0) = a+ (B ∗ U)(x0) + Z(x0) := Xstat(x0).

The cases X(x0) < −1 and X |(x0)| < 1 are treated in a similar way.
The case a = 1 follows from (3.4), in this case we have that Xstat(x) ∈ L1(Zp)

since Xstat(x) is bounded. The continuity of Xstat(x) requires further hypotheses
on B,U,Z. �

Definition 1. Assume that a > 1. Given

I+ ⊆ {x ∈ Zp; 1− a < (B ∗ U)(x) + Z(x)},
I− ⊆ {x ∈ Zp; (B ∗ U)(x) + Z(x) < a− 1},
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satisfying I+ ∩ I− = ∅ and

Zp r (I+ ∪ I−) ⊆ {x ∈ Zp; 1− a < (B ∗ U)(x) + Z(x) < a− 1},

we define the function

Xstat(x; I+, I−) =


a+ (B ∗ U)(x) + Z(x) if x ∈ I+
−a+ (B ∗ U)(x) + Z(x) if x ∈ I−
(B∗U)(x)+Z(x)

1−a if x ∈ Zp \ (I+ ∪ I−) .
(3.7)

Theorem 1. Assume that a > 1. All functions of type (3.7) are stationary states
of the network CNN(a,B,U, Z). Conversely, any stationary state of the network
CNN(a,B,U, Z) has the form (3.7).

Proof. We first verify that any function of type (3.7) is a stationary state. Take a
point x0 ∈ Zp. Since the sets I+, I−, Zpr (I+ ∪ I−) are disjoint, three cases occur.

Case 1: x0 ∈ I+.
If x0 ∈ I+, then Xstat(x0; I+, I−) = a + (B ∗ U)(x0) + Z(x0) and by definition

of I+, a+ (B ∗ U)(x0) + Z(x0) > 1. Then

af(Xstat(x0; I+, I−)) + (B ∗ U)(x0) + Z(x0) =

a+ (B ∗ U)(x0) + Z(x0) = Xstat(x0; I+, I−).

Case 2: x0 ∈ I−.
If x0 ∈ I−, then Xstat(x0; I+, I−) = −a+ (B ∗U)(x0) +Z(x0) and by definition

of I−, −a+ (B ∗ U)(x0) + Z(x0) < −1. Then

af(Xstat(x0; I+, I−)) + (B ∗ U)(x0) + Z(x0) =

− a+ (B ∗ U)(x0) + Z(x0) = Xstat(x0; I+, I−).

Case 3: x0 ∈ Zp r (I+ ∪ I−).

If x0 /∈ I+ t I−, then Xstat(x0; I+, I−) = (B∗U)(x0)+Z(x0)
1−a and by definition of

Zp r (I+ ∪ I−), −1 ≤ (B∗U)(x0)+Z(x0)
1−a ≤ 1, then

af(Xstat(x0; I+, I−)) + (B ∗ U)(x0) + Z(x0) =

a
(B ∗ U)(x0) + Z(x0)

1− a
+ (B ∗ U)(x0) + Z(x0) =

(B ∗ U)(x0) + Z(x0)

1− a
= Xstat(x0; I+, I−).

Therefore Xstat(x0; I+, I−) is a stationary state of the network CNN(a,B,U, Z).
Now, suppose that Xstat(x) is a stationary state of network CNN(a,B,U, Z).

Set

I+ := X−1stat((1,∞)), I− := X−1stat((−∞,−1)).

By using (3.3) and (3.4), we have

I+ ⊆ (B ∗ U + Z)−1((1− a,∞)),

I− ⊆ (B ∗ U + Z)−1((−∞, a− 1)),

and

Zp r (I+ ∪ I−) ⊆ (B ∗ U + Z)−1([1− a, a− 1]).

Then Xstat(x; I+, I−) is a well-defined function. Finally, using again (3.3) and (3.4),
we conclude that Xstat(x) = Xstat(x; I+, I−) for all x ∈ Zp. �
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Remark 2. Notice that

Ystat(x; I+, I−) := f (Xstat(x; I+, I−)) =


1 if x ∈ I+
−1 if x ∈ I−
(B∗U)(x)+Z(x)

1−a if x ∈ Zp \ (I+ ∪ I−) .

The function Ystat(x; I+, I−) is the output of the network. If I+ ∪ I− = Zp, we
say that Xstat(x; I+, I−) is bistable. The set B (I+, I−) = Zp \ (I+ ∪ I−) measures
how far Xstat(x; I+, I−) is from being bistable. We call set B (I+, I−) the set of
bistability of Xstat(x; I+, I−). If B (I+, I−) = ∅, then Xstat(x; I+, I−) is bistable.

