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By applying a relativistic mean-field description of neutron star matter with density dependent
couplings, we analyse the properties of two different matter compositions: nucleonic matter with ∆
baryons and nucleonic matter with hyperons and ∆ baryons. The delta-meson couplings are allowed
to vary within a wide range of values obtained by experimental data, while the hyperon-meson
couplings are fitted to hypernuclear properties. Neutron star properties with no deconfinement
phase transition are studied. It is verified that many models are excluded because the effective
nucleon mass becomes zero before the maximum mass configuration is attained. Hyperon-free with
∆-dominated composition compact stars are possible, the deltic stars. It is found that with a
convenient choice of parameters the existence of deltic stars with 80% of ∆ baryons at the center of
the star is possible. However, the presence of hyperons lowers the ∆ baryon fraction to values below
20% at the center and below 30% at 2-3 saturation densities. It is discussed that in the presence of
∆ baryons, the hyperon softening is not so drastic because ∆s couple more strongly to the ω meson,
and the stiffness of the equation of state is determined by the ω-dominance at high densities. The
speed of sound reflects very well this behavior. The compactness of the pulsar RX J0720.4-3125
imposes xσ∆ > xω∆ > 1 and favors xρ∆ > 1.

I. INTRODUCTION

Although the class of stellar remnants that are neither
white dwarves nor black holes is traditionally named neu-
tron stars (NS), these objects are not composed solely of
neutrons. Even the more näıve description of such ob-
jects must include some amount of protons in order to
guarantee the stability of the nuclear matter, and this
fact was already pointed out in the first proposals of the
existence of NS by Landau, Baade and Zwicky in the
early 1930s. Almost forty years ago, Glendenning [1] dis-
cussed in his seminal paper different scenarios considering
non-nucleonic degrees of freedom in NS matter, including
hyperons, ∆ baryons, pions and kaons, within a relativis-
tic mean field approach. In this work, Glendenning found
that the ∆ baryons do not nucleate inside the NS core.
This result was due to the coupling parameters chosen,
as it was shown later that, with a convenient choice of
the couplings minimally constrained by the existing ex-
perimental measurements, ∆ baryons may indeed occur
inside neutron stars [2–11].

The knowledge of the NS composition and the signa-
tures of this composition is presently a field of intense
investigation. To consider the entire spin-1/2 baryon
octet as part of the NS matter composition is almost the
standard in the nuclear astrophysics community [12–22]
but, more recently, there is a strong interest in under-
standing how the presence of the ∆ baryons specifically
may influence the properties of NS and their evolution
[23–31]. The lightest spin-3/2 baryons are just ∼ 30%
heavier than the nucleons, and are even lighter than the
heaviest spin-1/2 baryons of the octet, what makes very
reasonable to expect them to appear at the same den-
sity range as the hyperons (about 2-3 times the nuclear

saturation density). One thing that could forbid the ∆
onset would be if they were subject to a very repulsive
coupling, but that is not the case, since their coupling po-
tential for isospin-symmetric matter at saturation density
is expected to be attractive and in a range of to 2/3 to 1
times the potential of the nucleons [6, 8, 11].

In [32], the authors have studied the effect of heavy
baryons on the constitution of hot non-homogeneous
matter, in particular their effects on the light clus-
ters abundance and dissolution, using two relativistic
mean-field nuclear models (FSU2H [33], a model with
non-linear mesonic terms, and DD2 [34], a model with
density-dependent couplings). For the ∆ baryon, the
couplings were restricted to values compatible with ex-
perimental observations as discussed in [6, 10]. It was
found that the model FSU2H was much more restric-
tive, because most of the couplings would not be accept-
able to describe neutron stars since the effective nucleon
mass would become zero at densities below the maxi-
mum mass configuration. On the other hand, the DD2
model seemed to show much more flexibility and allowed
a wider range of acceptable couplings. In [10], the FSU2H
model has been fully investigated, but there was no ref-
erence to the implications of the fact that the effective
nucleon mass may become null at still low densities. In
[8], this problem was also encountered, but the authors
have modified their model in order to avoid this issue.

In the present work, we will explore in depth the ef-
fects of the ∆ baryon couplings considering a model that
describes adequately nuclear matter properties and NS
observations, considering the ∆ admixture, in both pure
nucleonic and hyperonic NS matters. We will study the
behavior of the nucleon effective mass, that was not ad-
dressed in Ref. [23], the speed of sound, the ∆ and hy-
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peronic fraction and the electron chemical potential, and
also discuss the star properties such as mass and radius.
We will pay special attention to some interesting aspects,
as the possible increase of the NS maximum mass as com-
pared to hyperonic only stars, or the possibility of the
formation of stars with more than 80% of ∆ baryons at
the core center. Also, special compact stars may exist in
some hyperon-free ∆-dominated composition, referred as
deltic stars.

II. FORMALISM

In this study, hadronic matter is described within a
relativistic mean-field approach with density-dependent
couplings. This class of models is shown to be very con-
sistent in the description of nuclear matter experimental
properties [35], and also when astrophysical constraints
are imposed [36, 37]. In such models, the interaction is
described through the exchange of mesons, and here we
consider the scalar meson σ, the vector mesons ω and
φ (that carries hidden strangeness), isoscalars, and the
isovector-vector meson ~ρ.

