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We consider a perturbative Gauss-Bonnet term supplementing the Einstein-Hilbert action and evaluate
its effect on the spectrum of the scalar mode that triggers the Gregory-Laflamme instability of black strings
in five-dimensional general relativity. After studying some properties of the static black string, we provide
the correction to the Lichnerowicz operator up to Oðα2Þ. For the scalar mode of the gravitational
perturbation, we find a master variable and study its spectrum, providing an analysis of the regime of
validity of our scheme. We show that the instability persists under the inclusion of the R2 correction and
that the critical wavelength increases with the value of α=r2þ ≪ 1. We also construct the boosted black
strings and compute the correction to the mass, the momentum, and the tension due to the higher curvature
term. The presence of the dimensionful coupling α spoils the validity of the Smarr relation, which is the
gravitational version of the Euler relation that must hold for every homogeneous, thermodynamic system.
We show that this identity can be restored by working in an extended thermodynamic setup that includes
variations of the Gauss-Bonnet coupling.
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I. INTRODUCTION

Black strings and black branes can bedefined as black hole
spacetimes with horizons that have extended directions,
which in the simplest case are planar [1]. These spacetimes
have a very interesting dynamics, since in general they suffer
from the Gregory-Laflamme (GL) instability [2,3], which is
triggered by a gravitational perturbation traveling along an
extended direction with a wavelength above a given critical
value. In a remarkable series ofworks [4–6], the authorswere
able to find strong numerical evidence in favor of the
pinching off of the horizons of black strings in a finite time.
This phenomenon is compatible with the previous no-go
results by Horowitz and Maeda [7], since it refers to a finite
value of the time for asymptotic observers, providing an
example of violation of cosmic censorship in dimension five
for generic initial data. This result has been recently con-
firmed in [8], where the authors were able to numerically
evolve the spacetime closer to the pinch-off and provide
evidence of a nongeometric progression for the time intervals
of the appearance of new generations of black holes

connected by black strings. The nonlinear evolution of the
system was also addressed in the context of the large-D
expansion of general relativity (GR) [9–11], giving rise to a
nonuniformblack stringas the final configurationafter theGL
instability is triggered, which is consistent with the existence
of a critical dimension obtained by Sorkin in [12]. In
Refs. [13,14] nonuniform black strings were constructed
numerically and perturbatively, and in [15–18] newnumerical
simulations of the fully nonlinear Einstein equations provide
evidence of violations of cosmic censorship triggered by GL
instabilities for asymptotically Minkowski spacetimes.
As the black string evolves, regions with higher curva-

ture will be exposed, and it is natural to expect that
higher curvature corrections to gravity may play a role.
Remarkably, in a recent paper [19], a new gauge was found
for the initial value problem in Einstein-Gauss-Bonnet
gravity, which leads to a strongly hyperbolic system for
bounded curvatures. This may allow us to evolve the black
string in the presence of higher curvature terms and study
their effect on the dynamics of the system.
In this paper, we study the black string instability spectrum

of backgrounds that are corrected at leading order in the
Gauss-Bonnet parameter. This precise R2 correction can be
obtained from string theory as an expansion on the string
tension. In such a framework, in order to construct solutions
and study their stability beyond linear order in α in a
consistent manner, one would have to consider higher
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powers of the curvature as corrections; therefore, if one
insists on interpreting our results as string theory corrections
to the GL instability, one cannot go beyond linear terms in α,
having always in mind that one is indeed working in an
effective field theory setup. As mentioned below, this also
affects the regimeof validity of thegravitational perturbation.
We also construct the boosted black string of this theory and
obtain the first order corrections in α to the energy, momen-
tum, entropy, temperature, and tension.