Remark 3. If I+ ∪ I− $ Zp, we say that Xstat(x; I+, I−) is an unstable.

4. Hierarchical structure of the space of stationary states

A relation 4 is a partial order on a set S if it satisfies: 1 (reflexivity) f 4 f for
all f in S; 2 (antisymmetry) f 4 g and g 4 f implies f = g; 3 (transitivity) f 4 g
and g 4 h implies f 4 h. A partially ordered set (S,4) (or poset) is a set endowed
with a partial order. A partially ordered set (S,4) is called a lattice if for every
f , g in S, the elements f ∧ g = inf{f, g} and f∨ g = sup{f, g} exist. Here, f ∧ g
denotes the smallest element in S satisfying f ∧ g 4 f and f ∧ g 4 g; while f∨ g
denotes the largest element in S satisfying f 4 f∨ g and g 4 f∨ g. We say that
h ∈ S a minimal element of with respect to 4, if there is no element f ∈ S, f 6= h
such that f 4 h.

Posets offer a natural way to formalize the notion of hierarchy.
We set

M =
⋃
I+,I−

{Xstat(x; I+, I−)} ,

where I+, I− run trough all the sets given in Definition 1. Given Xstat(x; I+, I−)
and Xstat(x; I ′+, I

′
−) in M, with I+ ∪ I− 6= Zp or I ′+ ∪ I ′− 6= Zp, we define

Xstat(x; I ′+, I
′
−) 4 Xstat(x; I+, I−) if I+ ∪ I− ⊆ I ′+ ∪ I ′−. (4.1)

In the case I+ ∪ I− = Zp and I ′+ ∪ I ′− = Zp, the corresponding stationary states
Xstat(x; I+, I−), Xstat(x; I+, I−) are not comparable. Since the condition I+∪I− ⊆
I ′+ ∪ I ′− is equivalent to B

(
I ′+, I

′
−
)

= Zp \ (I ′1 ∪ I ′−1) ⊆ B (I1, I−1) =Zp \ (I1 t I−1),
condition (4.1) means that the set of bistability ofXstat(x; I ′+, I

′
−) is smaller that the

set of of bistability of Xstat(x; I+, I−). Also, the condition I+∪I− ⊆ I ′+∪I ′−implies
that

Xstat(x; I ′+, I
′
−)(x) = Xstat(x; I+, I−)(x) for all x ∈ I+ ∪ I− ∪ B

(
I ′+ ∪ I ′−

)
.

By using this observation, one verifies that (4.1) defines a partial order inM. This
means that the set of stationary states of the network CNN(a,B,U, Z), a > 1,
has a hierarchical structure, where the bistable stationary states are the minimal
ones. Intuitively, the bistable stationary states are at the deepest level of M.
Furthermore, (M,4) is a lattice. Indeed, given Xstat(x; I ′+, I

′
−), Xstat(x; I+, I−),in

M, it verifies that

Xstat(x; I ′+, I
′
−) ∧Xstat(x; I+, I−) = Xstat(x; I ′′+, I

′′
−),

where I ′′+ = I+ ∪ I ′+, I ′′− = I− ∪ I ′−, and

Xstat(x; I ′+, I
′
−) ∨Xstat(x; I+, I−) = Xstat(x; I ′′′+ , I

′′′
− ),
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where I ′′′+ = I+ ∩ I ′+, I ′′′− = I− ∩ I ′−. Therefore, we have established the following
result:

Theorem 2. (M,4) is a lattice. Furthermore, the set of minimal elements of
(M,4) agrees with the set of bistable states of CNN(a,B,U, Z).

5. Edge detection

5.1. A new class of edge detectors. We take a > 1, X(x, 0) = 0, and U(x) ∈
D(Zp) to be a grayscale image. We argue that network (3.1) works as an edge
detector. By Theorem 1, network CNN(a,B,U, Z), a > 1 has steady states of the
form

Ystat(x) = f(Xstat (x)) =

{
+1 if (B ∗ U)(x) + Z(x) > Threshold1

−1 if (B ∗ U)(x) + Z(x) < Threshold2,
(5.1)

where Threshold2, Threshold1 are real numbers. This type of outputs occur for
networks with stationary states where I+ t I− = Zp. For instance, when I+ ⊆
(B ∗ U + Z)−1((Threshold1,∞)) and I− ⊆ (B ∗ U + Z)−1((−∞, Threshold2)). If
U(x) is sufficiently small, then (B ∗ U)(x) + Z(x) gives a measure of dispersion of
the image intensities; if this value is larger than Threshold1, the networks outputs
+1 to indicate the existence of an edge, if value is smaller than Threshold2, the
network outputs −1 to indicate the nonexistence of an edge.