In this approach the Lagrangian density reads as

L =
∑
b

Ψ̄b

[
γµ

(
i∂µ − Γωbω

µ − Γφbφ
µ − Γρb

2
~τ · ~ρµ

)
− (mb − Γσbσ)] Ψb +

1

2
(∂µσ∂

µσ −m2
σσ

2)

− 1

4
ΩµνΩµν +

1

2
m2
ωωµω

µ − 1

4
ΦµνΦµν +

1

2
m2
φφµφ

µ

− 1

4
~Rµν · ~Rµν +

1

2
m2
ρ~ρµ · ~ρµ , (1)

where mi is the mass associated with the i = σ, ω, φ, ρ
meson field, Ωµν = ∂µων − ∂νωµ, Φµν = ∂µφν − ∂νφµ
~Rµν = ∂µ~ρν − ∂ν~ρµ − Γρ(~ρµ × ~ρν), and ~τ is the isospin
matrix (with vectors in isospin space denoted by arrows).
The sum on the index b runs over all the baryonic species
considered in the matter composition, described by the
field ψb with the mass mb. We are aware that spin-3/2
baryons (as the ∆s) are in fact described by the Rarita-
Schwinger Lagrangian density, which would demand a
discrimination on (1) for the terms when b = {∆}.
Nonetheless, the resulting equation of motion can be
written compactly as a Dirac equation in the mean-field
approximation, see [38].

The density-dependent coupling constants Γσ, Γω and
Γρ are adjusted in order to reproduce some of the nuclear
matter bulk properties using the following scaling with
the baryonic density nB

Γi(nB) = Γi(n0)ai
1 + bi(η + di)

2

1 + ci(η + di)2
(2)

for i = σ, ω and

Γρ(nB) = Γρ exp[−aρ(η − 1)], (3)

with η = nB/n0, where n0 is the nuclear saturation den-
sity. The Euler-Lagrange equations are used to calcu-
late the equations of motion for the meson and baryon
fields, see for instance [39], and a complete description
for the hadronic matter given by this Lagrangian density
can be derived from there. The model parameters con-
sidered here are obtained from a fitting that considered
known experimental constraints on values of nuclear mat-
ter binding energy, compressibility modulus, symmetry
energy and its slope, as well the 208Pb neutron skin mea-
surements. This parameterization is labeled as DDME2
and its details can be found in [40]. In Table I, we give its
symmetric nuclear matter properties at saturation den-
sity.

TABLE I. The symmetric nuclear matter properties at satu-
ration density for the DDME2 model: the nuclear saturation
density n0, the binding energy per particle B/A, the incom-
pressibility K, the symmetry energy Esym, the slope of the
symmetry energy L, and the nucleon effective mass M∗. All
quantities are in MeV, except for n0 that is given in fm−3,
and the effective nucleon mass is normalized to the nucleon
mass.

Model n0 B/A K Esym L M∗/M
DDME2 0.152 16.14 251 32.3 51 0.57

The fitting of the model free parameters are made by
considering ordinary nuclear matter, composed only by
nucleons (protons and neutrons). We parametrize the
other baryonic species couplings in terms of the nucleon-
meson couplings by defining the ratio xib = Γib/Γi, with
i = σ, ω, φ, ρ and b = {N}, {H}, {∆}, where it is defined
that xiN = 1. The hyperon couplings are defined tak-
ing the same density-dependence of the couplings to the
σ and ω mesons as the one of the nucleons, and for the
density-dependence of the φ coupling we take the one of
the ω meson. The couplings of the σ meson to the Λ
and Ξ hyperons were determined from a fit to hypernu-
clear binding energies, and were taken from [41] for the
Λ, and from [42] for the Ξ , while for the Σ hyperon, it
has been fixed by imposing that at saturation the Σ po-
tential in symmetric nuclear matter is +30 MeV, i.e. we
have considered a repulsive interaction as seems to be the
indication from experimental measurements [43]. The
couplings to the σ meson have been taken from [41, 42]

xσΛ = 0.621, xσΣ = 0.467, xσΞ = 0.321.

The magnitude of the couplings for the isoscalar-vector
mesons are given by the SU(6) symmetry

xωΛ = xωΣ =
2

3
, xωΞ =

1

3
,

xφΛ = xφΣ = −
√

2

3
, xφΞ = −2

√
2

3
.

The coupling of each hyperon to the ρ meson is defined
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by the product of the hyperon isospin with the ρ meson
coupling to the nucleon, i.e., xρH = τH .

The ∆-meson couplings are treated rather freely in
this study. Some experimental constraints summarized
in [6] suggest that the nucleon-∆ potential is slightly
more attractive than the nucleon-nucleon one, which con-
sequently implies xσ∆ ≥ 1. Also, the vector coupling is
constrained by results [44] as respecting the relation

0 ≤ xσ∆ − xω∆ ≤ 0.2, (4)

with no constraint put in the xρ∆ value. All of these
constraints will be taken with a grain of salt, as we aim
to explore the behavior of NS matter according to this
parameters in a comprehensive way, not discarding the
whole regions of possible values beforehand. These con-
straints will be remembered in the evaluation of the re-
sults. Early investigations on the behavior of these pa-
rameters were made in [10, 45, 46], but no previous study
analyzed carefully the astrophysical implications of the
vanishing nucleon effective mass, among other consider-
ations.