II. THE CORRECTED, STATIC, BLACK STRING

We will consider the Einstein-Gauss-Bonnet action [20]

I½g� ¼
Z

d5x
ffiffiffiffiffiffi
−g

p ðRþ αðRABCDRABCD − 4RABRAB þR2ÞÞ

þOðα2Þ ð1Þ
as an effective field theory, to first order in the coupling α,
which has mass dimension −2.
We start by reobtaining the closed form static black

string solutions, which were originally obtained in [21] to
first order in α. Additionally, we provide thermodynamic
quantities associated with this spacetime.
Let us consider a black string ansatz in dimension five, in

the field equations of the theory defined by (1),

ds2 ¼ −fðrÞdt2 þ dr2

gðrÞ þ r2dσ2 þ bðrÞdz2; ð2Þ

where dσ is the line element of a two-sphere. We assume
that the metric functions X ¼ ff; g; bg are analytic in
α ¼ 0, therefore they can be expanded as X ¼ X0 þ αX1þ
Oðα2Þ. The introduction of a dimensionful scale α forces
us to consider a nonconstant warp factor bðrÞ [22,23].
Dropping terms Oðα2Þ, the system of equations for the
functions X0 and X1 can be integrated in a closed manner.
The general solution involves four new integration con-
stants on top the integration constant of the X0 functions,
namely, the mass parameter of the GR solution, as well as
logarithmic terms in the radial coordinate. Using the
freedom under coordinate transformations, the perturbative
scheme in α and requiring the α-corrected spacetime to

have an event horizon leads to the following expressions in
terms of the radius of the horizon rþ:

fðrÞ ¼ f5ðrÞ ¼ 1 −
rþ
r
−
ðr − rþÞð6r2þ þ 11rrþ þ 23r2Þ

9rþr4
α

þOðα2Þ; ð3Þ

gðrÞ ¼ g5ðrÞ ¼ 1 −
rþ
r
þ ðr − rþÞðrþ 5rþÞðrþ 2rþÞ

9rþr4
α

þOðα2Þ; ð4Þ

bðrÞ ¼ b5ðrÞ ¼ 1þ 4ð6r2 þ 3rrþ þ 2r2þÞ
9rþr3

αþOðα2Þ: ð5Þ

The temperature, mass, and entropy of this black string are,
respectively, given by

T ¼ 1

4πrþ
−

11

36πr3þ
αþOðα2Þ; ð6Þ

M ¼ 8πrþLz þ
88π

9rþ
LzαþOðα2Þ; ð7Þ

S ¼ 16π2r2þLz þ
928π2

9
LzαþOðα2Þ; ð8Þ

where the former was computed from the surface gravity
in Eddington-Finkelstein-like coordinates, and the latter
two were computed using the Iyer-Wald method [24,25].
These expressions fulfill the first law of black hole
thermodynamics,

dM ¼ TdS; ð9Þ
disregarding quadratic terms in α. Here, Lz is the length of
the extended direction with coordinate z. Notice that both
the correction to the mass and entropy are positive.

III. THE PERTURBATION

The generalized Lichnerowicz operator, namely, the
linearized field equations around a generic background

g
∘
μν, read

0 ¼ 1

2
ð−δρμδλν□

∘
þ 2R

∘ ρ
μν

λ þ gμν
∘
R
∘ ρλ þ 4g

∘ληG
∘
ηðμδ

ρ
νÞÞhρλ − 2αR

∘
μξλν□

∘
hλξ

þ αð−R∘ ρησλR
∘
ξσρηg

∘
μν − 2R

∘ σρ
λνR

∘
σρξμ þ 4R

∘
μ

ρσ

νR
∘
λρσξ þ 4R

∘
μρλσR

∘
ν

σρ

ξÞhλξ

þ αð4g∘λðμR
∘
νÞρσξ∇

∘ σ∇∘ ρ
hλξ þ 4∇∘ σ∇∘ ðμhξλR

∘
νÞξλσ − 2g

∘
μνR

∘ ρ
λξη∇

∘
ρ∇
∘ η
hλξÞ þOðα2Þ;

where we have imposed transversality and tracelessness of
the perturbation, i.e.,∇∘ μhμν ¼ 0 and hμμ ¼ 0. We have also
used the vacuum field equations, which allow us to write
the Ricci tensor and Ricci scalar in terms of an expression

that is linear in α, that can be used in the linearization of
the Gauss-Bonnet tensor to write every Ricci tensor and
Ricci scalar in terms of the Riemann tensor plus Oðα2Þ
terms.
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A. On the regime of validity of the perturbation