We conducted several numerical experiments with grayscale images. We im-
plemented a numerical method for solving the initial value problem attached to
network CNN(a,B,U, Z), with X(x, 0) = 0 and U(x) a grayscale image. The sim-
ulations show that after a sufficiently large time the network outputs a black-and-
white image approximating the edges of the original image U(x). This means that
for t sufficiently large X(x, t) is close to a bistable stationary state Xstat(x; I+, I−).
Furthermore, after a certain sufficiently large time, the output of the network do
not show a difference perceivable by the human eye. We interpret this result as the
bistable stationary states are asymptotically stable; of course this is a mathematical
conjecture.

We now give an intuitive picture of the dynamics of the network, for t suffi-
ciently large, using (M,4) as an asymptotic landscape for CNN(a,B,U, Z). For
t sufficiently large, the network performs transitions between stationary states
Xstat(x; I+, I−) belonging to a small neighborhood N around a bistable state

X
(0)
stat(x; I+, I−), with I+ ∪ I− = Zp. The dynamics of the network consists of

transitions in a hierarchically organized landscape (M,4) toward some minimal
state. This is a reformulation of the classical paradigm asserting that the dynamics
of a large class of complex systems can be modeled as a random walk on its energy
landscape.

5.2. Discretization. To process an image U(x), we use a discrete version of net-
work CNN(a,B,U, Z), a > 1. In turn, this requires to determine suitable kernels
B(x). We address these matters on this section.

We take L to be a positive integer, and set GL = Zp/pLZp. We identify i ∈ GL
with an element of the form

i = i0 + i1p+ . . .+ iL−1p
L−1,

8



where the iks belong to the set {0, 1, . . . , p− 1}. We denote by DL (Zp) the R-vector
space of test functions of the form

ϕ (x) =
∑
i∈GL

ϕ (i) Ω
(
pL |x− i|p

)
supported in the unit ball Zp. Since Ω

(
pL |x− i|p

)
Ω
(
pL |x− j|p

)
= 0 for i 6= j,

the set {
Ω
(
pL |x− i|p

)}
i∈GL

is a basis of DL (Zp). Notice that the dimension of DL (Zp) is pL.
Assuming that B (x) , U(x), Z(x) ∈ DL (Zp), the initial value problem

∂
∂tX(x, t) = −X(x, t) + aY (x, t) + (B ∗ U)(x) + Z(x), x ∈ Zp, t ≥ 0;

X(x, 0) = X0 ∈ DL (Zp) .
(5.2)

has unique solution

X(x, t) =
∑
i∈GL

X(i, t)Ω
(
pL |x− i|p

)
(5.3)

in DL (Zp) for t ≥ 0, see [37, Theorem 1].
This result allow us to obtain a discretization of (5.2) and (3.1) as follows. Take

U(x) =
∑
i∈GL

U(i)Ω(pL|x− i|), (5.4)

Z(x) =
∑
i∈GL

Z(i)Ω(pL|x− i|), (5.5)

and

B(x) = pM2−M1Ω(pM2 |x|p)− Ω(pM1 |x|p) (5.6)

for some integers M1 ≤M2 ≤ L.
We now take i, j ∈ GL and an integer M ≤ L, then

|i− j + pLz|p = |i− j|p for any z ∈ Zp.

By using this observation, one gets that

Ω(pM |x|p) ∗ U(x) = (5.7)

=
∑
i∈GL


∑
j∈GL

U(j)

∫
Zp

Ω(pM |i− y|p)Ω(pL|y − j|p)dy

Ω(pL|x− i|p)

=
∑
i∈GL


∑
j∈GL

U(j)

∫
j+pLZp

Ω(pM |i− y|p)dy

Ω(pL|x− i|p)

=
∑
i∈GL

p−L ∑
j∈GL

U(j)Ω(pM |i− j|p)

Ω(pL|x− i|p).
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Now, from (5.6)-(5.7), we get the following formula:

(B ∗ U)(x) = (5.8)

∑
i∈Gl

p−L

pM2−M1

∑
j∈Gl

Ω(pM2 |i− j|p)U(j)−
∑
j∈Gl

Ω(pM1 |i− j|p)U(j)

Ω(pL|x− i|p).

We now replace (5.3)-(5.8) in the equation in (5.2) and use that {Ω(pL|x− i|)}i∈GL
is a basis of DL(Zp), to get a discretization of (5.2):{

dX(i,t)
dt = −X(i, t) + aY (i, t) + p−L (LU) (i) + Z(i), i ∈ GL

X(i, 0) = X0(i),
(5.9)

where

Y (i, t) = f (X(i, t)) , i ∈ GL,
and

(LU) (i) := pM2−M1

∑
j∈Gl

Ω(pM2 |i− j|p)U(j)−
∑
j∈Gl

Ω(pM1 |i− j|p)U(j), i ∈ GL.