In order to describe NS matter properly, we must ob-
serve charge neutrality and chemical equilibrium condi-
tions. To reach these constraints, a non-interacting gas
of leptons (electrons and muons) is included in the de-
scription. At zero temperature, the particle fractions can
be determined from the neutron and electron chemical
potentials, such that the particle fractions yi = ni/nB
are determined from the neutron and electron chemical
potentials through

µb = µn − qbµe, (5)

where qb is the electric charge of the baryon b, and µµ =
µe. In the inner crust of the star, nonspherical clusters
may form, the so-called nuclear pasta phases. For this
EoS region, we consider a self-consistent Thomas-Fermi
calculation [47] with the same RMF model and under the
same thermodynamic conditions as for the homogeneous
gas core, i.e., β−equilibrium matter at zero temperature.
This inner crust EoS has recently been published [48] in
the CompOSE database [49]. For the outer crust, we
use the EoS by Baym, Pethick and Sutherland [50], that
was added below baryon density of 0.0003 fm−3. The
unified inner-crust–core DDME2 EoS can also be found
in CompOSE [51].

III. RESULTS AND DISCUSSIONS

We first discuss the composition and expected onset
of the different heavy baryons in β-stable, charge-neutral
NS matter, as described by the DDME2 model formalism
exposed in the previous section. Figs. 1 and 2 show the
particle fractions when the baryonic composition consid-
ered is the hyperon-free matter, i.e., composed by nu-
cleons and ∆ baryons (labeled N∆), and ∆-admixed hy-
pernuclear matter, i.e., composed by nucleons, hyperons
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FIG. 1. Particle relative populations as a function of the
density, fixing xρ∆ = 1.0, for the N∆ matter composition.
The particle fraction curves stop at the vanishing effective
mass density (see text).

and ∆s (labeled NH∆). The negatively charged spin-3/2
baryons are favored when charge neutrality is enforced,
while the positively charged ones are suppressed, in the
same way as what usually takes place with the hyperons.
Being negatively charged, the ∆− can replace a neutron-
electron pair at the top of their Fermi seas, being favored
over the lighter Λ and Σ baryons because of the fact that
their potential is more attractive, to a proportion which
the mass difference is counterbalanced. When allowed,
the first hyperon to appear is the Λ, as it is the lighter
one and neutrally charged.

Analysing Figs. 1 and 2, we conclude that if the cou-
pling fractions are lager than one, in hyperon free (N∆)
matter, having xσ∆ > xω∆ favors the appearance of all
∆ species, even the one with charge +2; if xσ∆ = xω∆,
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the larger the coupling the less favored the ∆ baryons
are, due to the ω-dominance at large densities that oc-
curs because the σ field saturates; also, the electrons are
efficiently replaced by ∆− baryons if the xω∆ is not too
large. When hyperons are included in the (NH∆) matter,
the Λ hyperon sets after the ∆− and is pushed to high
densities if xσ∆ > xω∆; if xσ∆ = xω∆ the larger xω∆ the
more important is the contribution of the Ξ− hyperon,
and the smaller ∆− because the larger the xω∆, the more
repulsive the ∆− interaction at high densities, see [10].
The presence of hyperons strongly disfavors the increase
of ∆ fractions at high densities because hyperons feel a
much weaker repulsion since the coupling to the ω meson
is smaller. This fact is exemplified by the competition
between the ∆− and the Ξ−, as one can notice in the
bottom panel of Fig. 2, whith the former suppressing
the first as it is lighter and subject to a less repulsive
coupling. For a fixed xω∆, there will always be a xσ∆

where the ∆− and the Λ appear at the same density,
beyond which the resonances are favored. Moreover, as
already discussed in [6, 10], if hyperons are explicitly in-
cluded and the constraint given by Eq. (4) is imposed,
∆− will always appear first, shifting the onset of hyper-
ons to larger densities compared with the ∆-free thresh-
old density.

The families of stars that result from the input of
the obtained equations of state (EoS) in the Tolman-
Oppenheimer-Volkoff (TOV) equations of relativistic hy-
drostatic equilibrium [52, 53] are shown in Fig. 3 for
hyperon-free matter and Fig. 4 for ∆-admixed matter
including hyperons. In each figure we show results for
three values of the coupling-fractions xω∆ (0.95, 1.0 and
1.1) and xρ∆ (0.5, 1.0 and 1.5). The colorbar indicates
the xσ∆ value which we vary between 0.8 to 1.2. In the
following figures, the full black line represents the re-
sults obtained with the pure nucleonic (N) EoS, and the
black dash-dotted line has been calculated for a hyper-
onic (NH) EoS. In these figures the crosses indicate the
maximum mass configuration. The top panels in both fig-
ures, and middle panels of Fig. 4, show some EoS that do
not reach the maximum mass star. In the presence of hy-
perons, this happens for for xσ∆ − xω∆ & 0.1. Formally,
the maximum mass star is obtained when the TOV stabil-
ity conditions of having a positive derivative of the star
mass with respect to its central density (∂M/∂εc ≥ 0)
reaches a zero value. Black crosses indicate the maxi-
mum mass star for each EoS if this criteria is attained.
As we will discuss later, some mass-radius curves do not
reach the maximum configuration because the effective
mass of the nucleon becomes zero at a too low density.
This problem was identified in other works [8, 11, 32, 54],
but its consequences were not fully explored until now.
In [8], the authors have modified the model in order to
avoid negative effective masses for the nucleon.