The black string is parametrized by the coordinates
ðt; r; xi; zÞ, where the xi collectively denote the coordinates
on a round sphere. We will focus on the s-wave scalar
mode, which is responsible for the GL instability in GR.
Therefore, the metric perturbation that we are considering
reads

hAB ¼ εeΩteikz

0
BBB@

HttðrÞ HtrðrÞ 0 0

HtrðrÞ HrrðrÞ 0 0

0 0 HðrÞσij 0

0 0 0 0

1
CCCA

∼ eΩteikzHμνðrÞ; ð10Þ

with ε ≪ 1 and where σij denotes the metric on the sphere.
Schematically, when evaluated on the perturbation, the

bulk Lagrangian will have the form

Rþ αR2 ∼ backgroundþ ∂h∂hþ αð∂h∂hÞ2 þOðα2Þ:
ð11Þ

Because of the separation in modes, the terms ∂h∂hþ
αð∂h∂hÞ2 will contain the following contributions:

T1 ¼ k2 þ αk4 þOðα2Þ; ð12Þ

T2 ¼ Ω2 þ αΩ4 þOðα2Þ; ð13Þ

from the derivatives with respect to z and t, respectively. In
consequence, in order to ensure the validity of the pertur-
bative approach, we impose

αk2 ≪ 1 and αΩ2 ≪ 1; ð14Þ

namely, a sufficient condition for the validity of dropping-
off terms Oðα2Þ, to keep attention on the modes with small
k and small Ω as compared with α−1=2. We are interested in
the existence and behavior of unstable modes; therefore, for
a given k, after imposing the boundary conditions for the
perturbations, we look for positive values of Ω that may
allow us to connect the regular asymptotic behavior of the
perturbation both at the horizon and infinity.
As in GR, the dynamics of the scalar mode, defined by

the functions fHtt;Htr; Hrr; Hg is completely controlled
by the master variable HtrðrÞ, and the remaining functions
are given in terms of the master variable and its derivatives.
The second order, linear, homogeneous ordinary differ-
ential equation for HtrðrÞ has the form

Aðr; αÞ d
2Htr

dr2
þ Bðr; αÞ dHtr

dr
þ Cðr; αÞHtr ¼ 0; ð15Þ

where the coefficients depend on r and are linear in α,
which is consistent with the perturbative approach we are
considering. We do not provide the explicit expression for
the coefficients since they are not illuminating.
The asymptotic expansions of (15) near the horizon and

infinity lead to

HtrðrÞ ∼ ðr − rþÞ−1�Ωðrþþ11α
9rþþOðα2ÞÞð1þOðr − rþÞÞ; ð16Þ

HtrðrÞ ∼
e�r

ffiffiffiffiffiffiffiffiffiffi
Ω2þk2

p

rξ�
ð1þOðr−1ÞÞ; ð17Þ

where ξ� are constants that are not relevant for recognizing
the regular asymptotic behavior, dominated by the expo-
nential growing/suppression. In consequence, we choose
the (þ) branches in the near horizon expansion and the (−)
branches as r goes to infinity.
In order to find the spectrum, we proceed as follows: We

introduce the function FðrÞ such that

HtrðrÞ ¼ ðr − rþÞ−1þΩðrþþ11α
9rþþOðα2ÞÞFðrÞ ð18Þ

and rewrite the equation for FðrÞ in terms of the coordinate
x such that r ¼ rþ=ð1 − xÞ, which maps r ∈�rþ;þ∞½ to
x ∈�0; 1½. Then, we select the regular branch at the horizon
by assuming that FðxÞ has a Taylor expansion around
x ¼ 0. We therefore define the truncated series as

FNðxÞ ¼ 1þ
XN
j¼1

ajðk; rþ;Ω; αÞxj ð19Þ

and solve the equation near the horizon (x → 0) for the
coefficients aj. For a given wave number k, horizon radius
rþ, and value of the coupling α, the frequencies are