(5.10)

5.2.1. Graph Laplacians. Let G = (V,E) be a simple graph with vertices V and
edges E. Let φ : V → R be a function on the graph. The graph Laplacian ∆ acting
φ is defined as

(∆φ) (v) =
∑
w∈V

dist(w,v)=1

[φ (v)− φ (w)] ,

where dist(w, v) is the distance on the graph. Now, let N (v) be a fixed neighbor-
hood of v, for instance,

N (v) = {w ∈ V ; dist(w, v) ≤M} ,

for positive integer M , a generalization of operator ∆ is

(∆Nφ) (v) =
∑

w∈N (v)

(∆φ) (w) . (5.11)

The operator L has the form (5.11). Indeed, the following formula holds for the
operator (LU) (i):

(LU) (i) =
∑
j∈GL

|i−j|p≤p−M2

 ∑
k∈GL

p−M2<|j−k|p≤p−M1

[U(j)− U(k)]

 , i ∈ GL. (5.12)

In particular, taking M1 = 0, M2 = 1, one gets that∑
k∈GL

p−1<|j−k|p≤1

[U(j)− U(k)] =
∑
k∈GL
|j−k|p=1

[U(j)− U(k)] ,

which is the graph Laplacian on GL = Zp/pLZp with the distance induced by | · |p.
Finally, we establish formula (5.12). We use that

#
{
k ∈ GL; p−M2 < |j − k|p ≤ p−M1

}
= pM2−M1 ,
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since i = i0+i1p+. . .+iL−1p
L−1. Now |i− j|p ≤ p−M2 and p−M2 < |j−k|p ≤ p−M1

imply that

|i− k|p = max
{
|i− j|p , |j − k|p

}
= |j − k|p ≤ p−M1 ,

by ultrametric property of |·|p. Then

∑
j∈GL

|i−j|p≤p−M2

 ∑
k∈GL

p−M2<|j−k|p≤p−M1

[U(j)− U(k)]

 =

∑
j∈GL

|i−j|p≤p−M2

[
#
{
k ∈ GL; p−M2 < |j − k|p ≤ p−M1

}]
U(j)

−
∑
j∈GL

|i−j|p≤p−M2

∑
k∈GL

p−M2<|j−k|p≤p−M1

U(k) =

∑
j∈GL

|i−j|p≤p−M2

pM2−M1U(j)−
∑
k∈GL

|i−k|p≤p−M1

U(k) = (LU) (i).

6. Numerical Examples

To construct an edge detector using (5.9), it requires an algorithm for splitting
a large image into smaller sub-images. Given an image I of size (n,m), a prime p
and an integer K, the algorithm divides image I into sub-images I ′r of size (pK , pK)
or less. Then, we use another algorithm to codify sub-image I ′r as a test function
Test(I ′r). These algorithms are presented in the Appendix. We process the test
function Test(I ′r) = U using network

dX(i,t)
dt = −X(i, t) + aY (i, t) +

∑8
j=0

{
U(i)− U(i+ j32)

}
+ z0, i ∈ GL

X(i, 0) = 0
Y (i, t) = f(X(i, t)),

(6.1)
with p = 3, L = 4, M1 = 2, M2 = 4, and Z(i) = z0 ∈ R, for i ∈ GL, and rescaling
(LU) (i) as 34 (LU) (i), for i ∈ GL, to get another test function Y (i, t0;Test(I ′r))
taking values in {±1}. Each test function Y (i, t0;Test(I ′r)) is transformed into an
image Iedgesr , at the final step, we concatenate all the images Iedgesr to obtain a full
image Iedges, which is the output image. The time t0 is chosen on a case-by-case
basis so that the edges are as sharp as possible. See Figures 1, 2.

7. Reaction-diffusion Cellular Neural Networks

7.1. The p-adic heat equation. For α > 0, the Vladimirov-Taibleson operator
Dα is defined as

D(Qp) → L2(Qp) ∩ C (Qp)

ϕ → Dαϕ,

where

(Dαϕ) (x) =
1− pα

1− p−α−1

∫
Qp

[ϕ (x− y)− ϕ (x)]

|y|α+1
p

dy.

11



Figure 1. Left side, the original image. Right side, edges obtained
by using a Canny edge detector.

Figure 2. Left side, edges obtained by using CNN (6.1), with
z0 = −1 and 6 steps. Right side, edges obtained by using CNN
(6.1), with z0 = −1 and 10 steps.

The p-adic analogue of the heat equation is

∂u (x, t)

∂t
+ aDαu (x, t) = 0, with a > 0.