The shaded green and blue regions in the figures rep-
resent observational constraints obtained from two in-
dependent analysis of NICER data of the pulsar PSR
J0030+0451, that resulted in M = 1.34+0.15

−0.16 MSun and
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FIG. 2. Same as Fig. 1, but for the NH∆ matter composition.

R = 12.71+1.14
−1.19 km according to Ref. [55], and in

M = 1.44+0.15
−0.14 MSun and R = 13.02+1.24

−1.06 km accord-
ing to Ref. [56], respectively. The magenta squared
region represents the recent measurement of the pulsar
PSR J0740+6620 [57, 58] of M = 2.072+0.067

−0.066 MSun and

R = 12.39+1.30
−0.98 km, at a confidence interval of 68% [59].

The uncertainties associated with the observations are
not small enough to put strong constraints on the cou-
pling parameters we are investigating. All models that
reach the maximum mass configuration are compatible
with the observational constraints for the several scenar-
ios of matter composition considered, either with nucle-
ons and ∆s, or including hyperons as well.

From the figures, we see that xσ∆ competes with xω∆

and xρ∆, with greater values of the first making the stel-
lar radius decrease when compared with the ∆-free mat-
ter composition. Larger values of xσ∆ are associated with
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FIG. 3. Mass-radius diagrams for some choices of xρ∆ and xω∆, varying the xσ∆ parameter for the N∆ matter composition
(color scale). The solid and dot-dashed black lines represent the N and NH compositions, respectively, and the black crosses
indicate the maximum mass star if this configuration is reached. The colored regions represent NICER constraints (see text).

a larger attraction, and therefore a softer EoS at interme-
diate densities when the effect of the σ meson dominates.
A similar effect occurs when smaller values of xρ∆ are
taken: the smaller the xρ∆, the smaller the radii obtained
for a given pair (xσ∆, xω∆). This can be understood be-
cause a smaller xρ∆ decreases the repulsion associated
with the proton-neutron asymmetry. Another interest-
ing effect is the fact that the simultaneous presence of
hyperons and ∆s increases the maximum mass above the
hyperonic matter maximum mass limit if xω∆ ≥ 1. This
is due to the fact that at high densities the effect of the
vector meson dominates over the σ meson and the ∆ cou-
pling to the ω meson is larger than the coupling of the
nucleons or hyperons to the ω-meson. The role of the
couplings in the maximum mass is quite complex, and
will be better understood later in the discussion.

In Fig. 5 we plot the nucleon effective mass,

Mn = mn − Γσσ, (6)

as a function of the density. When we consider the
nucleon-only neutron star matter composition, Mn de-
creases asymptotically with nB . When other baryon
species are included in the matter composition (either hy-
perons, ∆s, or both), we see a much faster decrease of the
nucleon effective mass. This behavior is understood from
the fact that each new particle present adds (through the
scalar density dependence of the σ field) to the negatively
contributing term of Eq. (6). The greater the multiplic-
ity of baryons in the matter, the faster is the drop of
Mn, as we can see from comparing top and bottom pan-
els of Fig. 5 or even comparing the ∆-admixed with the
N or NH compositions inside each panel, noting that the
higher values of xσ∆ produce higher fractions of ∆s. For
some configurations, the drop is so fast that the nucleon
effective mass becomes too small and reaches zero be-
fore attaining the maximum densities expected to occur
in the maximum mass configuration. This behavior was
already well-known for the hypernuclear star matter [60],
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FIG. 4. Same as Fig. 3, but for NH∆ matter composition.

but the inclusion of ∆s makes it even more pronounced.
These EoS do not describe neutron stars properly, and
therefore must be discarded from our analysis. We argue
that these EoS would be valid if a phase transition to
deconfined quark matter (or other exotic matter compo-
sition) could occur at a density below the one at which
the nucleon effective mass becomes zero. This scenario
will be explored in a future work.