FIG. 1. Spectra of the perturbation for different values of the α
correction and rþ ¼ 1.
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obtained by setting FNð1Þ ¼ 0, for a large enough N, such
that a notion of numerical stability for the frequency Ω is
attained. Actually, one can introduce the dimensionless
quantities Ω̂ ¼ rþΩ and k̂ ¼ rþk and observe that (19)
depends only on the pair ðk̂; Ω̂Þ and the dimensionless ratio
α=r2þ. We have also used shooting to validate our numerical
results. Figure 1 depicts the spectrum of the scalar
perturbation in GR (red lines), as well as its correction
for different values of the coupling α. Aside from the
unstable modes, with positive Ω, we also depict a second
stable mode with Ω < 0, which is present in GR and
corrected due to the presence of the perturbative Gauss-
Bonnet term. Our numerical resolution is not enough to
discriminate the behavior of the corrected spectrum for
k ∼ 0, which may be attained for analytic treatment if one
generalizes the approach of the anti–de Sitter/Ricci-flat
correspondence of [26] to the presence of higher curvature
terms. It is interesting to notice that the critical value of kc
that may trigger the GL instability grows with the value of
the Gauss-Bonnet coupling, namely, the region of insta-
bility grows as the GB coupling is turned on, which can be
seen in more detail in Fig. 2.

IV. THE α-CORRECTED, BOOSTED
BLACK STRING

A boosted black string, with momentum along the z
direction, can be obtained by applying the transformation

t → cosh βtþ sinh βz and z → cosh βzþ sinh βt ð20Þ

to the metric (2). This transformation corresponds to a
boost with rapidity v ¼ − tanh β, and it generates non-
vanishing momentum along the z direction, which can be
checked by computing the corresponding α-corrected
Arnowitt-Deser-Misner momentum, as in GR [27]. Since
the new configuration is characterized by a different set of
global charges, it corresponds to a physically different state

in the phase space of the theory in spite of being generated
from the static solution (2) by a simple boost (20). Then, the
α-corrected, boosted black string is

ds2boosted ¼ −bðrÞdt2 þ dr2

gðrÞ þ r2dσ2 þ bðrÞdz2

þ ðbðrÞ − fðrÞÞcosh2βðdtþ tanh βdzÞ2: ð21Þ

Notice that the solution is asymptotically flat on a static
frame, since given b, f, and g of Eqs. (3)–(5), the gtz
component of the metric (21) vanishes as r → þ∞.
Again, using the Iyer-Wald method, one can obtain the

energy and momentum of these α-corrected, boosted black
strings, as conserved charges associated with the Killing
vectors ∂t and ∂z, respectively. This yields

Qð∂tÞ ¼ E ¼ 4πrþðcosh2β þ 1ÞLz

þ 4π

9rþ
ð47cosh2β − 25ÞLzαþOðα2Þ; ð22Þ

Qð∂zÞ ¼ P ¼ −4πrþ cosh β sinh βLz

−
188π

9rþ
cosh β sinh βLzαþOðα2Þ: ð23Þ

Going to Eddington-Finkelstein-like coordinates, one com-
putes the surface gravity of the boosted black string, which
leads to the following expression for the temperature:

T ¼ 1

4πrþ cosh β
−

11

36πr3þ cosh β
αþOðα2Þ: ð24Þ

The entropy of the configuration is given by the Iyer-Wald
formula,

S ¼ 1

T

Z
Hþ

Q½ξ�; ð25Þ

FIG. 2. Behavior of the critical wavelength that triggers the black string instability on the scalar mode, as a function of the α correction,
and rþ ¼ 1.
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where ξ is the horizon generator. As expected, the expres-
sion for ξ leads to the horizon velocity vh ¼ − tanh β, and
the entropy takes the form

S ¼ cosh β

�
16π2r2þLz þ

928π2

9
Lzα

�
þOðα2Þ: ð26Þ

As before, one recovers the GR expression of Ref. [27]
when α goes to zero.
For black strings of a fixed length, the first law is

fulfilled, namely,

dM ¼ TdSþ vhdP; ð27Þ

disregarding terms Oðα2Þ. On a more general ensemble,
one can also consider variations of Lz, as in [27]. This leads
to an extra work term in the first law, with the tension T̂ as
the variable conjugate to Lz. In this case, the first law takes
the form

dM ¼ TdSþ vhdPþ T̂ dLz; ð28Þ

where the tension acquires a correction with respect to that
of black strings in GR, namely,