12



The solution of the Cauchy problem attached to the heat equation with initial
datum u (x, 0) = ϕ (x) ∈ D(Qp) is given by

u (x, t) =

∫
Qp

Z (x− y, t)ϕ (y) dy,

where Z (x, t) is the p-adic heat kernel defined as

Z (x, t) =

∫
Qp

χp (−xξ) e−at|ξ|
α
p dξ, (7.1)

where χp (−xξ) is the standard additive character of the group (Qp,+). The p-adic
heat kernel is the transition density function of a Markov stochastic process with
space state Qp, see, e.g., [25], [39].

7.2. The p-adic heat equation on the unit ball. We define the operator Dα
0 ,

α > 0, by restricting Dα to D(Zp) and considering (Dαϕ) (x) only for x ∈ Zp. The
operator Dα

0 satisfies

Dα
0ϕ(x) = λϕ(x) +

1− pα

1− p−α−1

∫
Zp

ϕ(x− y)− ϕ(x)

|y|α+1
p

dy,

for ϕ ∈D(Zp), with λ = p−1
pα+1−1p

α.

Consider the Cauchy problem
∂u(x,t)
∂t + Dα

0u (x, t)− λu (x, t) = 0, x ∈ Zp, t > 0;

u (x, 0) = ϕ (x) , x ∈ Zp,

where ϕ ∈D(Zp). The solution of this problem is given by

u (x, t) =

∫
Zp

Z0(x− y, t)ϕ (y) dy, x ∈ Zp, t > 0,

where

Z0(x, t) := eλtZ(x, t) + c(t), x ∈ Zp,

c(t) := 1− (1− p−1)eλt
∞∑
n=0

(−1)n

n!
tn

1

1− p−nα−1

and Z(x, t) is given (7.1). The function Z0(x, t) is non-negative for x ∈ Zp, t > 0,
and ∫

Zp

Z0(x, t)dx = 1,

[25]. Furthermore, Z0(x, t) is the transition density function of a Markov process
with space state Zp.

The family

Tt : L1(Zp) → L1(Zp)

φ(x) → Ttφ(x) :=

∫
Zp

Z0(x− y, t)φ(y)dy,
(7.2)
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is a C0-semigroup of contractions with generator Dα
0 − λI on L1(Zp), see [20,

Proposition 4, Proposition 5]

7.3. Reaction-diffusion CNNs.

Definition 2. Given µ ∈ R, α > 0, A, B,U , Z ∈ C(Zp), a p-adic reaction-
diffusion CNN, denoted as CNN (µ, α,A,B,U, Z), is the dynamical system given
by the following integro-differential equation:

∂X(x, t)

∂t
= µX(x, t) + (λI −Dα

0 )X(x, t) +

∫
Zp

A(x− y)f(X(y, t))dy (7.3)

+

∫
Zp

B(x− y)U(y)dy + Z(x),

where x ∈ Zp, t ≥ 0. We say that X(x, t) ∈ R is the state of cell x at the time t.
Function A is the kernel of the feedback operator, while function B is the kernel of
the feedforward operator. Function U is the input of the CNN, while function Z is
the threshold of the CNN.

Notice that if µ = 0 and A = B = U = Z = 0, (7.3) becomes the p-adic heat
equation in the unit ball. Then, in (7.3), (λI −Dα

0 ) is the diffusion term, while the
other terms are the reaction ones, which describe the interaction between X(x, t),
U(x), and Z(x).

Remark 4. In this section, we assume that f is an arbitrary Lipschitz function,
f(0) = 0, i.e., |f(s)− f(t)| ≤ L(f) |s− t|, for s, t ∈ R, where L(f) is a positive
constant.

Lemma 2. Let A, B, U , Z ∈ C(Zp).
(i) Set

H(g) :=

∫
Zp

A(x− y)f (g(y)) dy +

∫
Zp

B(x− y)U(y)dy + Z(x), (7.4)

for g ∈ L1(Zp). Then H : L1(Zp)→ L1(Zp) is a well-defined operator satisfying

‖H(g)−H(g′)‖1 ≤ L(f)‖A‖∞‖g − g′‖1, for g, g′ ∈ L1(Zp).

(ii) The restriction of H to C(Zp) satisfies

‖H(g)−H(g′)‖∞ ≤ L(f)‖A‖1‖g − g′‖∞, for g, g′ ∈ C(Zp),

so H : C(Zp)→ C(Zp) is well-defined operator.