For the models with a non-vanishing effective nucleon
mass, the EoS are computed while the thermodynamic
stability condition dP/dε ≥ 0 holds true. A liquid-gas
type of phase transition is expected to occur when the
thermodynamic stability is lost but, as the EoS can be
computed to densities far beyond the ones present in stel-
lar interiors (reaching at least nB = 1.25 fm−3), and dis-
regarding some unrealistic choices of very negative values
of the relation xσ∆ − xω∆, this behavior would not be
prevalent in any physically reasonable scenario. We will
disregard the models that are not able to attain the maxi-
mum mass configuration when their EoS is applied to the
TOV equations. In a scenario that allows for a hadron-

quark deconfinement phase transition as in [6] but not
considered in our study, they could still be acceptable.
We conclude that the above results allow us to constrain
the ∆ couplings due to some unphysical behavior such as
the effective nucleon mass becoming zero at too low den-
sities, or the EoS predicting a thermodynamic instability
near the saturation density that does not seem to be ob-
served, but present known astrophysical observations do
not set any further constraint.

In Fig. 5, the results are shown considering the whole
computed EoS and, as in the previous Figures, black
crosses indicate maximum mass star if this configuration
is reached for the scenario in question. The maximum
central density is around nB = 0.85 fm−3 for the N∆
composition, and around nB = 1.00 fm−3 for the NH∆
composition. When ∆s are favored to a point of sup-
pressing all other species (higher values of xσ∆ and/or
lower values of xω∆), the situation reverts back to the
N matter composition asymptotic behavior, leading to
the diminishing of the negatively contributing terms in
Eq. (6), but now the ∆ baryons are the most abundant
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the xσ∆ parameter for the N∆ (top panels) and for NH∆ (bottom panels) matter compositions. The solid and dot-dashed
black lines represent the N and NH compositions, respectively, and black crosses indicate the central values of the maximum
mass star if this configuration is reached.
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particles. In this extreme limit, the EoS reaches the max-
imum mass star configuration once again, e.g., the indigo
blue curve in Fig. 5 top left panel (this configuration is
composed by a fraction of 80% of ∆s in the center of the
star, see Fig. 7).

The derivative of the pressure with respect to the en-
ergy density is the speed of sound, a quantity that pro-
vides information about shear viscosity, tidal deformabil-
ity and gravitational waves signatures [61–63]. At zero
temperature, its square is simply defined as

v2
s =

∂P

∂ε
. (7)

It can be interpreted also as a measure of the EoS stiff-
ness, with a higher speed generating a higher pressure at
a given energy density and, therefore, sustaining a big-
ger star mass for a given radius. Results for the speed
of sound are shown in Fig. 6, where one can notice the
kinks due to the different particle onsets. If only nucle-
onic matter is allowed in the N composition, quite high
Fermi levels must be occupied. With the inclusion of
new particles, the presence of more degrees of freedom
distributes the Fermi pressure among the different parti-
cles and softens the EoS. It holds true in the intermediate
densities (for nB < 0.50 fm−3) for the N∆ composition,
and always after the hyperon onset in the NH and NH∆
compositions. The behavior of hyperonic neutron-star
matter, however, is affected in a more complicated way
by the inclusion of ∆ baryons. The NH∆ composition is
softer than the NH case at lower densities, but this situa-
tion is reversed at the middle regions. This is due to the
strong coupling of the ∆s to the ω meson. For the same
reason at high densities, N∆ matter has a larger speed
of sound than N matter. This difference is then reduced
in the higher densities once again.

Perturbative QCD results for very high densities (more
than 40 times the nuclear saturation density) predict an
upper limit of v2

s = 1/3 [64, 65]. In such high densities,
far beyond the ones reached in the neutron star interiors,
the baryonic matter is expected to be deconfined in quark
matter. However, several authors have discussed that the
two solar mass constraint requires a speed of sound well
above the conformal limit, indicating that matter inside
NS is a strongly interacting system [64, 66–69]. Never-
theless, within the description undertaken in [65], it was
shown that the size of the quark core in hybrid stars is
related to the speed of the sound of the quark matter,
and very massive quark matter cores are expected in the
NS interiors if the conformal limit is not strongly vio-
lated. As shown in Fig. 6, the onset of hyperons and
∆s breaks the monotonic behaviour of v2

s , reducing the
speed of sound, but the conformal limit is always violated
due to the fact that we are describing hadronic (and not
deconfined quark) matter. The speed of sound behavior,
the sudden decrease, is similar to the one found in other
works when new degrees of freedom set in, such as the
onset of hyperons in [70] or of s quarks in [71].

The relative populations of each kind of baryons are

shown in Fig. 7, where we have defined the particle frac-
tions as yi =

∑
b nb/nB , with i = {H,∆}, meaning that

the summation runs only over the hyperons or ∆s, respec-
tively. Very large ∆ fractions are expected for the larger
values of xσ∆, the effect being quite drastic if xω∆ < 1.
In this case, many EoS do no attain the maximum-mass
star, and are considered invalid. In the presence of hy-
perons, the condition of attaining the maximum mass
configuration is stronger, because the nucleon effective
mass goes to zero too soon. Taking xω∆ > 1, these dif-
ficulties cease to occur. The hyperon fractions are also
shown in Fig. 7 bottom panels. As expected, larger xσ∆