T̂ ¼ 4πrþ −
100π

9rþ
αþOðα2Þ: ð29Þ

It is very interesting to notice that in contraposition to
what occurs for boosted black strings in GR [28], the
inclusion of the higher curvature correction α spoils the
validity of a standard Smarr law; namely, 2M is different
from 3TSþ T̂ Lz þ 2vhP. As in the presence of a cosmo-
logical constant [29,30], one can restore the validity of a
relation between finite thermodynamics quantities, i.e., the
validity of the Euler relation of thermodynamics for a
homogeneous system, by including in the first law a work
term proportional to variations of the dimensionful cou-
pling constant α. This approach leads to

dM ¼ TdSþ vhdPþ T̂ dLz þ μαdα; ð30Þ

with μ being the canonical conjugate of α and is defined as

μα ¼
∂MðS; P; Lz; αÞ

∂α
¼ −

16Lzπ

rþ
: ð31Þ

With these expressions at hand, for the boosted black string
characterized by the parameters vh and rþ, it is direct to
prove the following Smarr-like formula

2M ¼ 3TSþ T̂ Lz þ 2vhPþ 2μαα; ð32Þ

which can also be obtained on dimensional grounds by a
scaling argument. It would be interesting to have a physical

understanding of the latter work term, which must be
present if one insists on the validity of an Euler-like relation
within this setup, and to explore its effect on the possible
phase transitions that may be triggered by this new term.
Notice also that the correction to the mass and the entropy
are positive, while the contribution of the α term to the
momentum of the boosted black string has the same sign as
the uncorrected value.1

V. FURTHER REMARKS

In this paper, we computed the effect of the Gauss-
Bonnet term on the spectrum of the scalar mode that
triggers the GL instability in a regime in which the Gauss-
Bonnet coupling can be treated as a perturbation, which is
necessary if we want to interpret this R2 term as a higher
curvature correction coming from string theory. Recently,
the static, spherically symmetric black hole solution of this
setup was obtained for arbitrary dimensions, including the
dilaton in a frame that leads to second order field equations
[33] (see also [34] for the original computation on the frame
leading to fourth order field equations). Furthermore, the
mentioned second order frame [35] allowed us to identify
the four-dimensional rotating solution containing terms of
order α; a; a2, and αa. It would be interesting to explore
effects of the rotation of the four-dimensional metric on the
black string and evaluate the interplay between the super-
radiant instability and the GL instability as in [36,37]. The
presence of a2 terms of the perturbative solution con-
structed in [33] allows the existence of an ergoregion and
therefore a potential superradiant behavior. As with the
dilaton, it is also known that the presence of fluxes and
scalars with nonminimal couplings permits the construction
of closed form solutions of homogeneous black strings and
black branes in presence of higher curvature terms [38–41].
The effect of such terms on the GL instability still remains
an open problem, but it is important to mention that some of
the field theories that involve nonminimally coupled scalar
fields may also admit strongly hyperbolic formulations as
shown in [19].
As a simplified setup to evaluate the effect of the higher

curvature corrections, one can consider the regime in which
the higher curvature terms completely dominate over GR
terms, which may be consistent if one goes beyond the
perturbative regime. This approach was considered in pure
R2 [42,43] and pure R3 [44] Lovelock theories, exploiting
the fact that these theories admit exact homogeneous black
strings [22,23]. In these works it was shown that the GL
instability persists, but in this regime, the region of insta-
bility shrinks as one goes from R to R2 and then to the R3

1See the recent [31,32] for a string theory setup that leads to
negative contributions to the entropy, due to α0 corrections at
fixed global charges, for black strings and black branes. This is
in tension with standard expectations from the weak gravity
conjecture.
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theory (see also [45]). Recently, in the context of the large-D
expansion, these results were recovered analytically for the
R2 case [46], and also by the inclusion of next-to-leading
order terms in the 1=D correction it was shown that the
critical dimension increases with the value of the coupling.
Finally, it is important to mention that in the context ofM

theory, still at a perturbative level, the authors of [47]
considered the R4 correction in the analysis of the thermo-
dynamic analogue of the GL instability of boosted black
strings. More recently, the authors of [48] showed that the
singularity of a two-dimensional black hole can be
smoothed out by using a recent classification of the higher
curvature corrections from a bottom-up approach via T
duality [49–51]. Furthermore, they elaborated on the
regularity of the corresponding black string constructed
out from this black hole. This setup is simple enough to
study the dynamics of black strings in three dimensions,

considering higher curvature corrections of arbitrary
high power.
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