Proof. Take g, g′ ∈ L1(Zp), then

‖H(g)−H(g′)‖1 = ‖
∫
Zp

A(x− y) {f (g(y))− f (g′(y))} dy‖1

≤
∫
Zp


∫
Zp

|A(x− y)| |f (g(y))− f (g′(y))| dy

 dx ≤ L(f)‖A‖∞
∫
Zp

|g(y)− g′(y)| dy

≤ L(f)‖A‖∞‖g − g′‖1.
14



This inequality also proves that H is well-defined. The second part is established
in a similar way. �

Proposition 1. Let A, B, U , Z ∈ C(Zp). Take X0 ∈ L1(Zp) as the initial datum
for the Cauchy problem attached to (7.3). Then there exists τ = τ (X0) ∈ (0,∞]
and a unique X(t) ∈ C([0, τ ], L1(Zp)) satisfying{

X(t) = eµtTtX0 +
∫ t
0
eµ(t−s)Tt−sH(X(s))ds

X(0) = X0.
(7.5)

Proof. By [20, Proposition 4], (Dα
0 − λI) is the generator of a strongly continuous

semigroup {Tt}t≥0 of contraction on L1(Zp). Then (Dα
0 −λI)+µI is the generator

of a strongly continuous semigroup {eµtTt}t≥0 on L1(Zp), see [28, Theorem 4.3-

(10)]. Since ‖eµtTt‖ ≤ eµt and H is a Lipschitz nonlinearity, see Lemma 2-(i),
there exits a unique mild solution X(t) ∈ C([0, τ ], L1(Zp)) satisfying (7.5), see,
e.g., [28, Theorem 5.1.2]. �

Lemma 3. Let A, B, U , Z ∈ C(Zp). Take X0 ∈ C(Zp). Then, the integral equation
(7.5) has unique solution C([0,∞), C(Zp)).

Proof. It is sufficient to show that (7.5) has a unique solution in C([0, T ] , C(Zp)),
where T > 0 is an arbitrary time horizon. Indeed, if X0(t) ∈ C([0, T0] , C(Zp)) and
X1(t) ∈ C([0, T1] , C(Zp)), with T0 ≤ T1, are mild solutions, then X0(t) = X1(t) for
t ∈ [0, T1], see [28, Theorem 5.2.3].

We set Y := C([0, T ], C(Zp)), which is a Banach space with norm

sup
0≤t≤T

‖Y (t)‖∞ = sup
0≤t≤T

[
sup
x∈Zp

|Y (x, t)|

]
.

We now set

Gg(t) := eµtTtX0 +

∫ t

0

eµ(t−s)Tt−sH (g(s)) ds,

for g(t) ∈ C([0, T ], C(Zp)). By using that Z0(x, t) ∈ L1(Zp), one gets Ttg ∈
C([0, T ], C(Zp)), and by Lemma 2-(ii), G : Y → Y. We now set

Gn = G ◦G ◦ · · · ◦ G
n−times︸ ︷︷ ︸ .

We show that for n sufficiently large Gn is a contraction. We first notice that

‖Gg(t)−Gg(t)‖∞ ≤ L(f)eµT ‖A‖1 ‖g(t)− g′(t)‖∞.

By a well-known argument, see [28, Proof of Theorem 5.1.2], one gets that

‖Gng(t)−Gng(t)‖∞ ≤
(eµTL(f)‖A‖1T )n

n!
‖g(t)− g′(t)‖∞,

with (eµTL(f)‖A‖1T )n

n! < 1, for n sufficiently large. Therefore G has a unique fixed
point X(t) in Y, see [28, Theorem 1.1.3]. �

Theorem 3. Let X(t) ∈ C([0,∞), C(Zp)) be the unique solution of (7.5), with
initial condition X0 ∈ C(Zp).Then,

‖X(t)‖∞ ≤ eµt‖X0‖∞ +
(eµt − 1)

µ
(‖A‖1‖f‖∞ + ‖B‖1‖U‖∞ + ‖Z‖∞) , (7.6)
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if µ 6= 0, otherwise

‖X(t)‖∞ ≤ ‖X0‖∞ + τ (‖A‖1‖f‖∞ + ‖B‖1‖U‖∞ + ‖Z‖∞) . (7.7)

Proof. By using that ‖B ∗ U‖ ≤ ‖B‖1‖U‖∞, cf. [33, Theorem 1.7], and Lemma
2-(ii), we get that

‖H(g)‖∞ ≤ L(f)‖A‖1‖g‖∞ + ‖B‖1‖U‖∞ + ‖Z‖∞ for g,∈ C(Zp).

Now, the stated formula follows from (7.5), by Lemma 3, by using that ‖A‖1 ≤
‖A‖∞ and ‖B‖1 ≤ ‖B‖∞. The bound (7.7) is established in a similar way. �

8. Denoising

In this section, we present a new denoising technique based on certain reaction-
diffusion CNNs. We first consider the initial value problem

∂X(x,t)
∂t + D1

0X(x, t)− λX(x, t) = 0, x ∈ Zp, t > 0

X(x, 0) = X0(x), x ∈ Zp,
(8.1)

where X0(x) ∈ [0, 1] is a grayscale image codified as a test function supported in the
unit ball Zp. The algorithm for this coding is discussed at the end of this section.
The output image X(x, t) is similar to the one produced by the classical Gaussian
filter. See Figure 3.