couplings, which favor the appearance of ∆s, will disfavor
the appearance of hyperons. This completes the conclu-
sion drawn from Fig. 7 middle panels where it is seen
that for stars with both ∆s and hyperons, large ∆ con-
tents do not reach the maximum-mass configuration. We
also conclude that for models that are able to attain the
maximum-mass configuration identified by the cross, the
hyperon fraction at the center of the star is of the order
of 50% and the ∆ fraction is below 20%. In the presence
of hyperons, the maximum ∆ fraction is attained for den-
sities between 2ρ0 and 3ρ0 and takes values below 30%.
Although the ∆ baryons set in first, they are replaced by
hyperons at high densities because the coupling of the ∆
baryons to the ω meson is stronger. Looking for, e.g.,
the upper-mid panel of Fig. 3, we identify an isolated
configuration where the EoS reaches the maximum mass
with a very large xσ∆. From the top left panel of Fig. 7,
it is possible to see that this configuration is composed of
around 80% of ∆ baryons, considering all isospin projec-
tions together. It explains why the nucleon effective mass
reverts to the asymptotic behavior in order to allow the
description at higher densities (see the left panel of Fig.
5). These results suggest that compact stars might exist
in some hyperon-free ∆-dominated composition, that we
label deltic stars.

The bottom row of Fig. 3 allows us to see a rather un-
expected behavior. For these choices of xω∆ and xρ∆, the
maximum masses increase with xσ∆, i.e., with a greater
fraction of ∆s (see Fig. 7). It may be considered counter
intuitive since, taking as an example the hyperon puzzle
[72], the inclusion of more particles involves more degrees
of freedom, and lowers the Fermi levels. Following this
reasoning, it is expected that the admixture of ∆s in hy-
pernuclear matter would make the EoS softer, but it is
not always the case. In Walecka-type relativistic models
(a category in which we include the DDME2 and other
density-dependent parameterizations in), the attractive
σ field grows rapidly until about 3 times the saturation
density, but then shows a softer dependence on nB at
higher densities. On the other hand, the repulsive ω field
grows indefinitely in a linear fashion and, then, becomes
dominant in the denser regions. There are more ∆s in
the matter composition for larger σ-delta couplings, and,
since the ω-delta coupling is always taken to be much
greater than the ω-hyperon coupling (that is not greater
than ∼ 2/3gω), configurations where ∆s are more abun-
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(M = 2.07 MSun), and the curves are plotted only for values
where the maximum mass star configuration is reached.

dant will have a stronger repulsion than scenarios that

only consider the NH composition, resulting in a stiffer
EoS and a higher maximum mass.

The effect of the delta-meson couplings on the maxi-
mum stellar mass is illustrated in Fig. 8. We note that,
for a fixed xω∆, increasing the parameter xσ∆ will always
produce a more massive star. When the parameter xσ∆ is
fixed, the maximum mass will reduce slightly for greater
xω∆. The main factor in play here is the balance between
the relative fractions of hyperons and ∆s: a larger xσ∆

favors larger ∆ fractions. The ∆s couple more strongly to
the ω fields. Even though, stronger σ−meson couplings
are involved, the ω field dominance at large densities re-
sults in a stiffening of the EoS, and, therefore, larger
masses. This balance is stronger for 1.0 < xω∆ < 1.2. In
[54], a similar conclusion was drawn, although the max-
imum mass was obtained for 1.1 < xω∆ < 1.2, imply-
ing smaller values. This difference is probably occurring
because a different hyperon interaction was considered.
Notice, however, that we do not consider xω∆ > 1.2 and
that with our parametrization we do not get maximum
mass configurations for xσ∆ − xω∆ & 0.1.

In Fig. 9, we perform a similar study for the radius
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of the maximum mass star (top panel) and radius of the
1.4 MSun star (bottom panel). For xρ∆ = 1.0, the pres-
ence of ∆s may reduce the maximum mass radius in 100-
150 m, 11.5 km being the minimum, and the 1.4 MSun

star radius in 20-500 m, with a minimum of 12.7 km.
Only models that attain maximum mass configurations
are represented in Fig. 8 and 9. In [9] smaller radii are
obtained, and the presence of ∆s may give rise to a re-
duction of the radius of the canonical star of up to ≈ 2
km. However, it is not clear if the authors exclude mod-
els that do not attain the maximum mass. In [10], the
authors have obtained, with FSU2H, effects of the order
of the ones discussed in the present work with DDME2.
From Fig. 3 and 9, it is seen that the presence of ∆s
(induced by larger values of xσ∆) cause a significant de-
crease in the radius of the stars with intermediate masses.
This is explained by the fact that the appearance of the
∆s softens the EoS in the intermediate density region, as
clearly seen in the top panels of Fig. 6. Stars with core
densities in this range are further compressed when ∆s
set in and, consequently, their radii reduce [10].

The stiffening of the EoS due to the ∆ admixture, was
also noticed in Ref. [29], where it was suggested that

it occurs due to the isospin asymmetry. We define the
coefficient

δI =

∑
b I3 bnb∑
b nb

, (8)

that represents the average 3rd isospin component of a
given matter composition, weighted by each particle rel-
ative density, as shown in Fig. 10. The density at which
the curves with and without ∆s split marks the appear-
ance of the ∆− baryon, which turns the isospin asym-
metry more negative and, consequently, makes the EoS
stiffer. It happens earlier for larger xσ∆ couplings, as
this is the determinant parameter to favor the onset of
the ∆s. For the N∆ composition (top panels of Fig. 10),
the isospin asymmetry coefficient tends to more negative
values as the density increase, because the matter turns
to be dominated by the ∆−. This tendency is stronger for
smaller xω∆ couplings, as a strong ω coupling does not
favor ∆ populations at higher densities. However, when
the NH∆ composition is considered (bottom panels of
Fig. 10), the isospin asymmetry coefficient becomes less
negative once the hyperon threshold is reached and fol-
lows the NH composition behavior after that, becoming
less negative as the matter is more dominated by the hy-
perons. Nevertheless, the configurations with relatively
more ∆s present (i.e., bigger xσ∆, drawn in indigo blue
in the plots) show more negative values of δI .

In Fig. 11, we summarize the constraints on the val-
ues of the couplings that ensure the existence of neutron
stars compatible with the stability criteria and with the
observational results. For three values of the coupling
xρ∆ (0.5, 1 and 1.5), the compactness of a 1.4 MSun star
is plotted versus the xσ∆ and xω∆. The color gradient
indicates the compactness, defined as CM = M/R, of the
canonical (M = 1.4 MSun) star. The compactness of the
isolated neutron star RX J0720.4-3125 is inferred to be
C = 0.105 ± 0.002 MSun/km [73], which gives us an ad-
ditional parameter for analysis, specially focused on the
less massive star radii. From the figures, we see that the
effect of xρ∆ is making the canonical star less compact as
the parameter increases, improving the agreement with
this constraint. The black region on the upper-left corner
represents values for which dP/dε < 0 before nB = 0.2
fm−3, meaning that the thermodynamic stability con-
dition is not satisfied at these low densities. The gray
region represents values where the maximum mass star
configuration is not reached because the effective nucleon
mass goes to zero. Note that all configurations approved
by these two criteria fulfill the observational constraints
shown in Fig. 3. The white-shaded triangular regions
indicate the combinations of parameters that do not ful-
fill the constraint given by Eq. (4) [44]. The remaining
points, identified with (a) and indicated by the color gra-
dient, correspond to delta-meson couplings that satisfy
all constraints. Comparing with the coupling domain ob-
tained in [10], in this work a larger domain was obtained,
indicating that solutions with xω∆>1.0 and xσ∆ > 1.0 are
possible. The difference is essentially connected with the
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model: DDME2 allows for a larger parameter domain
for which the effective mass does not go to zero before
the maximum mass configuration is attained. For a large
enough xρ∆, the constraint C = 0.105± 0.002 MSun/km
is satisfied for xσ∆ and xω∆ larger than one. A smaller
value of xρ∆, e.g. 0.5 in the left panel, is more constrain-
ing with respect to the combination xσ∆-xω∆ and does
not allow for large values of xσ∆.

In the present work, we have considered that the ∆
baryons are stable in stellar matter, as considered in
many other works [6, 11, 54]. This may be justified be-
cause the possible final states for the decay of the ∆
to occur are blocked. Generally, in vacuum the deltas
∆ = {∆++,∆+,∆0,∆−} quickly decay via the strong
force into a nucleon N = {p, n} and a pion of appropri-
ate charge,

∆ −→ N + π.

The ∆− will decay if µ∆−−µn = µπ− , giving possibly rise
to a π−-condensate, and in β-equilibrium µπ− = µe. For
reference, we show in Fig. 12 the electron chemical po-
tential (i.e., the difference between the ∆ and the nucleon
(effective) chemical potentials), and indicate the vacuum
pion mass with a dotted line, mπ = 139.5 MeV. In sev-
eral scenarios the electron chemical potential is larger
than the pion vacuum mass. This would indicate that
indeed the pion condensate would be favorable. How-
ever, in Refs. [1, 74], the authors showed that the repul-
sive s-wave pion-nucleon interaction does not favor pion
condensation because, in the medium, the pion energy is
above its vacuum mass.

IV. CONCLUSIONS

By applying a relativistic mean-field formalism, we
have analysed the properties of NS matter with an ad-
mixture of nuclei and ∆ baryons, and an admixture of
nuclei, hyperons and ∆ baryons. The meson-hyperon
couplings were chosen by imposing hypernuclear proper-
ties [41, 42]. For the ∆-meson couplings, we have consid-
ered the constraint obtained in [44] from electron-nucleon
measurements.

It was shown that under some conditions, in particular,
in the presence of a large admixture of different particles
the nucleon effective mass goes to zero before the maxi-
mum mass configuration is reached. These configurations
were considered unphysical. It was shown that using as-
trophysical observations to constraint the couplings, the
onset of the ∆− baryon is favored over the hyperons, in
particular the Λ hyperon. Some NS configurations were
determined with ≈80% ∆− baryons in the core center,
the so called deltic stars. It was shown that at large

densities the presence of ∆s would generate a quite stiff
EoS due to the ω meson dominance. As a consequence,
NS with a nucleon-hyperon-delta admixure attains larger
maximum masses and a larger speed of sound in the core
center. For the same reason, in the presence of hyperons
the ∆ distribution is maximum at intermediate densi-
ties, below 30%, and reduces towards the NS star center
to values below 20%.