Figure 3. On the left side, the original image X(x, 0). On the
right side X(x, 3).

In this article we propose the following reaction-diffusion CNN for denoising
grayscale images polluted with normal additive noise:

∂X(x, t)

∂t
= 3X(x, t) + (λI −Dα

0 )X(x, t) + 3B ∗ [X0(x) − f(X(x, t))] , (8.2)

where α = 0.75, f(x) = 0.5(|x + 1| − |x − 1|), B(x) = (Ω(p2|x|p) − Ω(|x|p)), and
−1 ≤ X0(x) ≤ 1. Notice that we are using the interval [−1, 1] as a grayscale scale.
This equation was found experimentally. Natively, the reaction term 3X(x, t) +
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3B ∗ [X0(x)− f(X(x, t))] gives an estimation of the edges of the image, while the
diffusion term (λI −Dα

0 )X(x, t) produces a smoothed version of the image.
The processing of an image X0(x) using (6.1) requires solving the corresponding

Cauchy problem with initial datum X(x, 0) = X0(x). Given an image I, i.e., a
matrix of size (n,m), and a pixel (i, j) of I , for the processing of this pixel we use
a neighborhood Ii,j centered at this pixel, which is sub-image Ii,j of size

(
pK , pK

)
,

where p2K is the number of pixels in the sub-image Ii,j . We use small primes,
p = 2, 3 to get sub-images of size 2 × 2 and 3 × 3. The choosing of the prime p
is completely determined by the image size, then, only small primes are required.
Now, we codify the sub-image Ii,j a test function Test(Ii,j) and solve numerically
the Cauchy problem attached to (6.1) with initial datum Test(Ii,j). We pick a time
t0, on a case by case basis, and take the test function X(x, t0; Ii,j) as the output of
the network. At the final step, we transform X(x, t0; Ii,j) into an image I ′i,j , and
take the pixel processed image at (i, j) as the center of I ′i,j . See Figures 4, 5.

Figure 4. Left side, the original image. Right side, the image
plus Gaussian noise, mean zero and variance 0.05.

9. Appendix: Images and test functions

In this appendix. we show the existence of a bijective correspondence between
images and test functions. We first show the existence of a bijective correspon-
dence between finite disjoint unions of balls contained in Zp, for some prime p
with weighted rooted trees of valence p. The connections between clustering, trees
and ultrametric spaces are well-known, see e.g., [22, Chapter 2] and the references
therein. Finally, we show the existence of a bijective correspondence between finite,
regular rooted trees of valence p with images.

9.1. Finite rooted trees and test functions. By a finite rooted tree T , we mean
a finite undirected graph in which any two vertices are connected by exactly one
path. The vertices V (T ) of T are organized in disjoint levels:

V (T ) =
M⊔
j=0

Levelj (T ) ,
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Figure 5. Left side, filtered image using Equation 8.2. Right
side, filtered image obtained by using Perona-Malik equation with
λ = 0.04, δt = 0.075, and t = 100 iterations, and g1(s), see [8].

where Levelj (T ) := Levelj =
{
vj,0, vj,1, . . . , vj,kj

}
, kj ≥ 1, are the vertices of T at

level j. At level 0 there is exactly one vertex v0, the root of the tree. The vertices
at the level 1 are the descendants of the root, which means that there is path v0
→ v1,i for any vertex v1,i ∈ Level1. Inductively, the vertices at level j, 1 ≤ j ≤M ,
are the the descendants of the vertices at level j − 1. The vertices at level M do
not have descendants.

We denote by γ (v), v ∈ V (T ), the number of edges emanating from v. We set

γT := max
v∈V (T )

{γ (v)} .

We fix a prime number defined as pT := minp {γT ≤ p; p prime}. For the sake of
simplicity we use p := pT . Given any vertex vj,ij ∈ Levelj , 1 ≤ j ≤ M , there is
exactly one path connecting vj,ij with v0:

v0 → v1,i1 → . . .→ vj−1,ij−1
→ vj,ij . (9.1)

We attach to vj,ij the p-adic integer

Ivj,ij := i1 + i2p+ . . .+ ij−1p
j−2 + ijp

j−1, (9.2)

where the digits ik belong to {0, 1, . . . , p− 1}. Then, there is a bijection between
the vertices of T and the p-adic integers of form (9.2). Given a vertex v at level Lv
denote the corresponding p-adic number as

Iv = i1 + i2p+ . . .+ iLv−1p
Lv−1, Lv ≤M. (9.3)