Taking as reference the isolated neutron star RX
J0720.4-3125, for which the compactness CM = 0.105 ±
0.002 MSun/km [75] has been measured, it was shown
that values of xσ∆, xω∆, and xρ∆ & 1.0 are favored to-
gether with xσ∆ > xω∆. A small xρ∆ favors smaller radii
in neutron stars with intermediate masses.

The calculation of the electron chemical potential has
allowed us to discuss the possibility of the occurrence of
a pion condensate. However, the values that we have
obtained were never much larger than the pion vacuum
mass, which may indicate that its condensation may not
be favoured. Also, and according to Refs. [74, 76], this
possibility was disfavored because the pion s-wave inter-
acts repulsively with nucleonic matter.

Finally, all stars obtained in this work with a mass
above two solar masses satisfy the NICER constraints
for pulsars PSR J0740+6620 and PSR J0030+0451. The
maximum NS masses with an admixture of hyperons
and ∆s was obtained for xσ∆ = 1.2 and xω∆ ∼ 1.05,
corresponding to a maximum fraction of ∆s: to obtain
the maximum fraction, a large xσ∆ is needed but not a
too large xω∆. The presence of ∆s may originate, for
the canonical mass, a reduction in the radius of up to
500m, and of 200m for the maximum-mass configura-
tion, and considering xρ∆ = 1. Taking a smaller value,
e.g. xρ∆ = 0.5, the radius of the canonical star may be
reduced up to ≈ 1km. In the present work, we have ob-
tained a larger coupling domain than the one determined
in [10], but certainly much smaller than the one discussed
in [9].

ACKNOWLEDGEMENTS

This work is a part of the project INCT-FNA Proc.
No. 464898/2014-5, and also partly supported by the
FCT (Portugal) Projects No. UIDB/FIS/04564/2020,
UIDP/FIS/04564/2020, and by PHAROS COST Ac-
tion CA16214. K.D.M. acknowledges a doctorate schol-
arship from Conselho Nacional de Desenvolvimento
Cient́ıfico e Tecnológico (CNPq/Brazil). D.P.M. was
partially supported by Conselho Nacional de Desen-
volvimento Cient́ıfico e Tecnológico (CNPq/Brazil) un-
der grant 303490-2021-7. H.P. acknowledges the grant
CEECIND/03092/2017 (FCT, Portugal).

[1] N. K. Glendenning, Astrophys. J. 293, 470 (1985). [2] H. Xiang and G. Hua, Phys. Rev. C 67, 038801 (2003).

http://dx.doi.org/10.1086/163253
http://dx.doi.org/10.1103/PhysRevC.67.038801


13

25

50

75

100

125

150

175

200

225

0 0.25 0.50 0.75 1.00 1.25 1.50

µ
e

nB (fm-3)

xωΔ=0.95; xρΔ=1.0

0.25 0.50 0.75 1.00 1.25 1.50

nB (fm-3)

xωΔ=1.0; xρΔ=1.0

0.25 0.50 0.75 1.00 1.25 1.50

nB (fm-3)

0.8

0.9

1.0

1.1

1.2

x
σ
Δ

xωΔ=1.1; xρΔ=1.0

25

50

75

100

125

150

175

200

225

0 0.25 0.50 0.75 1.00 1.25 1.50

µ
e

nB (fm-3)

xωΔ=0.95; xρΔ=1.0

0.25 0.50 0.75 1.00 1.25 1.50

nB (fm-3)

xωΔ=1.0; xρΔ=1.0

0.25 0.50 0.75 1.00 1.25 1.50

nB (fm-3)

0.8

0.9

1.0

1.1

1.2

x
σ
Δ

xωΔ=1.1; xρΔ=1.0

FIG. 12. Electron chemical potentials as a function of the density, taking xρ∆ = 1.0, for some choices of xω∆ and varying the
xσ∆ parameter for N∆ (top panels) or NH∆ (bottom panels) matter composition. The dashed line represents the vacuum π
mass.
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A. Vuorinen, Nature Phys. (2020), 10.1038/s41567-020-
0914-9, arXiv:1903.09121 [astro-ph.HE].

[66] M. G. Alford, S. Han, and M. Prakash, Phys. Rev. D
88, 083013 (2013), arXiv:1302.4732 [astro-ph.SR].

[67] C. C. Moustakidis, T. Gaitanos, C. Margaritis, and G. A.
Lalazissis, Phys. Rev. C 95, 045801 (2017), [Erratum:
Phys.Rev.C 95, 059904 (2017)], arXiv:1608.00344 [nucl-
th].

[68] I. Tews, J. Carlson, S. Gandolfi, and S. Reddy, Astro-
phys. J. 860, 149 (2018), arXiv:1801.01923 [nucl-th].

[69] B. Reed and C. J. Horowitz, Phys. Rev. C 101, 045803
(2020), arXiv:1910.05463 [astro-ph.HE].

[70] L. L. Lopes and D. P. Menezes, arXiv preprint
arXiv:2111.02247 (2021).
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