Now we attach to T the following family of balls:

B(T ) :=
{
Iv + pLvZp, v ∈ V (T ) r {v0}

}⊔
{Zp} ,

where the unit ball Zp correspond to the case v = v0. The tree T and the collection
of balls B(T ) are equivalent data. Indeed, given a finite collection B of balls
contained in Zp such that Zp ∈ B, there is a finite rooted tree T that represents
the partial order induced by ⊆ in B.
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We say that a vertex v is a leaf of T if v does not have descendants. In particular
all the vertices in LevelM are leaves. We denote by Leaf(T ) the set of all leaves
of T . Finally, we attach to T the open compact subset

K(T ) =
⊔

v∈Leaf(T )

(
Iv + pLvZp

)
. (9.4)

Now, given a finite disjoint union of balls of the form
⊔
v∈G

(
Iv + pLvZp

)
, there is a

unique tree T having {Iv; v ∈ G} as a set of leaves. The other vertices correspond
to truncations of the numbers Ivs. And given a tree T , (9.4) attaches a unique
finite disjoint union of balls to T .

We define a weighted tree as a pair (T , w), where w : Leaf(T ) → R+ :=

{x ∈ R;x ≥ 0}. We denote by Ω
(
pLv |x− Iv|p

)
the characteristic function of the

ball
(
Iv + pLvZp

)
. Given a test function from DLv (Zp) of the form

Φ (x) =
∑
v∈G

cvΩ
(
pLv |x− Iv|p

)
, x ∈ Zp, (9.5)

we attach to it the unique weighted tree with leaves {Iv; v ∈ G} and weights v → cv,
for v ∈ G. Conversely, given a weighted tree (T , w), with leaves G = {Iv; v ∈ Leaf(T )},
and w(v) = cv for v ∈ G, (9.5) defines a unique test function Φ (x) from DLv (Zp).

9.2. Images and finite rooted trees. In the numerical simulations, we use an
algorithm for coding an image as a finite, weighted, regular, rooted tree of valence
p, where p is a prime number. The input is an image I, a (n,m) matrix, and a
prime number p satisfying p ≤ m,n. The output is a finite, weighted, regular tree
Tree(I). We use two functions: the function dH divides an image into p horizontal
sub-images, and the function dV divides an image into p vertical sub-images. The
tree has at most L := blogp(nm)c levels. The level zero contains just the root
of the tree. Each vertex of the tree corresponds to a sub-image I ′ of I, and the
descendants of this vertex, in the next level, are sub-images of I ′ obtained by using
the function dH or dV .

The tree Tree(I) corresponding to an image I is construct recursively as follows:

(1) Level 0: there is one vertex, the root of the tree which corresponds to I.
(2) Level 2l + 1: the descendants of a vertex I ′ at the level 2l correspond to

the elements of dH(I ′).
(3) Level 2l: the descendants of a vertex I ′ at the level 2l − 1 correspond to

the elements of dV (I ′).
(4) Level L: all the vertices (leaves) at the level L are pixels. The grayscale

intensity of each pixel gives a the weight of the corresponding leaf.

We now define the operator dV . Let m0, r0 nonnegative integers such that
m = pm0 + r0. If m0 6= 0, we define

Is = [Ii,j ] 0≤i<n
sm0≤j≤m0(s+1)

for s = 0, . . . , r0,

Is = [Ii,j ] 0≤i<n
m0s+r0≤j<m0s

for s = r0 + 1, . . . , p− 1.

and

dV (I) = [Is]s=0,...,p−1.
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If m0 = 0, we define

Is = [Ii,j ]0≤i<n
j=s

for s = 0, . . . , r0, and dV (I) = [Is]s=0,...,p−1.

Thus the operator dV divides the image I into p vertical sub-images.
We now define operators dH . Let n0, q0 be non-negative integers satisfying n =

(p− 1)n0 + q0. If n0 6= 0. We define

Is = [Ii,j ]sn0≤i≤n0(s+1)
0≤j<m

for s = 0, . . . , q0,

Is = [Ii,j ]n0s+q0≤i<n0s
0≤j<m

for s = q0 + 1, . . . , p− 1,

and
dH(I) = [Is]s=0,...,p−1.

If n0 = 0, we define

Is = (Ii,j)i=s;0≤j<m for s = 0, . . . , q0, and dH(I) = [Is]s=0,...,p−1.

Thus the operator dH divides the image I into p horizontal sub-images.
Consequently, the correspondence between images and weighted, finite, regular,

rooted trees of valence p, is a bijection. Figure 6 shows the correspondence between
images and test functions.

Figure 6. Left side, original image 81 × 81. Right side, the rep-
resentation of the image as atest function. We use p = 3, L = 8.
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